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Abstract. This note determine the irreducible Harish Chandra
modules of a rank one semisimple Lie group with admissible re-
striction to some proper reductive subgroup.

1. Introduction

The problem of understanding branching laws for a unitary represen-
tation of a group G with respect to a subgroup L has received attention
due in part to its important applications in Number Theory, Fourier
Analysis on Homogeneous spaces and Physics. The literature is quite
vast and the techniques to attack the problem rely on different areas
of mathematics like algebraic geometry, combinatorics, analysis, geom-
etry. For an update on the problem we refer to [15] and references
therein. For the purpose of this note, G denotes a rank one, connected
matrix simple Lie group G. Once and for all we fix a maximal compact
subgroup K of G and denote by g = k + s the corresponding Cartan
decomposition of the Lie algebra of the group G. The Lie algebra of a
group is denoted by the corresponding German lower case letter and
the complexification of either a real vector space or a real connected
matrix Lie group is denoted by adding the subscript C. The aim of this
note is to to list, up to equivalence, the totality of triple (G, L, V ) such
that L is a closed connected subgroup of K and V is a Harish-Chandra
module for G which is L−admissible. We provide an answer in the
language of associated variety of a Harish-Chandra module.

To a Harish-Chandra module (π, V ), Vogan in [22], has attached an
algebraic subvariety of sC. This variety is called the associated variety

Date: april 8-9.30pm.
1991 Mathematics Subject Classification. Primary 22E46; Secondary 37B15.
Key words and phrases. Harish-Chandra modules, admissible restriction,

branching laws.
Partially supported by FONCYT, CONICET, SECYTUNC, AgenciaCbaCiencia

(Argentina), University of Paris VII(France), ICTP (Italy).
1



2 Vargas, J.

of (π, V ) and denoted by Ass(π). Based on the Langland’s classifica-
tion of the irreducible Harish-Chandra modules for G, Collingwood in
[2] has determined the dimension of Ass(π). We state some of our re-
sults by means of the associated variety. In order to state our results
in terms of Langlands’s classification of Harish-Chandra modules we
refer to the tables in [2]. Let N denote the cone of nilpotent elements
in sC. The adjoint representation of GC restricted to KC leaves invari-
ant the subspace sC as well as the cone N . Unless g = sl(2, R), N is
the closure of one orbit of KC. For example, for (π, V ) the underlying
Harish-Chandra module of a Discrete Series representation and g iso-
morphic to either so(1, 2q), q ≥ 2 or f4(−20) the associated variety is N .
Whereas, for sp(1, q) and (π, V ) a Discrete Series representation which
is small in the sense of [9], the associated variety is a proper subvariety
of N . For π irreducible Harish-Chandra module, the associated variety
of π is different of the trivial orbit if and only if π is infinite dimen-
sional. To avoid cumbersome statements, in this note, we only consider
infinite dimensional irreducible Harish-Chandra modules for g. Next,
we consider a closed connected subgroup L of K together with (π, V )
a Harish-Chandra module for G. Hence, the restriction of (π, V ) to L
decomposes as a direct sum of irreducible representations, by defini-
tion, (π, V ) restricted to L is admissible when the multiplicity of each
irreducible L−factor is finite. In [13], we find equivalent statements to
admissibility as well as properties of L−admissible representations. For
a noncompact closed semisimple subgroup H of G whose maximal com-
pact subgroup is L, and an irreducible unitary representation (π, V ) of
G, we define (π, V ) to be H−admissible whenever (π, V ) restricted to
H decomposes as a Discrete Hilbert sum of irreducible representations
and each irreducible factor has finite multiplicity. In [6], [13] is shown
that for a unitary irreducible representation of G, admissible restric-
tion to L of the underlying Harish-Chandra module implies H− ad-
missibility. In [5] is shown that whenever (π, V ) is a discrete series
representation, H−admisibilty implies L−admissibility of the under-
lying Harish-Chandra module. Kobayashi, in [14], conjectures that
for an unitary irreducible representation of G and (G, H) a symmet-
ric pair, H−admissibility implies L−admissibility of the underlying
Harish-Chandra module.

For our first result, we fix a compact connected subgroup L of K.
Hence, L acts on the unit sphere of s. We have,

Theorem 1. Assume L acts transitively on the unit sphere of s. Then,
any Harish-Chandra module (π, V ) for G is admissible when restricted
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to L. Conversely, if the associated variety of π is N and (π, V ) re-
stricted to L is admissible. Then, L acts transitively on the unit sphere
of s.

After we show theorem 1 we explicit the subgroups involved in the
statement of the result.

The ensuing results analyzes the case the associated variety is a
proper subvariety of N . To begin with, let us recall that up to local
isomorphism, the rank one groups are

SU(1, q), SO0(1, q), Sp(1, q), F4(−20).

Respective maximal compact subgroups are

S(U(1)× U(q)), SO(q), Sp(1)× Sp(q), Spin(9).

With respect to the KC−orbits in N , in [3], we find a proof that for
so(1, q), q ≥ 3 the nilpotent cone has no proper KC−invariant closed
subvarieties. For either sp(1, q), q ≥ 2 or f4(−20), KC has one proper
orbit and for su(1, q), KC has two proper orbits. Let L a compact
connected subgroup of K.

Theorem 2. Assume the associated variety of the Harish-Chandra
module (π, V ) is a proper subvariety of N . Then,

• For su(1, q), π|L is admissible iff S[Cq]LC = C.
• For sp(1, q), π|L is admissible iff L is conjugate to either Sp(1)×

B, with B closed subgroup of Sp(q) or to S × Sp(q1) × · · · ×
Sp(qr), with S closed subgroup of Sp(1) and q1 + · · ·+ qr = q.

One consequence of theorem 1 and theorem 2 is: Any Harish-Chandra
module for SO(1, 2q) (resp. Sp(1, q)) has admissible restriction to U(q)
(resp.Sp(q)). In section 2,3,4 we point out more examples.

For the case of F4(−20) it follows from theorem 1 and the classification
of orthogonal groups which acts transitively on the unit sphere that
every Harish-Chandra module whose associated variety is N does not
have an admissible restriction to a proper subgroup of Spin(9). In order
to state a result when Ass(π) is a proper subvariety of N we set up
some notation. From now on, for a subgroup Spin(k) of Spin(9) we
mean a conjugate to the inverse image of the immersion of SO(k) in
SO(9) as an upper left block or equivalently immersed as a lower right
block. For the next statement, let (π, V ) be a Harish-Chandra module
for F4(−20).

Theorem 3. We set L to be a connected closed reductive subgroup of
Spin(9). Assume Ass(π) is proper. Then π restricted to L is admissible
if and only if L is conjugated to a subgroup which contains Spin(6).
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Corollary 1. Assume Ass(π) is a proper subvariety of N . For L sim-
ple, if π restricted to L is admissible, then L is conjugated to one of
Spin(m), m = 6, 7, 8, 9.

In section 4 we verify that if semisimple connected subgroup H of
F4(−20) contains Spin(6) then H is compact. The copy of SO(6, 1)
inside SO(8, 1) has as one of its maximal compact subgroups the usual
immersion of SU(4) in SO(8). Actually, Spin(6) is conjugated to SU(4)
by an outer automorphism of Spin(8) of order two. We recall that every
automorphism of Spin(8) is the restriction of an inner automorphism
of F4(C). The maximal connected closed subgroups of Spin(9) are:

Spin(n)× Spim(m), n + m = 9, n ≤ m; SU(2) � SU(2)

and a homomorphic image of SU(2) whose projection on SO(9) acts
irreducible in R9. We show,

Corollary 2. Assume Ass(π) is proper. Then π restricted to a max-
imal connected closed subgroup L of Spin(9) is admissible if and only
if L is conjugated to one of Spin(m)× Spim(9−m), m = 6, 7, 8, 9.

The connected simple Lie subgroups of F4(C) has been classified by
Dynkin, in order to show theorem 3 we review the list in section 4.
The maximal closed, connected reductive subgroups of F4(−20) have
been classified by Komrakov [17]. The list up to conjugation and up
to covering is:

SU(2, 1)× SU(3), SL2(R)×G2, SO(8, 1), Sp(2, 1)× SU(3), K.

Here, G2 is a compact Lie group for the algebra g2.

Theorem 4. Let H be a proper semisimple noncompact connected sub-
group so that H∩K is a maximal compact subgroup of H and π an irre-
ducible Harish-Chandra module of F4(−20). Then, π restricted to H ∩K
is admissible if and only if the associated variety of π is a proper sub-
variety of N and H is conjugated to SO(8, 1).

Many of the results of this note follow from ideas of Michel Duflo as
well as of enlightening discussions with him. The author would like to
thank Michel Duflo for his generosity. The author also likes to thank
David Vogan for allowing to use fact (2.3) and to Michel Brion, Willem
de Graaf, Mike Eastwood, Peter Trapa for neat and quick answer to
questions.
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2. Proof of theorem 1

For each Harish-Chandra module π, Vogan in [22] has defined the
associated variety Ass(π). This is an algebraic subset of the set of nilpo-
tent elements N in sC. Besides Ass(π) is invariant under the action of
KC. Thus, KC acts on the ring of regular functions in Ass(π). In [22] is
shown that N is the union of finitely many KC−orbits. Hence, Ass(π)
enjoys the same property. Meanwhile is needed we recall properties of
N .

We now show:
(2.1)Let π be a Harish-Chandra module for G and let L denote a

closed connected subgroup of K which acts transitively on the unit
sphere of s. Then, π restricted to L is an admissible representation.

For this, we recall several important facts, let b denote the killing
form on g, we use the same notation for the quadratic form associated
to b. Kostant-Rallis in [18] has shown:

(2.2) N is the zero set in sC for the quadratic form attached to
b. Moreover, the ideal of the variety N is the ideal spanned by the
restriction to sC of the quadratic form associated to b.

Other important fact we need, which is due to Huang-Vogan, is:
(2.3) Let L be a closed connected subgroup of K. Then, a Harish-

Chandra module for G restricted to L is admissible if and only if the
representation of L in the algebra of regular functions on the associated
variety of the module is admissible.

The following result is useful:
(2.4) Let L be a connected complex reductive group, V a finite

dimensional rational representation of L and C an irreducible and L−in-
variant cone in V. Then, the left regular representation of L in the ring
of regular functions C[C] of C is admissible if and only if C[C]L = C.

For a proof c.f. [20]. Actually, (2.4) is a consequence of the following
result in algebraic geometry

(2.5) Via left multiplication each isotypic component for the repre-
sentation of L in C[C] becomes a module over the ring C[C]L. Then, for
an irreducible cone C, each isotypic component is a finitely generated
module over the ring C[C]L. For a proof [20].

We now show (2.1) Let L be a subgroup of K which acts transi-
tively on the unit sphere of s. Then S[sC]L = C[b]. In fact, if p is an
invariant polynomial for L, the assumption on L implies p takes on
a constant value on each sphere centered at the origin. Since, G is a
rank one group, K acts transitively on each of such spheres. Thus, p is
K−invariant polynomial. The result of Huang-Vogan (2.3) and (2.4)
yields that any irreducible Harish-Chandra module for G is admissible
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when restricted to L and we have shown (2.1) when the associated va-
riety is N . To conclude the proof of direct implication in theorem 1 we
consider the case Ass(π) is a proper subvariety of N . Since, the ring
of regular functions C[Ass(π)] of Ass(π) is an L−equivariant quotient
of C[N ] and we have shown that C[N ] is an admissible representation
of L, the direct implication in theorem 1 follows from (2.3).

Remark: Another proof of the direct implication in theorem 1 is
as follows, let G = KAN denote an Iwasawa decomposition for G. As
usual let M denote the centralizer of A in K. Because of the Casselman
embedding theorem (π, V ) is a subrepresentation of a minimal principal
series IndG

MAN(σ ⊗ ν). Hence, as K −module, (π, V ) is a subrepresen-
tation of IndK

M(σ). Our hypothesis implies that L acts transitively on
K/M. Therefore, the theorem of Mackey on restriction of an induced
representation yields that the Harish-Chandra module of (π, V ) has an
admissible restriction to L.

Next we show:
(2.6)Let π be an irreducible Harish-Chandra module for G whose

associated variety is N and which has admissible restriction to L. Then,
L acts transitively on the unit sphere of s.

Indeed, owing to the theorem of Huang Vogan (2.3) the invariants
of L in the ring of regular functions on N is the subspace of constant
functions.

Assume L does not act transitively on the unit sphere of s. Thus,
there exists an L−invariant polynomial on s which separates two orbits
of L in the unit sphere, however, because of our hypothesis on L and π
this polynomial is the constant polynomial. Hence, L acts transitively
on the unit sphere of s. This shows (2.4) and we have conclude the
proof of theorem 1.

Remark: We like to point out, that if G is a semisimple connected
Lie group so that some subgroup of K acts transitively on the unit
sphere of s, then G has real rank equal to one.

For sake of completeness, for each g we choose a Lie group G and we
list the closed connected subgroups L of K which acts transitively on
the unit sphere of s. For this, we denote by Spins(2k + 1) the image of
Spin(2k + 1) by its spin representation.

• SU(1, q) ⊃ K = U(q). Here s ≡ R2q. Then, L is one of:
SU(q); U(q) Besides, for q even Sp( q

2
).

• SO0(1, 2q + 1) ⊃ K = SO(2q + 1). For 2q + 1 6= 7, L = K. For
2q +1 = 7, L = SO(7) or L is the image of the seven dimension
irreducible representation for G2.
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• SO0(1, 2q) ⊃ K = SO(2q). Then L is one of: K; SU(q); U(q);
Spins(7) ⊂ SO(8); Spins(9) ⊂ SO(16); Besides, for q even
S × Sp( q

2
) ⊂ SO(2q) , S closed subgroup of Sp(1).

• Sp(1, q) ⊃ K = Sp(1) × Sp(q). s ≡ R4q. L = S × Sp(q),
S closed subgroup of Sp(1).

• F4(−20) ⊃ K = Spin(9). L = K.

Theorem 1 together with the list of subgroups of K which acts transi-
tively on the unit sphere of s leads us to:

Corollary 3. Let π be a Harish-Chandra module for G and L denote a
proper subgroup of K. Then for g, L listed bellow, π|L is an admissible
representation of L.

• su(1, q), L := SU(q), Sp(q/2)
• so(1, 7), L := G2

• so(1, 2q), L := SU(q), U(q), Sp(q/2), S × Sp(q/2),
Spins(7) ⊂ SO(8), Spins(9) ⊂ SO(16).

• sp(1, q), L := S × Sp(q).

Since for so(1, n), n ≥ 3, every non trivial KC−orbit in N is equal
to N we have,

Corollary 4. Let π be an infinite dimensional Harish-Chandra module
for so(1, n), n ≥ 3 and L a subgroup of K so that π|L is an admissible
representation of L. Then,

• For n odd, L = K, or n = 7 and also L = G2.
• For n = 2q , L = K or L = SU(q), U(q), S × Sp(q/2),

Spins(7) ⊂ SO(8), Spins(9) ⊂ SO(16).

3. Proof of theorem 2

In order to show theorem 2 we need to compute the associated variety
of some Harish-Chandra modules for G. Whenever g = so(1, n), the
nilpotent cone is equal to an orbit of KC union the origin and since, we
dealt with representations whose associated variety is proper we are left
to consider the algebras su(1, q), sp(1, q), f4(−20). For these three cases,
rank of K is equal to rank of G. We fix a maximal torus T of K. Let
Φ(g, t) denotes the root system for the pair (gC, tC). Let θ denote the
Cartan involution of g associated to the Cartan decomposition g = k+s.
Let q = l + u denote a θ−stable parabolic subalgebra of gC. Then, for
each one dimensional representation λ of l, Vogan and Zuckerman has
constructed a Harish-Chandra module Aq(λ) which is irreducible and
nonzero whenever λ is in the good range with respect to u. Let u−
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denote the opposite algebra to u. For λ in the weak range with respect
to u, in [13] we find a proof that

Ass(Aq(λ)) = Ad(KC)(u− ∩ sC) (3.1).

Thus, Ass(Aq(λ)) is an irreducible KC−invariant subcone of N . More-
over, whenever the parameter λ varies among the good range param-
eters, the associated variety of Aq(λ) depends only on the parabolic
subalgebra q. Thus, we may write Ass(Aq) for Ass(Aq(λ)).

Lemma 1. If Ass(π) is a proper subvariety of N , then for a convenient
data q we have that Ass(π) = Ass(Aq).

To show the lemma we do a case by case analysis. We recall there
exists an orthogonal basis ε, δ1, . . . , δq of it? so that

Φ(su(1, q), t) = {±(ε− δj), (δr − δs), r 6= s}

Φ(sp(1, q), t) = {±(ε± δj),±(δr ± δs),±2ε,±2δj, r 6= s, }.
An orthogonal basis δ1, . . . , δ4 of it? so that

Φ(f4(−20), t) = {±δj, (±δr ± δs),±
1

2
(δ1 ± δ2 ± δ3 ± δ4), r < s}.

To follow, we give a system of positive roots ∆ for Φ(k, t) and we list
the systems of positive roots for Φ(g, t) which contains ∆.
• su(1, q), ∆ := {δr−δs, r < s}, Ψa is associated to the lexicographic

order

{δ1 > · · · > δa > ε > δa+1 > · · · > δq}, 0 ≤ a ≤ q.

Ψ0, Ψq are the holomorphic systems which contains ∆.
• sp(1, q), ∆ := {2ε, δr ± δs, 2δj, r < s}, Ψa associated to the lexico-

graphic order

{δ1 > · · · > δa > ε > δa+1 > · · · > δq}, 0 ≤ a ≤ q.

Ψ0 is the quaternionic (small) system in the sense of Gross-Wallach [9].
• f4(−20), ∆ := {δj, δr ± δs, r < s, }. In this case, there are three

systems of positive roots for Φ(f4(−20), t) containing ∆.

Ψ1 := {δj, (δr ± δs), r < s,
1

2
(δ1 ± δ2 ± δ3 ± δ4)}.

whose simple roots are

δ2 − δ3, δ3 − δ4, δ4,
1

2
(δ1 − δ2 − δ3 − δ4)

Let β := 1
2
(δ1−δ2−δ3−δ4), β

′ := 1
2
(δ1−δ2−δ3+δ4), as usual, Sγ is the

reflexion about the root γ. The other systems are Ψ2 := SβΨ1, Ψ3 :=
Sβ′Ψ2.
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In order to complete the proof of lemma 1 we define convenient
parabolic subalgebras and compute the associated variety Ass(Aq).

For either su(1, q) or sp(1, q) we set ba to denote the Borel subalgebra
determinate by the system of positive roots Ψa. Formula (3.1) yields,
• su(1, q). Let s+ := b0 ∩ sC, and s− := bq ∩ sC. Then

Ass(Ab0) = s−, Ass(Abq) = s+, Ass(Aba) = N , 1 ≤ a < q.

Both, s± are Ad(U(q)) invariant irreducible linear subspaces of dimen-
sion q. In [3] is shown that s± are the unique proper subvarieties of N
which are associated varieties of a Harish-Chandra module.
• sp(1, q). For 1 ≤ a ≤ q, Ass(Aba) = N .

Ass(Ab0) = {v + t[Y2ε, v], v ∈
∑

j

CY−ε±δj
, t ∈ C} (3.1).

Here, Yα is a nonzero root vector for the root α. Hence, dimAss(Ab0) =
2q + 1. The last equality follows from

Ass(Ab0) = Ad(KC)(
∑

j

CY−ε±δj
) = Ad(Sp(1))(

∑
j

CY−ε±δj
) (3.2).

Note that
∑

j CY−ε±δj
is invariant under the action of Texp(CY−2ε)×

Sp(q). The Bruhat decomposition for Sp(1) yields the equality (3.1).
We point out that the action of Sp(q) on the linear subspace

∑
j CY−ε±δj

is equivalent to usual one in C2q. In [3] is shown that the variety (3.1)
is the unique proper subvariety of N equal to an associated variety.
• f4(−20). For the system Ψ2 the long simple roots are compact and the

short simple roots are noncompact. −β is the short simple root whose
node in the Dynkin diagram is an end point. Let q4 = l4+u4 denote the
parabolic subalgebra associated to the fundamental weight correspond-
ing to −β. Then, l4∩f4(−20) ≡ so(6, 1), dim u4∩kC = 10, dim u4∩sC = 5
and dimAd(K)(u−4 ∩ sC) = 11. Since in [3] there is a proof that in N
there is only one KC−orbit of dimension 11 we conclude the proof
of lemma 1. A direct computation shows that the Lie algebra of
Spin(9) ∩ SO(6, 1) is the usual immersion the algebra su(4) in so(8).
2

We now show theorem 2.
• su(1, q)
In [3] is shown that the proper subvarieties of N which are equal

to the associated varieties of some irreducible Harish-Chandra module
are precisely the subvarieties s±. Since, the action of U(q) in s+ is
equivalent to the usual action of U(q) in Cq the statement in theorem
2 about su(1, q) follows from the theorem of Huang-Vogan (2.3) coupled
with (3.1) Another proof is given in Kobayashi [12].
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The classification of the close reductive subgroups L of GL(q, C) such
that S[Cq]L = C has not been accomplished, yet. A pair (L, V ) where
L is complex reductive groups and V finite dimensional representa-
tion of L so that L has an open orbit in V is called a prehomogeneous
spaces. For a prehomogeneous space (L, V ) we always have C[V ]L = C.
Whenever L is a semisimple complex Lie subgroup of GL(V ) so that
C[V ]L = C then (L, V ) is a prehomogeneous space, for a proof c.f
[16]. Substantial progress on the problem of classifying prehomoge-
neous spaces has been accomplished by Kac, Sato, Kimura, Gerald
Schwarz, Gyoja. For a reference c.f. [16] and references therein. The
semisimple irreducible subgroups L of SLq such that (L, Cq) is a preho-
mogeneous space has been classified by Kac, Sato-Kimura, Littelman,
they are:

(SLn �SLm, Cn �Cm), m
2
≥ n ≥ 1; (SL2m+1, Λ

2(C2m+1)); (SL2n+1 �
SL2, Λ

2(C2n+1) � C2); (Sp(n) � SL2m+1, C2n � C2m+1), n ≥ 2m + 1;
(Spin(10), C16) half spin rep in C16; (Sp(2) � SLm), m ≥ 5; (H �
SLm, Cn � Cm), m ≥ n ≥ 1, H semisimple and which acts irreducible
on Cn.

Example of pairs (L, Cq) so that C[Cq]L = C are constructed as fol-
lows: Let Lj ⊂ GL(Cnj), j = 1, · · · , k be subgroups so that C[Cnj ]Lj =
C. Let L = L1×· · ·Lk act on Cn1×· · ·×Cnk in the obvious way. Since,

C[Cn1 × · · · × Cnk ]L = C[Cn1 ]L1 ⊗ · · · ⊗ C[Cnk ]Lk

we have that C[Cn1 × · · · ×Cnk ]L = C. As consequence, a holomorphic
discrete series for SU(1, 2n) has an admissible restriction to S(U(n)×
U(n)), n ≥ 3.
• sp(1, q) In [3], we find a proof that the orbits of KC in N are: one

dense orbit; one orbit of dimension 2q+1; the trivial orbit. Thus, (3.1),
(3.2) imply Ass(Ab0) is the unique associated variety which is a proper
subvariety of N . To begin with we analyze the structure of an invariant
regular functions on Ass(Ab0). Owing to (3.1), a regular function p on
Ass(Ab0) may be written p =

∑
k ck(v)tk, where ck are polynomials in

v ∈
∑

j CY−ε±δj
.

We set T1 := Sp(1) ∩ T. Hence, T1 is a one dimensional torus. For
s ∈ T1, we have Ad(s)(v + t[Y2ε, v]) = s−εv +(sεt[Y2ε, v]). We consider a
closed connected subgroup B ⊂ Sp(q). Therefore, p is invariant under
the action of T1 × B if and only if for every k, ck is a homogeneous
polynomial of degree k and invariant under B. Thus, we conclude

C[Ass(Ab0)]
T1×B = C if and only if C[C2q]B = C.

Similarly,

C[Ass(Ab0)]
B = C if and only if C[C2q]B = C.
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Lemma 2. Let B be a closed connected subgroup of Sp(q). Then,
S[C2q]BC = C if and only if B is conjugated to a subgroup Sp(q1) ×
· · · × Sp(qr) with q1 + · · ·+ qr = q.

Proof: Since Sp(C2q) has an open orbit in C2q the converse implica-
tion follows. For the direct implication, the hypothesis on B implies
there exists B−irreducible linear subspaces V1, · · · , Vr of C2q so that

C2q = V1 ⊕ · · · ⊕ Vr.

Let ω denote a nondegenerate skew-symmetric form whose group of
isometries is Sp(q, C). We claim that no Vj is an isotropic subspace
for ω. Otherwise, since ω is nondegenerate, Vj ⊕ V ?

j would be an
B−submodule and hence the evaluation map would give rise to an
B−invariant element of the symmetric algebra of C2q of positive de-
gree. Let pj denote the projection onto Vj along the sum of the sub-
spaces Vk, k 6= j. Thus, pj(B) is an irreducible subgroup of Sp(Vj, ω|) so

that S[Vj]
pj(B) = C. From the work of [19] we may conclude pj(BC) =

Sp(Vj, ω). Thus, B is isomorphic to a product of symplectic groups.
This concludes the proof of lemma 2 2

Lemma 2 together with the Theorem of Huang Vogan, let us conclude
(3.3) A Harish-Chandra module for sp(1, q) whose associated variety

is of dimension 2q + 1 has an admissible restriction to a subgroup
L = T1 × B, or to a subgroup L = B if and only if B is conjugated to
Sp(q1)× ...× Sp(qr),

∑
qj = q.

Since any two torus in Sp(1) are conjugated, we obtain part of the
converse implication in theorem 2 concerning to Sp(1, q).

To conclude of the proof of the converse implication for sp(1, q) we
now show that if Ass(π) has dimension 2q + 1, then π restricted to
Sp(1) is an admissible representation.

For this we recall a result of Kostant on the minimal nonzero nilpo-
tent orbit in sC. We state the result in a way that is valid for either
sp(1, q) or f4(−20). We fix a system of positive roots Ψ for Φ(g, t).

(3.4) The minimal nonzero nilpotent orbit in sC is equal to the orbit
of any nonzero root vector. The closure of the minimal nilpotent orbit
is equal to the union of the orbit with the zero orbit. Let βM denote
the maximal noncompact root in Ψ. Hence, βM is the highest weight
for the irreducible K− module sC. For each non negative integer k let
VkβM

denote the irreducible representation of K whose highest weight is
kβM . Then, the KC−modules structure on the ring of regular functions
on the minimal nilpotent orbit is equivalent to ⊕k≥0V

?
kβM

. For a proof
c.f. [10].
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Back to sp(1, q)! Because of (3.4) the Sp(1)×Sp(q)−decomposition
of the ring of regular functions on the minimal nilpotent orbit is

⊕k≥0V
?
kε � V ?

kδ1
.

Hence, C[Ass(b0)] is an admissible module over either Sp(1) or Sp(q).
Thus, the result of Huang-Vogan let us conclude that any Harish-
Chandra module whose associated variety is of dimension 2q+1 has an
admissible restriction to Sp(1). This concludes the proof of the converse
statement for case of sp(1, q).

Remark: Since V2kε contains a a nonzero vector fix by T1 we ob-
tain that π has no admissible restriction to a proper closed connected
subgroup of Sp(1).

For the direct implication in theorem 2 which concerns the algebra
sp(1, q), let L be a subgroup of Sp(1) × Sp(q) so that some Harish-
Chandra module π whose associated variety is of dimension 2q + 1 has
an admissible restriction to L. After conjugation, and projecting onto
the factors of K, we may assume L is a contained in one of:

Sp(q), T1 ×B, Sp(1)×B.

In [6], [13] we find a proof of

(3.5) For a Harish-Chandra module for G, admissible restriction to
L implies admissible restriction to any subgroup of K which contains
L.

Hence, if L1 denotes any of the three subgroups listed above, we
have C[Ass(π)]L1 = C. Thus, lemma 2 yields: for the first case L =
Sp(q1) × · · · × Sp(qr); for the second possibility L is the product of a
one dimensional torus times L∩Sp(q), after conjugation by un element
of Sp(q) we may assume the torus is the graph (t, φ(t)) t ∈ T1 where φ :
T1 → T ∩Sp(q) is a rational morphism, then Ad(L) leaves invariant the
subspace

∑
j CY−ε±δj

, hence Ad(L)∩Sp(q) = Sp(q1)×· · ·×Sp(qr) and L

is isomorphic to T1×Sp(q1)×· · ·×Sp(qr); for the third case, L contains
an ideal L2 of the type (a, φ(a)), a ∈ Sp(1), and φ : Sp(1) → Sp(q) a
morphism. If B does not contain an Sp(1)−factor, then L = Sp(1)×B.
If the projection of L2 into B is nontrivial, then the center of L is
contained in Sp(q) and we have to analyze the invariants for the sp(1)
factor.

4. Proof of Theorem 3 and Theorem 4

We now show that there is only one connected simple Lie group
F4(−20) whose Lie algebra is f4(−20). Indeed, for f4 the weight lattice
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agrees with the root lattice. Thus, the center of the complex sim-
ply connected Lie group of Lie algebra f4 is trivial. Hence, up to
isomorphism, there is only one complex simple Lie group whose Lie
algebra is f4. In [8] page 348 we find a proof that the analytic sub-
group of F4(C) corresponding to f4(−20) is simply connected. Thus,
there is up isomorphism, one connected Lie group F4(−20) with Lie al-
gebra f4(−20). For F4(−20), K ≡ Spin(9). The Cartan decomposition is
f(4(−20) = so(9) + R16 and the representation of so(9) in s is the spin
representation. It follows from the classification of the subgroups of
an orthogonal group which acts transitively on a unit sphere that if L
is a subgroup of Spin(9) acting transitively on the unit sphere of R16,
then L = Spin(16). Therefore, theorem 1 yields that for π a Harish-
Chandra module for F4(−20) whose associated variety is N , then π has
no admissible restriction to any proper subgroup of Spin(9). In [3] we
find a proof there is a unique proper Spin(9)C orbit on N , and is of
dimension 11. It is the minimal nonzero nilpotent orbit of KC in sC.
Let βM = 1

2
(δ1 + δ2 + δ3 + δ4). Thus, βM is the highest weight of the

spin representation of Spin(9). For a dominant weight γ of Spin(9) let
Vγ denote the irreducible representation of highest weight γ. According
to the theorem of Kostant (3.4), the left regular representation of KC
in the ring of regular functions in the closure of the minimal nilpotent
orbit is equivalent to the direct sum

∑
k≥1 V ?

kβM
. Thus, the theorem of

Huang-Vogan yields
(4.1) Let π be a Harish-Chandra module for f4(−20) whose associated

variety is a proper subvariety of the nilpotent cone. Let L be a compact
connected subgroup of Spin(9). Then, π|L is admissible if and only if

V L
kβM

= {0} for every k ≥ 1.

From now on, when we refer to Spin(m), m = 5, 6, 7, 8, 9 as a sub-
group of Spin(9) we are thinking of the immersion of Spin(m) as a left
upper block.

To follow we show the converse statement in theorem 3, which is a
consequence of (3.5) and
(4.2)Let π be a Harish-Chandra module for f4(−20) whose associated
variety is a proper subvariety of N . Then, π restricted to Spin(6) is
admissible.

For this, we successively apply the theorem of Murnaghan, to
Spin(9) ⊃ Spin(8) ⊃ Spin(7) ⊃ Spin(6) and VkβM

.
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Here, kβM = (k
2
, k

2
, k

2
, k

2
). Thus, the set of highest weight of the irre-

ducible Spin(6)−factors of VkβM
is

{(k
2
, a, b),

k

2
≥ a ≥ |b|}.

Therefore, for positive k the trivial representation of Spin(6) does not
occur in VkβM

. Thus, the theorem of Huang-Vogan yields π|Spin(6) is
admissible. If we go one step further to Spin(5) we get that the trivial
representation of Spin(5) occurs in V4kβM

, k > 0 which let us conclude.
(4.4)Let π be a Harish-Chandra module for f4(−20) so that its associ-

ated variety is proper. Then π restricted to Spin(4) × Spin(5) is not
admissible. Hence, for any subgroup L of Spin(9) conjugated to a sub-
group of Spin(5), π restricted to L is not admissible as it follows from
(3.5). In particular, for n = 2, 3, 4, 5 π restricted to Spin(n) is not
admissible.

Here, as usual, Spin(n)×Spin(m), n+m = 9 is the subgroup Spin(n)
times de image of Spin(m) as a lower right block.
For other proof of (4.4), we verify

V
Spin(4)×Spin(5)
kβM

6= {0} for integers k = 4s

This follows from the Theorem of Cartan-Helgason (theorem 8.49 in
[11]). In fact, since, for the symmetric pair (SO(9), SO(4)× SO(5)) a
Cartan subspace is a Cartan subalgebra for so(9), for the time being,
we may fix t equal to a Cartan subspace of the pair (SO(9), SO(4) ×
SO(5)). The Cartan-Helgason theorem gives: V

Spin(4)×Spin(5)
kβM

6= {0} is

equivalent to k(βM ,α)
2(α,α)

is a nonnegative integer for every positive root α.

This is so, for k = 4s. Hence, π restricted to Spin(4)× Spin(5) is not
an admissible representation.

Next, we study restriction to maximal subgroups of Spin(9).
In [7], Dynkin has computed the maximal connected subgroups of
Spin(9). They are:

Spin(n)× Spin(m), n + m = 9; Spin(3) � Spin(3);

and the image of SU(2) = Spin(3) into Spin(9) whose projection into
SO(9) is equal to the image of the nine dimensional irreducible repre-
sentation of SU(2).

We now show that π restricted to the image of the irreducible repre-
sentation (SU(2), R9) is not admissible.
We rely on a result of Birkes [1].

(4.5) Let L be a a complex connected reductive subgroup of GL(V )
and v a vector in V whose isotropy subgroup contains a maximal torus
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of L. Then, the orbit Lv is closed. In, particular, the orbit of a zero
weight vector is closed.

To begin with, we construct the explicit immersion of SU(2) in
Spin(9) as a maximal subgroup. We fix once and for all a Cheval-
ley basis for f4(−20)

H1, H2, H3, H4, Yα, α ∈ Φ(f4(−20), t).

The structure constants are as in [4]. Conjugation with respect to
f4(−20) of Yγ is Y−γ(resp.−Y−γ) for γ noncompact (resp. compact). We
set δi(Hj) = δij. In order to simplify the notation we write Y++−+ :=
Y 1

2
(δ1+δ2−δ3+δ4) and so on. The minimal nilpotent orbit in sC (3.4) is

the Spin(9)C−orbit of Y++++ and hence for any noncompact root γ,
any root vector Yγ, lies in the minimal nilpotent orbit. Let

H = 8H1 + 6H2 + 4H3 + 2H4, X+ = Yδ1−δ2 + Yδ2−δ3 + Yδ3−δ4 + Yδ4 .

We denote by X− the conjugate of X+. Then, H, X+, X− span a prin-
cipal sl2−subalgebra slpr of so(9, C) and the ensuing representation of
slpr in C9 is orthogonal and irreducible. It readily follows that SLpr is
the complexification of a copy of SU(2) which, in turn, is a maximal
subgroup of Spin(9). Under Ad(SLpr) the space sC decomposes as the
sum an eleven dimensional irreducible representation of highest weight
vector Y++++ plus a five dimensional irreducible representation of high-
est weight vector 16Y++−−+Y+−++. Actually, from a simple calculation
if follows that a highest weight vector for the five dimensional subrep-
resentation is of the form aY++−− + Y+−++ for a convenient nonzero
a. The table in [4] yields a = 16. The subspace of vector of weight
zero for ad(H) is spanned by the root vectors Y+−−+, Y−++−. Both
vectors belong to the minimal nilpotent orbit. Therefore (4.5) implies
that the orbit Ad(SLpr)Y+−−+ is closed and hence can be separated of
the zero orbit by a regular function invariant under Ad(SLpr). Thus,
(2.4)and (2.3) imply π restricted to SLpr ∩ Spin(9) = ”SU(2)” is not
an admissible representation.

To follow we show π restricted to SU(2)�SU(2) ≡ Spin(3)�Spin(3)
is not admissible.
Let H, X, Y be a basis of sl2 := sl(2, C) so that [H, X] = 2X, [H, Y ] =
−2Y, [X, Y ] = H. The irreducible representation of sl2 in C3 is orthog-
onal. We fix a basis of weight vectors v2, v0, v−2 and quadratic form q
on C3 invariant under the action of sl2. Thus,

q(v2, v2) = q(v−2, v−2) = 0, q(v0, v0) = −q(v2, v−2) = 1.

This form is invariant under the action of SU(2). Hence,there exists
an SU(2)−invariant real vector subspace V of C3 so that q is positive
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definite in V and C3 = V⊗RC. We consider the quadratic form q1 := q⊗
q. The maximal subgroup SU(2)�SU(2) is the image of SU(2)×SU(2)
in Spin(V ⊗ V, q1). Dynkin has shown that this image is a maximal
subgroup. The matrix of q1 in the ordered basis B
v2⊗v2, v2⊗v0, v2⊗v−2, v0⊗v2, v0⊗v0, v0⊗v−2, v−2⊗v2, v−2⊗v0, v−2⊗v−2

is antidiagonal and every entry in the antidiagonal is nonzero. Thus,
in the ordered basis B the diagonal matrices

diag(h1, h2, h3, h4, 0,−h4,−h3,−h2,−h1)

gives a Cartan subalgebra for spin(9)C. Here,

δj(diag(h1, h2, h3, h4,−h4,−h3,−h2,−h1)) = hj.

On the basis B the matrix of H ⊗ id is equal to

diag(2, 2, 2, 0, 0, 0,−2,−2,−2)

and for id⊗H is

diag(2, 0,−2, 2, 0,−2, 2, 0,−2).

H ⊗ id, id⊗H span a Cartan subalgebra u for sl2⊗ sl2, we denote the
roots by ±φj, j = 1, 2 hence,

φ1(H ⊗ id) = 2, φ1(id⊗H) = 0, φ2(H ⊗ id) = 0, φ2(id⊗H) = 2.

Then, weights of the spin representation for Spin(9) restricted to u are

1

2
(θ1δ1 + θ2δ2 + θ3δ3 + θ4δ4)|u = (θ1 + θ2 + θ3)

φ1

2
+ (θ1 − θ3 + θ4)

φ2

2
.

Here, θj ∈ {1,−1}. Thus, the zero u−weight subspace has dimension
zero.

Since the roots which restrict to φ1 are δ2, δ3 + δ4, δ1 − δ4 and the
roots that restrict to φ2 are δ4, δ1−δ2, δ2−δ3 the vectors Y++++, Y++−+

are dominant with respect to φ1, φ2. Hence, the restriction to sl2 ⊗ sl2
of the spin representation of so(9) decomposes as

C4 � C2 ⊕ C2 � C4

Let a, b complex numbers and

va,b := Ad(exp(aY−δ1−δ2 + bY−δ3−δ4))Y++++

Thus, va,b belongs to the minimal nilpotent orbit. We claim that when
ab 6= 0, then Ad(SL2(C) � SL2(C))va,b is closed. To compute va,b we
apply the tables in [4] and obtain

va,b = Y++++ − aY−−++ + bY++−− + abY−−−−

Hence, the TC orbit of va,b is closed as soon as ab 6= 0. The Bruhat
decomposition of SL2(C) � SL2(C) and a computation yields that the
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orbit is closed and we have verified that π restricted to SU(2)�SU(2)
is not admissible.

Up to now, we have shown the converse implication for both theorem
3 and theorem 4, as well as corollary 2. The direct implication in
theorem 3 and corollary 1 will be completed at the end of this section.

We now show the direct implication in theorem 4. For this we con-
sider table 1 bellow, from which it follows. The maximal connected
reductive subgroups H of F4(−20) has been obtained by Komrakov [17].
Up to conjugation and covering in the first column we list the max-
imal connected reductive subgroups, in the second column we com-
pute a maximal compact subgroup and the third column indicates
H ∩K−admissibility of Harish-Chandra modules whose associated va-
riety is proper.

H H ∩K Adm. Res.
Sp(1, 2)× SU(2) Spin(4)× Spin(5) No
SU(3)l × SU(2, 1)s SU(3)× U(2) No
SO(8, 1) Spin(8) Yes
SL2(R)×G2 SO(2)×G2 No
Spin(9) Spin(9) Yes

Table 1

We are left to justify the statement for both SL2(R)×G2 and SU(3)l×
SU(2, 1)s. We first consider SL2(R)×G2. For this we compute an ex-
plicit immersion of SL2(R) × G2 in F4(−20). The complex Lie algebra
f4, as an Spin(8)−module, decomposes as the sum of the adjoint rep-
resentation plus the first fundamental representation and the sum of
the two spin representations. That is,

f4 = so(8) + (
∑

j

CYδj
+

∑
j

CY−δj
) + W + W ′

Here, W, W ′ are copy of the spin representations for Spin(8). Actually,

W =
∑

CYε1ε2ε3ε4 , W ′ =
∑

CYε1ε2ε3ε4 (4.6)

The sum for W runs over the epsilon’s so that ε1ε2ε3ε4 = 1 and the one
for W ′ over the epsilon’s with ε1ε2ε3ε4 = −1.

As a module over Spin(7), f4 is equal to the sum of: the adjoint
representation, two copies of the seven dimensional representation, the
trivial representation and two copies of the spin representation. We
explicit the pieces needed for future computations,
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so(7, C) := span{H2, H3, H4}+
∑

2≤i6=j≤4

CY±δi±δj

+
∑

2≤j≤4

C(Yδ1+δj
+ Y−δ1+δj

) +
∑

2≤j≤4

C(Yδ1−δj
+ Y−δ1−δj

)

The line in so(9) fixed by so(7) is C(Yδ1 − Y−δ1). Every irreducible
finite dimensional representation of G2 is orthogonal and the lower
dimensional irreducible representations are of dimension 1, 7, 14. We
fix a copy of g2 in so(7, C). Hence, there exists Z,Z ′ copies of the
seven dimensional irreducible representation for G2, and X, Y vec-
tors where G2 acts trivially so that W = Z + CX, W ′ = Z ′ + CY.
Since the centralizer of g2 in f4 is isomorphic to sl2, [7], we obtain that
g2× spanC{(Yδ1 −Y−δ1), X, Y } is a realization of g2× sl2 as a maximal
subalgebra of f4. We need more information on X,Y. For this we con-
jugate the copy of G2 in Spin(7) so that a Cartan subalgebra v for g2

is

v := {h2H2 + h3H3 + h4H4 : h2 + h3 + h4 = 0}.
It follows that the subspace of sC where v acts by zero is spanned by
the vectors

Y++++, Y−−−−, Y−+++, Y+−−−.

Because of (4.6) the first two vectors are in W and the second two in
W ′. The zero weight in Z has multiplicity one and ad(Yδ1−Y−δ1) maps
W in W ′. All of these allows us to choose the root vectors so that

X = Y++++ + Y−−−−, Y = Y−+++ − Y+−−−

and

[Yδ1 − Y−δ1 , X] = Y, [Yδ1 − Y−δ1 , Y ] = −X.

Hence, X2 +Y 2 is invariant under ad(Yδ1 −Y−δ1) and we conclude that

(4.7) X2 + Y 2 is invariant under K ∩ (SL2(R)×G2).

Since b(X2 + Y 2, Y++++) 6= 0 we have shown that π restricted to K ∩
(SL2(R)×G2) is not an admissible representation.

We now analyze the subgroup SU(3)l × SU(2, 1)s.
The Lie algebra of this group is constructed as follows. A Cartan sub-
algebra is t and the root system is the span of −δ1−δ2, δ2−δ3, δ4,

1
2
(δ1−

δ2− δ3− δ4). The long roots provides the SU(3) factor whereas the two
short roots generate the SU(2, 1) factor. The decomposition of sC as
K ∩ (SU(3)l × SU(2, 1)s)−module is:

C � C2 + C3 � C2 + C � C2 + C3 � C2
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Generators for each summand are respectively

Y+−−+, Y+−−−; Y++++, Y−−++, Y−+−+, Y+++−Y−−+−, Y−+−−;
Y−++−, Y−+++; Y++−−, Y−−−−, Y+−+−, Y++−+Y−−−+, Y+−++.

The representations of K ∩ (SU(3)l × SU(2, 1)s) in the subspaces,
C � C2, C � C2 are contragredient. The regular function defined by ei-
ther Y+−−+ or Y−++− restricted to Ass(π) is nonconstant, since Ass(π)
is an irreducible closed subvariety, their product is nonzero. Hence,
Y+−−+Y−++− determines a nonconstant regular function on Ass(π) in-
variant under K ∩ (SU(3)l × SU(2, 1)s). Thus, (2.3) implies that π
restricted to K ∩ (SU(3)l × SU(2, 1)s) is not admissible. This verifies
table 1 and concludes the proof of the direct implication in theorem 4
and hence the proof of theorem 4 is concluded.

Next, we study admissible restriction to a reductive subgroup of
Spin(9) of a Harish-Chandra module whose associated variety is proper.
In the following tables for each group Spin(m) shown on the first line,
in the first column we list a representative of each conjugacy class of
its maximal connected reductive subgroups, on the second column we
point if a Harish-Chandra module with proper associate variety has an
admissible restriction to the subgroup on the same row.

Spin(9)
Spin(1)× Spin(8) Yes
Spin(2)× Spin(7) Yes
Spin(3)× Spin(6) Yes
Spin(4)× Spin(5) No
SU(2) No
SU(2) � SU(2) No

Spin(8)
Spin(1)× Spin(7) Yes
Spin(2)× Spin(6) Yes
Spin(3)× Spin(5) No
Spin(4)× Spin(4) No
U(4) No
Spins(7) No
SU(3) No
Sp(1) � Sp(2) No

Spin(7)
Spin(1)× Spin(6) Yes
Spin(2)× Spin(5) No
Spin(3)× Spin(4) No
G2 No

Spin(6)
Spin(1)× Spin(5) No
Spin(2)× Spin(4) No
Spin(3)× Spin(3) No
U(3) No

Here U(n) indicates the image of the usual immersion of U(n) in
SO(2n), G2 is the image of the seven dimensional representation of the
simple connected compact Lie group of Lie algebra g2, SU(3) is the
image of SU(3) under the adjoint representation, SU(2) is the image
of the irreducible representation of dimension 9 of SU(2) in Spin(9).
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We already have verified the table for Spin(9). To justify the state-
ment on Spin(r)×Spin(s) ⊂ Spin(r+s) we apply (3.5), (4.2), (4.3) and
(4.4). The subgroups Spin(3)×Spin(3), Spin(3)×Spin(4) are handled
via the Cartan-Helgason theorem as the subgroup Spin(4) × Spin(5).
From (4.7) we deduce the statement for G2. The analysis of the sub-
groups U(3), U(4) is somewhat parallel. The line CY++++ as well as the
line CY−−−− are invariant under U(3), U(4) and the action are respec-
tively 1

2
(1, 1, 1, 1),−1

2
(1, 1, 1, 1). Both vectors Y++++, Y−−−− determine

nonconstant regular functions on Ass(π). The irreducibility of Ass(π)
implies that their product defines a nonconstant regular function on the
associated variety. The product is invariant under U(3), U(4). Thus,
(2.3) implies that there is no admissible restriction to U(3), U(4).

The subgroup Sp(1)�Sp(2) = Spin(3)�Spin(5) ⊂ Spin(C2�C4) as
maximal subgroup of Spin(8) is handled in a blend of the technique ap-
plied to the subgroup SU(2)�SU(2) and the subgroup SU(2) as max-
imal subgroups of Spin(9). We first realize by means of a convenient
basis of C2 ⊗ C4 the action of the usual torus a of Spin(3) � Spin(5).
We do this in such a way that a becomes a subspace of a Cartan subal-
gebra which consists of all the the diagonal matrices in so(8, C). Next,
we obtain the decomposition of W as Spin(3) � Spin(5) module, it
is W = C3 � C + C � C5. Thus, the trivial weight for a occurs with
multiplicity two in W. It turns out that Y++++, Y+−−+ is a basis of the
zero weights vectors for a. Thus, the theorem of Birkes (4.5) together
with (2.1) yields that π restricted to Sp(1) � Sp(2) is not admissible.

We now analyze the inclusion of SU(3) in Spin(8). The dimension
of the lower irreducible and nonequivalent representations of SU(3) are
1, 3, 3, 6, 6, 8. Either the representations of dimension three or six are
not equivalent to their respective contragredient representations, the
eight dimensional representation is equivalent to the adjoint represen-
tation and hence orthogonal. Dynkin has shown this image of SU(3) is
a maximal subgroup of Spin(8). Every spin representation of Spin(8) is
orthogonal, which forces that any spin representation of Spin(8) is ir-
reducible when restricted to the image of SU(3). Thus, the zero weight
for a has multiplicity two on either W or W ′. Since a zero weight vector
for a is a sum of root vectors for t and all the root vectors in s are in
Ass(π) (4.2) yields an SU(3)C−closed orbit in Ass(π) and hence, π
restricted to SU(3) is not admissible. This concludes the verification
of the four tables.

We show the converse statement in corollary 1. For this, we list the
compact simple groups together with the nontrivial morphisms into
Spin(9).
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After the work of Dynkin it follows that the simple subgroups of
Spin(9) are images of

G2, SU(2) ≡ Spin(3) ≡ Sp(1), SU(3),

SU(4) ≡ Spin(6), Spin(5) ≡ Sp(2), Spin(7), Spin(8), Spin(9).

Also, in the same paper Dynkin classified the simple subgroups of
F4(C). They are images of one of

SL2(C), SL3(C), SL4(C) ≡ Spin(6, C), Spin(5, C) ≡ Sp(2, C),

Spin(7, C), Spin(8, C), Spin(9, C), Sp(3, C), G2(C).

We shall verify that some groups may have nonconjugated images. We
recall that any automorphism of Spin(9) is inner, hence, the list of the
maximal subgroups of Spin(9) let us conclude that if L is a subgroup
of Spin(9) image of Spin(8) then L is conjugated the usual immersion
of Spin(8) in Spin(9). The group Spin(7) has precisely two images
into Spin(9). One is Spin(7) and the other is Spins(7). In fact, the
spin representation for Spin(7) is orthogonal, hence its image gives
rise to a subgroup Spins(7) of Spin(8). Spins(7) is not conjugated to
Spin(7) because under Spin(7), R9 decomposes as the first fundamen-
tal representation plus two copies of the trivial representation, whereas
the decomposition of R9, as Spins(7) module, is equal to the sum of
the spin representation added to the trivial representation. The claim
that, up to conjugation, these are two conjugated images of Spin(7) in
Spin(9) follows from the fact the irreducible representations of Spin(7)
of dimension less than 9 are orthogonal and they are R, R7, R8. For
Spin(6) ≡ SU(4) the irreducible representations for Spin(6) of dimen-
sion less than 10 are: R, C4, (C4)?, R6. The second and third represen-
tations are neither orthogonal nor symplectic. Hence, the morphism
of SU(4) in Spin(9) are: SU(4) ⊂ Spin(8), SU(4) ≡ Spin(6). We al-
ready know there is no admissible restriction to the first image, while
there is admissible restriction to the second image. We claim Spin(5)
has two nonconjugated images in Spin(9). For this we recall that the
low dimensional irreducible representations of Spin(5) are C, C5, C4.
The last one is a symplectic representation. The other two are or-
thogonal. Hence, we get the image Spin(5) ⊂ SO(C4 + (C4)?). The
image of this Spin(5) is a subset of SU(4) ⊂ Spin(8). Hence, there
is no admissible restriction to this image of Spin(5). The other image
is the usual one. The images of SU(3) are: the irreducible image in
Spin(8) and the inclusion SU(3) ⊂ SO(C3 + (C3)?) = SO(6, C). The
tables show that there is no admissible restriction to any of the two
images. To finish the proof we consider SU(2) ≡ Spin(3). The case
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of the irreducible representation of SU(2) in R9 was considered previ-
ously. The other possibilities yields that the image of SU(2) in some
cases is contained in subgroups Spin(r) × Spin(s) so that there is no
admissible restriction to, except for the case the image is contained
in Spin(7)× Spin(2). Dynkin has shown that the irreducible image of
SU(2) in R7 is contained in G2. The tables show there is no admissible
restriction for this case. The other possibility is an inclusion of the
type SU(2) ⊂ SU(2r) ⊂ SO(C2r +(C2r)?). The tables show that there
is no admissible restriction and we have shown corollary 1.

To conclude the proof of the direct implication in theorem 3 we
assume L is a closed connected reductive nonsimple subgroups L of
Spin(9) so that some Harish Chandra module with proper associate
variety has an admissible restriction to L. We want to show some con-
jugate of L contains Spin(6). Owing to the table for Spin(9) we may
assume L is a subgroup of one of Spin(n)×Spin(9−n), n = 6, 7, 8. For
L contained in Spin(8) the table for Spin(8) shows may assume L is a
subgroup of Spin(7) or Spin(6)×Spin(2). For the first case, the table
for Spin(7) implies L contains a copy of Spin(6), for the second pos-
sibility and L semisimple we have that L is contained in Spin(6), the
table for Spin(6) implies L = Spin(6), if the center of L is of positive
dimension after some work it also follows that L contains a conju-
gate of Spin(6). For a semisimple subgroup L of Spin(7) × Spin(2)
we have L is a subgroup of Spin(7) and the table for Spin(7) yields
that L contains a conjugate of Spin(6). For a reductive subgroup L of
Spin(6) × Spin(3) and the projection of L into Spin(3) is trivial, the
table for Spin(6) implies L is equal to Spin(6). For a reductive sub-
group L of Spin(6) × Spin(3) and the projection of L into Spin(3) is
non trivial we arrive in a contradiction unless L = Spin(6)× Spin(3).
In fact, if L were a proper subgroup of Spin(6)×Spin(3), there would
be a nontrivial smooth morphism φ : Spin(3) −→ Spin(6) so that

L = {(φ(a), a), a ∈ Spin(3)}(̇L ∩ Spin(6)) and the image of φ com-
mutes with L∩Spin(6). This forces that L is contained in a conjugate
of either Spin(3) � Spin(3) or Spin(4) × Spin(5), which in turn any
of two, implies there is no admissible restriction to L. Also, by use of
LiE and the list of maximal subgroups of Spin(6) we checked that for
(L∩Spin(6))Spin(3) a proper reductive subgroup of Spin(6)×Spin(3)
there is no admissible restriction to L.

5. Aside on Discrete Series representations

Harish-Chandra showed that G admits representations whose matrix
coefficients are square integrable with respect to Haar measure on G
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if and only if a maximal torus T for K is a Cartan subgroup of G.
Then, he parameterizes the equivalence classes of square integrable ir-
reducible representations by nonsingular elements of the weight lattice
of characters of T. Another way to parameterize the Harish-Chandra
modules associated to Discrete Series representations is by the set of
equivalence classes of Ab(λ) where b is a Borel subalgebra which con-
tains t and λ is a unitary character for T in the good range for b.
Hence, (3.1) implies that the associated variety for Ab(λ) depends only
on b and not on the character λ. Thus, (2.3) yields that admissible re-
stricted to L of the family of Discrete Series Ab(λ) depends only on the
systems of positive roots Ψ corresponding to b. Actually, in [5] we have
shown for Discrete series representation H−admissibility is equivalent
to H ∩K−admissibility of the underlying Harish-Chandra module. As
before, G is a connected matrix rank one Lie group. Henceforth, we
assume G admits square integrable representations.

Theorem 5. Let L be a connected compact subgroup of K. There ex-
ists a square integrable irreducible representation (π, V )whose Harish
Chandra parameter λ is dominant with respect to Ψ with admissible
restriction to L if and only if

For su(1, q), either Ψ is a holomorphic system and L is so that
C[Cq]L = C or Ψ is a non holomorphic system and L belongs to the
class of groups which acts transitively on the unit sphere of R2q.

For G locally isomorphic to SO(1, 2q), Ψ is arbitrary and L is a
subgroup which acts transitively on the unit sphere of R2q.

For sp(1, q), and Ψ a quaternionic system, L is conjugated either to
S × Sp(q1) × · · · × Sp(qr) with q1 + · · · + qr = q and S subgroup of
Sp(1) or to Sp(1)×B, B an arbitrary subgroup of Sp(q). When Ψ is a
non quaternionic system, L belongs to the class of subgroups that acts
transitively on the unit sphere of R4q.

For F4(−20), Ψ is arbitrary and L = K.
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