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Abstract: The core of the environment-induced decoherence program relies on the 
interaction between the system and its environment; this interaction leads interference 
to vanish with respect to a definite “preferred basis”. On the other hand, modal 
interpretations of quantum mechanics supply criteria to select the “preferred context”, 
where observables acquire definite values. The purpose of this paper is to show the 
compatibility between the modal interpretative framework and the results of the 
decoherence program, a compatibility that comes to the light when the Hamiltonian is 
conceived as the main character of the quantum play. 
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O PAPEL CENTRAL DO HAMILTONIANO NA MECÂNICA 
QUÂNTICA: DECOERÊNCIA E INTERPRETAÇÃO 
 
Resumo: O núcleo do programa da coerência indicida pelo ambiente reside na 
interação entre o sistema e seu entorno; tal interação conduz ao desaparecimento da 
interferência com respeito a uma `base preferencial’ definida. Por outra parte, as 
interpretações modais da mecânica quântica proveem critérios para selecionar o 
`contexto preferencial’, onde os observáveis adquirem valores definidos. O propósito 
deste artigo consiste em mostrar a compatibilidade entre o marco interprettivo modal e 
os resultados do programa da coerência, uma compatibilidade que vem à luz  quando o 
hamiltoniano ‘e concebido como protagonista no cenário quântico. 
  
Palavras chave: Mecânica quântica. Interpretação modal hamiltoniana. Decoerência 
induzida pelo ambiente. Problema da medicão. 
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1. INTRODUCTION 

The problem of the interpretation of quantum mechanics is 
certainly one of the most discussed topics in the philosophy of physics. 
Although during many years since the birth of the theory instrumentalist 
interpretations prevailed, in the last decades several attempts to interpret 
quantum mechanics from a realist viewpoint have been presented in the 
literature. Any realist interpretation is committed to explain which 
observables acquire definite values without violating the contextuality of 
the theory. Many different criteria to select the “preferred” context    have 
been proposed; however, the Hamiltonian of the system was 
systematically ignored in the discussions. 

Since the early days of the theory, the measurement problem has 
been one of the most serious challenges for interpretation. Much ink has 
been spilled over the search of an adequate solution, and many 
interpretations have been deliberately designed to explain why the 
measuring apparatus acquires the definite properties observed in 
measurements. During the last decades, the idea that the physical 
phenomenon of decoherence supplies the answer to the measurement 
problem has been taken for granted in the physical community. The core 
of the decoherence program relies on the interaction between the 
measuring apparatus and its environment: the continuous “monitoring” 
of the environment leads interference to vanish with respect to a definite 
“preferred basis”, which turns out to be the eigenbasis of the pointer 
observable of the measuring apparatus. In spite of its successful 
application in many areas of physics, the environment-selection (“einselection”) 
or environment-induced decoherence program is still threatened by certain 
conceptual problems that obscure the complete understanding of the 
phenomenon. In particular, the criterion to select the preferred basis still 
remains unclear, and the identification of the system-environment “cut” is 
not accounted for by the theory. 

The purpose of this paper is to argue for the central role played by 
the Hamiltonian in quantum mechanics. First, I shall recall the theoretical 
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elements of the environment-induced decoherence program, and I shall 
point out the conceptual challenges that the program still has to face. 
Then, I shall summarize the main features of the modal-Hamiltonian 
interpretation, according to which the Hamiltonian is decisive in the 
definition of systems and subsystems, and in the selection of the preferred 
context where observables acquire definite values. On this basis, I shall 
show that, when the total Hamiltonian involved in the process of 
decoherence is taken into account, one can find a general criterion to 
define the preferred basis and the problem of discriminating between the 
system and its environment vanishes. Finally, I shall stress the 
compatibility between the new interpretative framework and the results of 
the decoherence program, a compatibility that comes to the light when 
the Hamiltonian is conceived as the main character of the quantum play. 
 

2. ENVIRONMENT-INDUCED DECOHERENCE 

In the standard model due to von Neumann, a quantum 
measurement is conceived as an interaction between a system  and a 
measuring apparatus 

S
M . Before the interaction, M  is prepared in a 

ready-to-measure state 0p , eigenvector of the pointer observable  of P
M , and the state of  is a superposition of the eigenstates S ia  of an 
observable A  of . The interaction introduces a correlation between the 
eigenstates 

S
ia  of A  and the eigenstates ip  of : P

 
0 0i i i i i

i i
c a p c a pψ = ⊗ → ψ = ⊗∑ ∑       (2-1) 

   
The problem consists in explaining why, being the state ψ  a 

superposition of the i i
In the orthodox collapse interpretation, the pure state 

a p⊗ , the pointer  acquires a definite value. P
ψ  is 

assumed to “collapse” to a mixture cρ , such that 
 

 2c
i i i i ic a p a p⊗ ⊗ρ =

i
∑                 (2-2) 
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where the probabilities 2
ic  are given an ignorance interpretation. Then, 

in this situation it is supposed that the measuring apparatus is in one of 
the eigenvectors ip  of , say P kp , and therefore  acquires a 
definite value 

P
kp , the eigenvalue corresponding to the eigenvector kp , 

with probability 2
kc . But the indeterministic and non-unitary “collapse” 

is introduced as an ad hoc assumption, completely different from the 
dynamical postulate according to which quantum states follow 
deterministic and unitary evolutions governed by the Schrödinger 
equation. 

The key idea of the decoherence program is that macroscopic 
systems, like measuring apparatuses, are never isolated but always interact 
with their environments. When the environment E  is taken into account, 
the initial state of the whole system S M E+ +  becomes 

 
                    0(0)SME i i i

i
c a p e

⎛ ⎞
ψ = ⊗ ⊗⎜ ⎟

⎝ ⎠
∑                      (2-3)

   
where 0e  is the state of the environment before its interaction with the 
measuring apparatus. Zurek and his collaborators prove that, when the 
interaction Hamiltonian int

MEH  satisfy certain conditions (cfr. Zurek 1981), 
(0)SMEψ  evolves into 

 
              ( ) ( )SME i i i i

i
t c a p eψ = ⊗ ⊗ t∑                     (2-4) 

   
where the ( )ie t  are the states of the environment associated with the 
different pointer states ip . According to Zurek, the state of the system 

 is represented by the reduced density operator ρ  resulting 
from tracing over the environmental degrees of freedom, 
S M+ ( )r t

 
))()(()( )( ttTrt SMESMEEr ΨΨ=ρ = 

             )()(* teteppapacc jiiiiii
ij

ji ⊗⊗∑           (2-5) 
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where the factor ( ) ( )i je t e t  determines the size of the off-diagonal 
terms at each time. Many standard models for the interaction Hamiltonian 

int
MEH  show that, when the environment is composed of a large number 

of subsystems, the states ie  of the environment rapidly approach 
orthogonality,  
 

 ( ) ( )i je t e t ij⎯⎯→δ                              (2-6) 
 

This means that the reduced density operator rapidly becomes 
approximately diagonal in the preferred basis { }i ia p⊗  (compare 
with eq.(2-2)), 
 

 
2ρ ( ) ρr r i i i i it c a p a p⎯⎯→ = ⊗ ⊗

i
∑            (2-7) 

   
According to Paz and Zurek, in a certain sense decoherence “explains” 
collapse since “quantum entanglement will be converted into an effectively classical 
correlation as a result of the interaction between M  and E .” (Paz and Zurek 
2002, p. 90). 

As Bub (1997, p. 207) points out, during the last decades the 
theory of decoherence has become the “new orthodoxy” in the quantum 
physicists community. Many authors coming from physics and from 
philosophy have considered that decoherence supplies the right answer to 
the measurement problem. For instance, under the assumption that the 
only legitimate demand for a physical theory is the explanation of our 
perceptions (the “appearances”), d’Espagnat (2000, p. 136) says that “for 
macroscopic systems, the appearances are those of a classical world […] decoherence 
explains the just mentioned appearances, and this is a most important result.” In his 
book on foundations of quantum mechanics, Auletta (2000, p. 289) 
makes a stronger claim: “decoherence is able to solve practically all the problems of 
measurement which have been discussed in the previous chapters.” From a similar 
perspective, Anderson (2001, p. 492) asserts that “the word «decoherence» […] 
describes the process that used to be called «collapse of the wave function».” However, 
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not all are so enthusiastic: the implications of decoherence for 
interpretation are still far from being completely clear. 

 
2.a. The problem of the preferred basis 

With the great success of the decoherence program, the 
measurement problem itself has been reformulated. As Schlosshauer 
(2004, p. 1270) points out, at present two questions have to be 
distinguished: 

 The problem of definite outcomes: why do we seem to perceive the pointer 
to have one definite value but not a superposition of values? 

 The problem of the preferred basis: since the expansion of the final 
composite state resulting from the interaction between the system and 
the measuring apparatus is in general not unique, the measured 
observable is not univocally defined. 

In the literature, the problem of definite outcomes is the traditional 
“measurement problem”, and it has been extensively discussed in the light 
of the decoherence program. During the last times, many authors have 
advanced serious warnings about the capability of decoherence for 
solving this first problem (cfr., e.g., Healey 1995, Bacciagaluppi 2008). In 
particular, it has been stressed that ρ , being a reduced density matrix, 
refers to what d’Espagnat (1976) called ‘improper mixture’, which cannot 
be interpreted in terms of ignorance: in spite of decoherence, the total 
system  is still described by a superposition 

r

S M E+ + ( )SME tψ  at 
any time (cfr. Bub 1997). For instance, Adler (2003) claims that the 
diagonalization of  does not allow us to say that the state of the system 

 is in one of the states 
ρr

S M+ ia p⊗ i , and he concludes: “I do not 
believe that either detailed theoretical calculations or recent experimental results show 
that decoherence has resolved the difficulties associated with quantum measurement 
theory” (Adler 2003, p. 135). These and similar arguments have led even 
some contributors to the decoherence program to express their 
skepticism about the relevance of decoherence to the solution of the 
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definite outcomes problem; as Joos (2000, p. 14) says: “Does decoherence 
solves the measurement problem? Clearly not.” 

On the contrary, the solution to the preferred basis problem 
supplied by the decoherence program has been considered its main 
contribution. For instance, Schlosshauer thinks that “based on the progress 
already achieved by the decoherence program, it is reasonable to anticipate that 
decoherence embedded in some additional interpretive structure could lead to a complete 
and consistent derivation of the classical world from quantum-mechanical principles.” 
(Schlosshauer 2004, p. 1287). In a similar vein, Elby (1994, p. 364) claims 
that “decoherence cannot help modal, relative state, or many-world interpretations fend 
off general metaphysical criticisms. The value of decoherence lies in its ability to pick out 
a special basis.” In fact, the theory of decoherence has been frequently used 
in the many-world interpretation to solve the problem of the preferred 
basis (Butterfield 2002, Wallace 2002, 2003), considered the main 
difficulty of Everett’s proposal (cfr. Stapp 2002). Decoherence has also 
been integrated into the framework of modal interpretations (cfr. Dieks 
1989), and Bacciagaluppi and Hemmo (1996) have suggested that 
decoherence, with its definition of the preferred basis, would allow modal 
interpretations to overcome the criticisms of Albert and Loewer (1990, 
1993). Therefore, the identification of the preferred basis selected by the 
system-environment interaction is a crucial conceptual point in the 
understanding of the decoherence program. 

In his first papers, Zurek studied physical models where the 
interaction between the measuring apparatus and the environment 
dominates the process (Zurek 1981, 1982); in those cases, the reduced 
density matrix ends up being diagonal in the eigenvectors of an 
observable  that commutes with the Hamiltonian P int

MEH  describing the 
apparatus-environment interaction. This property is what makes  to be 
the pointer observable: since  is a constant of motion of 

P
P int

MEH , when 
the apparatus is in one of its eigenstates, the interaction with the 
environment will leave it unperturbed. Zurek states this result already in 
the abstract of his famous paper of 1981: “The form of the interaction 
Hamiltonian between the apparatus and its environment is sufficient to determine which 



OLIMPIA LOMBARDI  

 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

314  

0

observable of the measured quantum system can be considered «recorded» by the 
apparatus. The basis that contains that record −the pointer basis of the apparatus− 
consists of the eigenvectors of the operator which commutes with the apparatus-
environment interaction Hamiltonian” (Zurek 1981, p. 1516). Since those first 
works, the condition int ,MEH P⎡ ⎤ =⎣ ⎦  has usually be considered as the 
definition of the preferred −pointer− basis or of the preferred −pointer− 
observable  of the apparatus. For instance, Elby explains: “Let  
denote an arbitrary apparatus observable that doesn’t commute with the pointer reading 

. Using ‘toy’ examples, along with general considerations, Zurek argues that 

P 'P

P int
MEH  

commutes with , but does not commute with any . In rough terms, the 
interaction between the apparatus and its environment picks out the pointer-reading 
basis” (Elby 1994, p. 363). More recently, Schlosshauer claims: “One can 
then find a sufficient criterion for dynamically stable pointer states that preserve the 
system-apparatus correlations in spite of the interaction of the apparatus with the 
environment by requiring all pointer state projection operators 

P 'P

n nP p p= n  to 
commute with the apparatus-environment Hamiltonian int

MEH , i.e., 
, for all ” (Schlosshauer 2004, pp. 1278-1279).int ,ME nH P⎡ ⎤ =⎣ ⎦ 0 n 1 This 

idea has given support to the usual claim that the interaction with the 
environment is the key feature of decoherence: as the name of the 
program (‘environment-induced decoherence’) suggests, it is the environment 
what “induces” decoherence and, as a consequence, the transition from 
quantum to classical. 

However, the analysis of the models studied by Zurek shows the 
need of considering that conclusion with caution. According to the 
Schrödinger equation, the entangled state ( )SME tψ  of the whole 
system (see eq.(2-4)) actually evolves under the action of the total 
Hamiltonian , SMEH
 

    (2-8)  int int int
SME S M E SM SE MEH H H H H H H= + + + + +

 

                                                      
1 For simplicity, in these two last quotes we have adjusted the symbolism to 

that used in the present paper. 
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0Therefore, the condition  as the definition of the 
dynamically stable pointer observable involves several assumptions. First, 
it is considered that the system-environment interaction and the system-
apparatus interaction are zero: 

int ,MEH P⎡ ⎤ =⎣ ⎦

int 0SEH =  and int 0SMH = . This 
assumption is reasonable on the basis of the design of the measurement 
arrangement: after a short time, any interaction with the system ends and 
the subsystem M E+  follows its independent dynamical evolution; for 
this reason, also the self-Hamiltonian  of the system can be 
disregarded. Then, the Hamiltonian relevant for the evolution reads 

SH

 
int

ME M E MH H H H= + + E          (2-9) 
 
and the stability of the pointer would strictly require that [ ], 0MEH P = . 
As a consequence, endowing int

MEH  with the role of preserving the time-
independence of  and, thus, of defining the preferred basis requires us 
to justify why the self-Hamiltonians of the apparatus and the environ-
ment, 

P

MH  and , can be legitimately neglected. In the philosophy of 
physics literature these conditions are usually taken for granted (cfr., e.g., 
Elby 1994, d’Espagnat 1976) and not sufficiently discussed. 

EH

During the years following the 1981 paper, the idea that the 
apparatus-environment interaction picks out the preferred basis was 
widely accepted; however, more than ten years later, Zurek realized that 
that original idea was a simplification: in more general situations, when 
the system’s dynamics is relevant, the einselection of the preferred basis is 
more complicated. Zurek introduced the “predictability sieve” criterion 
(Zurek 1993, Zurek, Habib and Paz 1993) as a systematic strategy to 
identify the preferred basis in generic situations. The criterion is based on 
the fact that the preferred states are, by definition, those less affected by 
the interaction with the environment, in the sense that they are the ones 
less entangled with it. Then, the pointer basis is obtained by considering 
all the pure initial states of the system and computing the entropy 
associated with its reduced density operator after some time t : the 
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pointer states are those that minimize the entropy production over initial 
states. 

Zurek and other authors applied the predictability sieve to a 
number of models since 1993. On the basis of the results so obtained, 
Paz and Zurek (1999, cfr. also Zurek 2003) introduced the distinction 
among three basically different regimes for the selection of the preferred 
basis: they differ in the relative strength of the system’s self-Hamiltonian 
(the apparatus’ self-Hamiltonian MH  in the measurement situation) and 
of the interaction Hamiltonian ( int

MEH  in the measurement situation): 
 The first regime is the quantum measurement situation, where the 

self-Hamiltonian of the system can be neglected and the evolution is 
completely dominated by the interaction Hamiltonian. In such a case, 
the preferred states are directly the eigenstates of the interaction 
Hamiltonian (Zurek 1981).  

 The second regime is the more realistic and complex situation, where 
neither the self-Hamiltonian of the system nor the interaction with the 
environment are clearly dominant, but both induce non-trivial 
evolution. In this case, the preferred basis arises from the interplay 
between self-evolution and interaction; quantum Brownian motion 
belongs to this case (Paz 1994).  

 The third regime corresponds to the situation where the dynamics is 
dominated by the system’s self-Hamiltonian. In this case, the preferred 
states are simply the eigenstates of this self-Hamiltonian (Paz and 
Zurek 1999).  

According to Schlosshauer (2004, p. 1280), these three regimes 
explain why many systems, specially in the macroscopic domain, are 
typically found in energy eigenstates, even if the interaction Hamiltonian 
depends on an observable different than energy. 

When these results, obtained case by case in the study of particular 
models, are considered from a general perspective, the selection of the 
preferred basis may be viewed under a new light. If the preferred states 
depend on the Hamiltonian’s component that dominates the whole 
evolution, it is reasonable to suspect that the preferred basis is defined by 
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the total Hamiltonian of the whole system: each regime would turn out to 
be a particular case of a general definition.2  

Of course, in realistic cases the total Hamiltonian may be difficult, 
if not impossible to be written down. Moreover, even if we know the 
explicit form of the Hamiltonian, its diagonalization might be an 
unattainable task. However, these are practical limitations: the relevant 
point is to decide which is the definition of the preferred basis. In this 
sense, the above discussion suggests that such a definition has not to be 
searched in the system-environment interaction alone, as usually 
supposed, but in the features of the total Hamiltonian of the whole 
system, with the particular contributions due to its components. From 
this viewpoint, the interaction with the environment looses the original 
central role that the standard presentations assign to it: if the total 
Hamiltonian selects the preferred basis, the interaction is only one of the 
elements contributing to that selection. 

 
2.b. The problem of defining systems 

According to Zurek, “decoherence is a process which −through the 
interaction of the system with external degrees of freedom often referred as the 
environment− singles out a preferred set of states” (Zurek 1994, p. 176). The 
emergence of the preferred basis results from an environment-induced 
superselection which eliminates the vast majority of the “non-classical” 
states in the Hilbert space: einselected states are distinguished by their 

 
2 This conclusion would be in agreement with our “self-induced approach” to 

decoherence (Castagnino and Laura 2000, Castagnino and Lombardi 2004, 
2005a, 2005b), according to which the phenomenon of decoherence does not 
need to “split” the whole closed system into a system of interest and an 
environment: for a certain subset of relevant observables, the system may 
decohere by destructive interference as an effect of its own dynamics, and the 
preferred basis is always the eigenbasis of the total Hamiltonian (for the 
compatibility between the environment-induced and the self-induced 
approaches, cfr. Castagnino, Laura and Lombardi 2007, Castagnino, Fortin, Laura 
and Lombardi 2008). 
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stability in spite of the monitoring environment. In Paz and Zurek’s 
words, “the environment distills the classical essence of a quantum system” (Paz and 
Zurek 2002, p. 3). 

These statements make clear that, from the einselection view, the 
split of the Universe into the degrees of freedom which are of direct 
interest to the observer −the system− and the remaining degrees of 
freedom −the environment− is absolutely essential for decoherence. Such 
a split is necessary not only to explain quantum measurement, but also to 
understand “the quantum origin of the classical world” (Paz and Zurek 2002, p. 
1). In fact, Zurek and his collaborators always consider the problem of 
the transition from quantum to classical as the core of the discussion: 
“The aim of the program of decoherence and einselection is to describe the consequences 
of the ‘openness’ of quantum systems to their environments and to study the emergence of 
the effective classicality of some of the quantum states and of the associated observables” 
(Zurek 1998, p. 1). In this context, quantum measurement is conceived as 
a particular case of the general phenomenon of the emergence of 
classicality, that is, as an example that illustrates the quantum origin of the 
classical definiteness of some states in individual systems (Zurek 2003). In 
addition, if classicality only emerges in open quantum systems, it must 
always be accompanied by other manifestations of openness, such as 
dissipation of energy into the environment. Zurek even considers that the 
prejudice which seriously delayed the solution of the problem of the 
transition from quantum to classical is itself rooted in the fact that the 
role of the “openness” of a quantum system in the emergence of 
classicality was ignored for a very long time (Paz and Zurek 2002, Zurek 
2003). 

In summary, decoherence explains the emergence of classicality, 
but only open systems can “decohere”. The question is: what about the 
Universe as a whole? Zurek himself admits that the Universe is, by 
definition, a closed quantum system, “it is practically the only system that is 
effectively closed” (Zurek 1991, p. 42); but then, the Universe cannot 
decohere. Zurek considers the possible criticism: “the Universe as a whole is 
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still a single entity with no ‘outside’ environment, and, therefore, any resolution involving 
its division into systems is unacceptable” (Zurek 1994, p. 181). 

Nevertheless, the decoherence approach has been applied to 
cosmology with interesting results. In those cases, the general strategy 
consists in splitting the universe into some degrees of freedom which 
represent the “system” of interest, and the remaining degrees of freedom 
that are supposed to be non accessible and, therefore, play the role of an 
internal environment. For instance, in quantum field theory, it is usual to 
perform a decomposition on a scalar field φ , S Eφ = φ + φ , where Sφ  
denotes the system field and Eφ  denotes the environment field; when it 
is known that the background field follows a simple classical behavior, the 
scalar field is decomposed according to c qφ = φ + φ , where the 
background field cφ  plays the role of the system and the fluctuation field 

 plays the role of the environment (cfr. Calzetta, Hu and Mazzitelli 
2001). An analogous strategy is followed in the case of “internal” 
environments, such as collections of phonons or other internal 
excitations. The possibility of internal environments shows that the 
decoherence program supplies no general criterion for distinguishing 
between the system and its environment: the partition of the whole closed 
system is decided case by case, and usually depends on the previous 
assumption of the observables that will behave classically (for a discussion 
of this point, cfr. Castagnino and Lombardi 2004). 

qφ

The absence of a general criterion to decide where to place the 
“cut” between system and environment is a particularly serious difficulty 
for an approach that insists on the essential role played by the openness 
of the system in the emergence of classicality. Zurek recognizes this 
problem as a shortcoming of his proposal: “In particular, one issue which has 
been often taken for granted is looming big as a foundation of the whole decoherence 
program. It is the question of what are the ‘systems’ which play such a crucial role in all 
the discussions of the emergent classicality. This issue was raised earlier, but the progress 
to date has been slow at best” (Zurek 1998, p. 22). 

Of course, the problem of defining the systems involved in 
decoherence is a serious obstacle for the einselection program when the 
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O

phenomenon is described in the usual terms, that is, as a consequence of 
the interaction between two open systems. However, as emphasized by 
Omnès (2001, 2002), decoherence can be conceived as a particular case of 
the general phenomenon of irreversibility, where the non-unitary 
evolution is obtained by disregarding part of the maximal information 
obtainable from the system. In the quantum case, the maximal 
information about a system is given by the set O  of all its possible 
observables; then, the restriction of that maximal information to a 
relevant part amounts to select a subset  of relevant 
observables, with respect to which the behavior of the system will be 
studied. From this perspective, the identification of the system of interest 

 and its environment 

R ⊂O

S E  in the decoherence program amounts to a 
particular selection of the relevant observables of the whole closed 
system. In particular, if a closed quantum system  is represented in the 
Hilbert space  and its observables O  belong to the von Neumann-
Liouville space 

CS
H

= ⊗L H H , the relevant observables  are those of 
the form 

RO

  
R

S EO O I R= ⊗ ∈ ⊂O L

S

  (2-10) 
 
where the  are the observables of , S S SO ∈ = ⊗L H H S EI  is the 
identity operator on the von Neumann-Liouville space E E E= ⊗L H H  of 
E , and . This means that, since the system  is characterized 
by its von Neumann-Liouville space  (or, equivalently, by its Hilbert space 

), when the relevant observables  are selected, the system  and, with 
it, the environment 

S= ⊗L L LE S
SL

SH RO S
E  turn out to be precisely identified. In turn, by definition 

of reduced density operator, rρ  of  is such that (cfr. Ballentine 1998) S
 

 
r

R
SO O

ρρ
=     (2-11) 

 
Therefore, the convergence of ( )r tρ  to a final rρ  diagonal in the 
preferred basis (see eq.(2-7)) means that the expectation values 

( )( ) r

R
S tt

O O
ρρ

=  approach final stable values:  
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 ( )( )

( )
r r

R
r r S Stt

t O O O
ρ ρρ

ρ → ρ ⇒ = →  (2-12) 
 

In other words, as in the general case of irreversibility, in the process of 
decoherence the non-unitary evolution of the reduced state expresses the 
convergence of the expectation values to their final values, for all the observables 
selected as relevant in each particular case (for a detailed discussion, cfr. 
Castagnino, Laura and Lombardi 2007). 

When decoherence is understood from this general perspective, 
the problem of defining the systems involved in decoherence is not as 
serious as Zurek supposes. In fact, the identification of the system of 
interest and its environment is just a way of selecting the relevant 
observables of the whole closed system. But given a closed system, there 
are many ways of selecting the relevant observables, and not in every case 
decoherence is obtained. For instance, let us consider the spin-bath 
model, perhaps the simplest exactly solvable model introduced by Zurek 
(1982): a spin-1/2 particle  immersed in a bath of  spin-1/2 
particles . The self-Hamiltonians of  and of the  are taken to be 
zero;  interacts with the , but the  do not interact with each other. 
In the standard treatment of the model, the particle  is conceived as the 
system, and the bath of particles  as the environment. In this case, for 
particular system-environment interactions, numerical results show that, 
as  increases, the system rapidly decoheres: the terms corresponding to 
the interference between the two states of  become quickly and 
strongly suppressed. However, nothing compels this particular “cut” 
between system and environment: we could also select the particle k  as 
the system and the rest of the particles as the environment. It is clear that, 
in this new partition, the system  does not decohere since it is almost 
uncoupled with its environment (for a discussion on this point, cfr. 
Castagnino, Fortin, Laura and Lombardi 2008). 

P N
iP P iP

P iP iP
P

iP

N
P

P

kP

More general models can be proposed. Let us consider, for 
instance, a collection of M N+  spin-1/2 particles such that (i) the 
particles of the group M  do not interact with each other but each one of 
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them interacts with all the particles of the group , and (ii) the particles 
of the group  do not interact with each other but each one of them 
interacts with all the particles of the group 

N
N

M . Let us call AS  the system 
of M  particles and  the system of  particles. In this model, 
numerical results show that the behavior of 

BS N
AS  and  depends on the 

relationship between the numbers 
BS

M  and  (cfr. Castagnino, Fortin 
and Lombardi 2008): 

N

• If M N , the system AS  decoheres and the system  does not 
decohere. In this case, if 

BS
AS  is considered the system of interest, we 

could say that the system decoheres as the result of the interaction 
with its environment . But if  is the system of interest, 
decoherence is not obtained. 

BS BS

• If M N , conclusions analogous to the previous case can be 
drawn, by interchanging AS  and . BS

• If M N , neither AS  nor  decohere. BS
These results clearly show that the conclusions about decoherence 

strongly depend on the way in which the whole closed system is 
partitioned into open systems. In simple models, the conclusions can be 
quickly inferred by the inspection of the number of degrees of freedom 
involved in the model and of their interactions. But in more complex 
situations, the model has to be described in detail in order to see, for each 
particular partition, whether the system of interest resulting from that 
partition decoheres or not. 
 
3. THE MODAL-HAMILTONIAN INTERPRETATION 

During the last decades, the research on the formal properties of 
the mathematical structure of quantum mechanics has shown a great 
advance: many results, unknown by the founding fathers of the theory, 
have been obtained, and this work has greatly improved the 
understanding of the deep obstacles that any interpretation must face. 
However, this interest in the features of the formalism has led to forget 
the physical content of quantum mechanics. In fact, in the last times, 
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realist interpretations usually rely on mathematical results and focus their 
attention mainly on the formal model of the measurement problem. But 
quantum mechanics is a physical theory by means of which an impressive 
amount of experimental evidence has been accounted for. 

Recently we have proposed a new interpretation of quantum 
mechanics, belonging to the “modal family” (Lombardi and Castagnino 
2008, Castagnino and Lombardi 2008): like previous modal interpretations, 
it is a realist, non-collapse approach according to which the quantum state 
describes the possible properties of the system but not its actual 
properties. However, our interpretation moves away from the present 
trend in the research on the subject in the sense that it places an element 
with a clear physical meaning, the Hamiltonian of the system, at the heart 
of the proposal. From our interpretational perspective, the Hamiltonian is 
decisive in the definition of the quantum system and in the selection of its 
definite-valued observables. 
 
3.a. Systems and subsystems 

In order to study the physical world, we have to identify the 
systems that populate it. We can cut out the physical reality in many 
different ways, but only when a portion of reality does not interact with 
others we obtain a system that obeys the dynamical postulate of quantum 
mechanics. For this reason, we conceive as quantum systems only those 
pieces of reality non-interacting with other pieces. On this basis, and by 
adopting an algebraic perspective, we define a quantum system as a pair 

 such that (i) O  is a space of self-adjoint operators on a Hilbert 
space , representing the observables of the system, (ii) 

S
( , )HO

H H ∈O  is the 
time-independent Hamiltonian of the system, and (iii) if 0 'ρ ∈O  (where 

 is the dual space of O ) is the initial state of S , 0'O ρ  evolves according 
to the Schrödinger equation in its von Neumann version. 

Of course, any quantum system can be decomposed in parts in 
many ways; however, not any decomposition will lead to parts which are, 
in turn, quantum systems. This will be the case only when there is no 
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interaction among the components and, then, the components' behaviors 
are dynamically independent to each other. On this basis, we say that a 
quantum system  with initial state : ( , )S HO 0 'ρ ∈O  is composite   
when it can be partitioned into two quantum systems    and 

 such that (i) , and (ii) 
1 1 1: ( , )OS H

2 2 2: ( , )OS H 1= ⊗O O O2

21 2 1= ⊗ + ⊗H H I I H  (where 1I  and 2I  are the identity operators 
in the corresponding tensor product spaces). In this case, the initial states 
of  and  are obtained as the partial traces 1S 2S 01 (2) 0ρ =T r ρ  and 

, and we say that  and  are subsystems of the composite 
system, symbolized as 

02 (1) 0ρ = ρT r 1S 2S
1 2= ∪S S S . 

It has to be emphasized that, although this definition of composite 
quantum system is completely general, the decomposition of a quantum 
system into subsystems is not always possible: it may happen that there is 
no partition of the whole S  such that the total Hamiltonian can be 
expressed as a sum of component Hamiltonians. In this case, the 
quantum system is not composite, and we call it elemental.  

On the other hand, given any two quantum systems  
and , with initial states 

1 1 1: ( , )OS H
2 2 2: ( , )OS H 01 1ρ ∈O '  and 02 2ρ ∈O '  

respectively, we can always define a quantum system  with 
initial state  such that (i) 

: ( , )OS H
0 'ρ ∈O 1 2= ⊗O O O , (ii) 

, where  is the interaction 
Hamiltonian, and (iii) 

int
1 2 1 2 12= ⊗ + ⊗ +H H I I H H

0 0

int
12H

1 02ρ = ρ ⊗ ρ ∈O '
01

. In this case, the initial state 
 of  and the initial states 0ρ S ρ  of S  and  of  are still related 

by a partial trace. However, when the two systems  and  interact 
with each other, 

1 02ρ 2S
1S 2S

int
12 0≠H  and, therefore,  and 01ρ 02ρ  do not evolve 

according to the Schrödinger equation. This means that, strictly speaking, 
 and  are not subsystems of S  but have to be considered as mere 

“parts” of S ; we shall symbolize this fact as 
1S 2S

1 2= +S S S . Only in the 
particular case that int

12 0=H ,  and  will evolve unitarily, and they 
will properly be subsystems of . 

1S 2S
S

Summing up, the modal-Hamiltonian interpretation supplies a 
precise criterion for distinguishing between elemental and composite 
systems, and such a criterion is based on the system's Hamiltonian. 
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3.b. The selection of the preferred context 

The subtler point in any realist interpretation of quantum 
mechanics is the selection of the preferred context, that is, the set of the 
definite-valued observables of the system. In the modal-Hamiltonian 
interpretation this selection is based on the actualization rule, which defines, 
among all the observables of the system, those that acquire actual, and not 
merely possible, values. 

As it is well known, quantum mechanics is covariant under the 
Galilean transformations, represented by the Galilean group with its ten 
symmetry generators,3 which correspond to the fundamental dynamical 
magnitudes of the theory (cfr. Ballentine 1998): the energy H  (time-
displacement), the momentum ( )= x y zP P , P , P  (space-displacement), 
the position ( )= x y zQ Q ,Q ,Q  (boost-transformation: boost generator 

), the total angular momentum =G mQ ( )= x yJ ,J ,J zJ  (space-
rotation).4 Since we have defined a quantum system as a closed system, its 
energy is constant in time and, then, the Hamiltonian H  is time-
independent:  is always invariant under time-displacement. 
Nevertheless, in a given quantum system, H  may have the remaining 
symmetries or not. To say that the Hamiltonian is symmetric or invariant 
under a certain continuous transformation means that 

H

 
iKs iKse H e H− = , then [ ] 0H ,K =   (3-1) 

 
This implies that, when H  is invariant under a certain continuous 

transformation, the generator of that transformation is a constant of motion 
of the system: each symmetry of the Hamiltonian defines a conserved 
quantity. For instance, the invariance of H  under space-displacement in 
any direction implies that the momentum  is a constant of motion; the P
                                                      

3 Strictly, we should speak of the central extension of the Galilean group. 
4 Strictly speaking, the generators are proportional to these observables with 

a factor 1 ; for instance, the time-displacement generator is / h K H /τ = h . For 
simplicity, here we employ units that make . 1=h
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invariance of H  under space-rotation in any direction implies that the 
total angular momentum  is a constant of motion. If, on the contrary, J
H  is invariant under space-displacement only in one direction, say x , 
only the component xP  of  is a constant of motion. P

Moreover, each symmetry of the Hamiltonian leads to an energy 
degeneracy. In fact, if H  is invariant under a continuous transformation 
with generator K , we can write 

 
 nK H n K n= ω  ⇒ nH K n K n= ω         (3-2) 

 
This means that any vector K n , obtained by applying the 

operator K  on the eigenvector n , is also an eigenvector of H  with 
the same eigenvalue (cfr. Meijer and Bauer 2004). As a consequence, H  
can be expressed as 

 
n nn

H = ω P∑     (3-3) 
 
where  is the projector operator onto the subspace spanned by the 
degenerate eigenvectors corresponding to 

nP
nω .  

Now we have all the conceptual elements necessary to present our 
actualization rule. The basic idea is that the Hamiltonian of the system 
defines actualization; therefore, any observable that does not have the 
symmetries of the Hamiltonian cannot acquire an actual value, since its 
actualization would break the symmetry of the system in an arbitrary way. 
Precisely, given an elemental quantum system , the preferred 
context consists of 

: ( , )OS H
H  and the observables commuting with H  and 

having, at least, the same symmetries as H . Let us see how the rule 
works in different cases: 
(a) The Hamiltonian H  does not have symmetries (it is non-

degenerate): 

nH n n= ω  with        (3-4) 'n nω ≠ ω
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where { }n  is a basis of the Hilbert space . In this case, the 
definite-valued observables of the system are 

H
H  and all the 

observables commuting with H . 
(b) If the Hamiltonian H  has certain symmetries that lead to energy 

degeneracy, it can be written as 
 

, ,n nH n i n i= ω n  ⇒ , ,
n

n n n n
n i n

H n i n i= ω = ω nP∑ ∑ ∑   (3-5) 
 
where  and the index  expresses the degeneracy of the 
energy eigenvalue 

'n nω ≠ ω
n

ni
ω . Any observable of the form 

 

,
, , , ,

n n

n n n n n n n
n i n i n

nA a n i n i a n i n i a P= = =∑ ∑ ∑ ∑  (3-6) 
 
is definite-valued, since [ ], 0A H =  and A  has, at least, the same 
degeneracy as H . On the contrary, any observable of the form 
 

,
,

, ,
n

n

n i n n
n i

B b n i n i= ∑    (3-7) 
 

in spite of commuting with H , does not acquire a definite value, 
since the actualization of a particular eigenvalue 

n
 of ,n ib B  would 

discriminate among the degenerate eigenvectors corresponding to a 
single eigenvalue nω  of H  and, in this way, would introduce in the 
system an asymmetry not contained in the Hamiltonian. 

In certain modal interpretations (e.g. Kochen 1985, Dieks 1988, 
Vermaas and Dieks 1995), the preferred context depends on the 
instantaneous state of the system, which continuously changes in time; 
this leads to the need of accounting for the dynamics of actual properties 
(cfr. Vermaas 1996). In our interpretation, on the contrary, this step is 
unnecessary because the dynamics of actual properties is trivial. In fact, 
since in any case the definite-valued observables commute with the 
Hamiltonian, they are constants of motion of the system: in spite of the 
fact that probabilities are continuously evolving, the set of definite-valued 
observables is time-independent and, thus, completely robust (for the 
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ontological picture emerging from this interpretation, cfr. Lombardi and 
Castagnino 2008, Section 8). 

This actualization rule has been applied to many well-known 
physical situations (hydrogen atom, Zeeman effect, fine structure, etc.), 
leading to results consistent with experimental evidence. Moreover, it has 
proved to be effective for solving the measurement problem, both in its 
ideal and its non-ideal versions. 

 
3.c. The quantum measurement problem 

According to the modal-Hamiltonian interpretation, a quantum 
single measurement5 is a three-stage process. In the first stage, the system 

 to be measured −represented in the Hilbert space  and with 
Hamiltonian 
S HS

SH − and the measuring apparatus M  −represented in the 
Hilbert space HM  and with Hamiltonian MH − do not interact. During 
the second stage, an interaction Hamiltonian  introduces the 
correlation between the eigenstates 

int
SMH

ia  of an observable A  of  and 
the eigenstates 

S
ip  of a pointer observable  of P M . In the third stage 

the interaction ends, and the whole system becomes a composite system 
 with a Hamiltonian S M∪

 
S M SH H I I HM= ⊗ + ⊗       (3-8) 

 
and an initial state (see eq.(2-1)) 
 

 SM i i i
i

c a pψ = ⊗∑     (3-9) 
 

Although SMψ  is an entangled state, since there is no interaction 
between the subsystems  and S M , the actualization rule has to be 
applied to each one of them independently. In particular, when applied to 
M , the rule states that the definite-valued observables are the 
                                                      

5 The difference between single measurement, frequency measurement and 
state measurement is explained in Lombardi and Castagnino 2008, Section 6. 



THE ROLE OF THE HAMILTONIAN IN QUANTUM MECHANICS 
 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

329  

Hamiltonian MH  and all the observables commuting with MH  and 
having, at least, the same symmetries −degeneracies− as MH . 

Of course, not any quantum process can be considered a quantum 
measurement. On the basis of the above description, the conditions for 
quantum measurements can be formulated: 
(a) During a period tΔ ,  and S M  must interact through an interaction 

Hamiltonian int 0SMH ≠  intended to introduce a correlation between 
the observable A  of  and the pointer  of S P M . The requirement 
of perfect correlation is not included as a defining condition of 
measurement, because the actualization rule explains the definite 
reading of the pointer  even in non-ideal measurements, that is, 
when the correlation is not perfect. In this case, the rule also 
accounts for the difference between reliable and non-reliable 
measurements (cfr. Lombardi and Castagnino 2008, Section 6). 

P

(b) The measuring apparatus M  has to be constructed in such a way 
that its pointer  (i) has macroscopically distinguishable eigenvalues, 
and (ii) commutes with the Hamiltonian 

P
MH  and has, at least, the 

same degeneracy as MH . The condition [ ] 0MP,H =  guarantees 
the stationarity of the eigenvectors of , making the readings of the 
pointer possible. 

P

This account of the quantum measurement has been used to 
explain how the initial −pure or mixed− state is reconstructed through 
measurement both in the ideal and in the non-ideal case, and has been 
successfully applied to the paradigmatic example of the Stern-Gerlach 
experiment, with perfect and non perfect correlation, and also in the case 
of an imperfect collimation of the incoming beam. 
 
4. PUTTING THE PIECES TOGETHER 

Harshman and Wickramasekara (2007a, 2007b) use the expression 
‘tensor product structure’ (TPS) to call any partition of a closed system S , 
represented in the Hilbert space = ⊗H H HA B , into parts AS  and 

BS  represented in HA  and HB  respectively. They point out that any 
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quantum system admits a variety of TPSs, each one leading to a different 
entanglement between its parts. In the case of the TPS = ⊗H H HA B , 
if the eigenvectors { }j  of the observable ∈ ⊗H HA AO A  span the 
space HA  and the eigenvectors { }k  of the observable 

∈ ⊗H HB BO B  span the space HB , then any state ϕ ∈H  can be 
expressed as a linear combination of the ⊗j k , 

 
ϕ = ⊗ =∑ ∑j k i

j ,k i
a b j k c i   (4-1) 

 
where { }i  is a basis of H , eigenbasis of the complete set of 
commuting observables (CSCO) { }⊗ ⊗A B A BO I , I O , and 

2 1=∑ i
i

. When the system S  is in the state c ϕ , the entanglement 
between AS  and BS  is measured by the entropy of the entanglement 

( )ϕA BE , which is a function of the coefficients 2
ic ,  

 
 ( ) 2 2

2ϕ = −∑A B i
i

E c lo ig c            (4-2) 
 
If we choose a different tensor product structure TPS’, 

= ⊗H H HA ' B ' , the argument is analogous, and the state ϕ  will be 
expressed as 
 

β χ α
β χ α

ϕ = β ⊗ χ = α∑ ∑' ' '

,
a b c       (4-3) 

 
with its entropy of the entanglement 
 

 ( )
2 2

2α α
α

ϕ = −∑ '
A ' B 'E c lo 'g c   (4-4) 

 
where the basis { }α  of  is the eigenbasis of the CSCO H
{ }⊗ ⊗A ' B ' A ' B 'O I , I O . According to the authors, “the moral of the story 
is that the observables determine the TPS, which in turn determine the notions of 
separability and entanglement” (Harshman and Wickramasekara 2007a, p. 3). 
In other words, separability and entanglement are TPS-dependent, and 
each TPS is defined by the observables chosen to identify the component 
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parts. This moral agrees with the conclusion drawn in Subsection 2.b: 
there are many ways of splitting the whole closed system into two open 
systems, and such a splitting is just the selection of a subset of relevant 
observables.  

Since a CSCO of the form { }⊗ ⊗A B A BO I , I O  defines a TPS, 
a symmetry transformation of the TPS in general leads to another TPS. 
Given a symmetry transformation, a particular TPS may be invariant 
under the symmetry group of those transformations. Since entanglement 
depends on the TPS, if a TPS is symmetry-invariant with respect to a 
certain group of transformations, then the entanglement is also invariant 
with respect to that symmetry. As we have seen, a particular symmetry 
transformation is time-displacement, whose generator is the Hamiltonian 
of the system. Then, when a particular TPS is invariant under time-
displacement, it is dynamically invariant, and the corresponding 
entanglement is also dynamically invariant. This is the case when the total 
Hamiltonian ∈ ⊗H HH  can be decomposed as 

 
 = ⊗ + ⊗A B A BH H I I H    (4-5) 

 
where ∈ ⊗H HA AH A  is the Hamiltonian of AS  and 

∈ ⊗H HB BH B  is the Hamiltonian of BS  (cfr. Harshman and 
Wickramasekara 2007a, p. 5). In other words, the dynamically invariant 
TPS is the particular TPS for which the interaction Hamiltonian int

A BH  
between AS  and BS  is zero. 

It is not difficult to see that the concept of dynamically invariant 
TPS corresponds to the definition of composite system in the context of 
the modal-Hamiltonian interpretation. In fact, from this interpretative 
perspective, when there is no interaction between AS  and BS , they are 
strictly subsystems of the composite system = ∪A BS S S . In this case, 
we have a robust notion of entanglement: although 0ρ  evolves in time, 
its entanglement is dynamically invariant. Moreover, this definition of 
composite system does not imply that the initial state 0ρ  of S  is the 
tensor product 0 0ρ ⊗ ρA B : this factored or uncorrelated state is a very 
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special kind of state, used in practice to describe independently prepared 
systems (cfr. Ballentine 1998). On the contrary, in general the initial state is 
a correlated or entangled state 0 'ρ ∈O ; nevertheless, since there is no 
interaction between the subsystems AS  and BS , 
[ ] 0⊗ ⊗ =A B A BH I , I H  and, then, 

 
[ ] [ ] [ ]− = − −Aexp iHt exp iH t exp iH tB   (4-6) 

 
Therefore, 

 
[ ]

[ ] tiH
A

tiHtiH
B

tiH

iHtiHt
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AAAA eeeTre

eeTrtTrt
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−

=
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This means that, in spite of the correlations, the subsystems AS  and BS  
are dynamically independent: each one of them evolves under the action of its 
own Hamiltonian.  

On the other hand, in a generic TPS, AS  and BS  interact 
( ). In this case, since the time  when the interaction begins, int 0H ≠ 0t

AS  and BS  are mere parts of the system S  because the initial states 
 and 0 ( )ρ = ρA BT r 0 00 ( )ρ =B AT r ρ  do not evolve unitarily according 

to the Schrödinger equation. This means that, strictly speaking, when 
, int 0≠A BH AS  and BS  are not quantum systems. 

In the light of these considerations, the conceptual difficulties of 
the decoherence program acquire a new reading, and the compatibility 
between the modal-Hamiltonian interpretation and the results of the 
decoherence program can be argued for. 
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4.a. A new reading of the preferred basis problem 

In Subsection 2.a, I have addressed the problem of the preferred 
basis, and I have argued that the results obtained case by case by means of 
the predictability sieve might be explained by assuming that the preferred 
basis is defined by the total Hamiltonian of the whole closed system. Now 
we have the elements to rethink the problem from a perspective based on 
the central role played by the Hamiltonian. 

Let us consider a closed system  where we distinguish two 
parts: the open “system” of interest S  and its environment , in such a 
way that 

CS
E

= +CS S E . According to Zurek, when S  decoheres in 
interaction with E , the preferred basis, identified by the predictability 
sieve, turns out to depend on the relative strength of the system’s self-
Hamiltonian SH  and the interaction Hamiltonian . But now let us 
forget Zurek’s criterion for a moment, and recall the defining requirement 
for the preferred basis, that is, for the set of the eigenvectors of a pointer 
observable  of S :  has to remain unperturbed during the time 
evolution in spite of the interaction between  and its environment. If 
we call  the Hilbert space of S  and  the Hilbert space of E , 
then ; but the same property can be represented in the 
total von Neumann-Liouville 

int
SEH

SP SP
S

HS HE
∈ ⊗H HS S SP

= ⊗L H H  space of , where 
, as 

CS
= ⊗H H HS E

 
= ⊗ ∈ ⊗H HS EP P I   (4-9) 

 
On the other hand, the total Hamiltonian H  of the −closed− system  
reads 

CS

 
            (4-10) int= ⊗ + ⊗ + ∈ ⊗H HS E S E SEH H I I H H

 
According to plain quantum mechanics, the requirement that the pointer 
remains unperturbed during the time evolution amounts to the 
requirement that P  be a constant of motion of the system, that is, 
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 [ ]     (4-11) int 0⎡ ⎤= ⊗ ⊗ + ⊗ + =⎣ ⎦S E S E S E SEP , H P I , H I I H H

 
But since always [ ] 0⊗ ⊗ =S E S EP I , I H , then the stability 
requirement for the pointer observable becomes that it commute with the 
Hamiltonian , where the self-Hamiltonian of the 
environment is not included: 

int⊗ +S E SH I H E

⎤
 

 int 0⎡ ⊗ + =⎣ S E SEP , H I H ⎦

H I H
int 0⎡ ⎤

      (4-12) 
 
This argument clearly shows that the condition introduced in the 

first papers on decoherence, that is, that the pointer commutes with the 
interaction Hamiltonian, is a particular case which holds only when the 
self-Hamiltonian of S  can be disregarded. And it is also clear that the 
three regimes distinguished by Zurek as the result of the application of 
the predictability sieve to a number of models (see Subsection 2.a) turn 
out to be the three particular cases of condition (4-12), and can be 
redescribed in terms of that condition: 

 When , the self-Hamiltonian of S  can be 
neglected, and then 

int⊗S E SE
=⎣ ⎦SEP , H

E

E

. Therefore, the preferred basis is 
defined by the interaction Hamiltonian . int

SEH
 When , neither the self-Hamiltonian of S  nor the 

interaction with the environment are clearly dominant. In this case, the 
preferred basis is defined by condition (4-12). 

int⊗S E SH I H

 When , the dynamics is dominated by self-
Hamiltonian of S  and, then, 

int⊗S E SH I H
[ ] [ ] 0⊗ = =S E S SP , H I P , H . 

Therefore, the preferred states are simply the eigenstates of SH . 
Therefore, the fact, noted by Schlosshauer (2004, p. 1280), that many 
systems are typically found in energy eigenstates although the interaction 
Hamiltonian depends on an observable different than energy, far from 
being surprising, necessarily results from the requirement of stability for 
the preferred basis and from the central role that the total Hamiltonian 
and its components play in meeting this requirement. 
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4.b. Dissolving the defining systems problem 

In Subsection 2.b, I have claimed that the problem of defining the 
systems involved in decoherence is not as serious as Zurek himself 
supposed: the identification of the system of interest and its environment 
depends on the subset of the observables considered relevant in each 
particular situation. Now we have better conceptual elements to argue for 
this conclusion. 

As we have seen, any quantum system  can be partitioned 
according to different TPSs, each one leading to a different entanglement 
between the component parts. From a dynamical viewpoint, the only 
privileged TPSs are those dynamically invariant: each component unitarily 
evolves independently governed by its own Hamiltonian, and 
entanglement is constant with time. The characterization of the 
dynamically invariant TPS, which depends on the particular form of the 
total Hamiltonian, corresponds to the definition of subsystems in the 
modal-Hamiltonian interpretation. Therefore, in this conceptual 
framework we can say that the subsystems of a quantum system, resulting 
from a dynamically invariant TPS, never decohere to the extent that they 
evolve unitarily according to the Schrödinger equation. 

CS

On the other hand, the non-dynamically invariant TPSs 
correspond to different partitions of the whole quantum system. As 
Harshman and Wickramasekara (2007a, 2007b) stress, each particular TPS 

= ⊗H H HA B  is determined by the observables that define the bases 
of the Hilbert spaces HA  and HB . In the language of the modal-
Hamiltonian interpretation, each partition expresses the split of the whole 
space of observables O  into spaces OA  and OB  such that 

= ⊗O O OA B . It is clear that, in this non-dynamically invariant case, 
the parts AS  and BS  evolve non-unitarily as a consequence of the 
interaction and, eventually, they may decohere. But the point to stress 
here is that there is no privileged non-dynamically invariant splitting: each 
partition into AS  and BS  is just a way of selecting the spaces of 
observables OA  and OB . And in each partition, there is no essential 
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criterion for identifying the “open system” and its “environment”: we are 
free of considering AS  as “the system” and BS  as “the environment”, or 
vice versa. Therefore, the identification of the system of interest S  and 
the environment E  amounts to the selection of the observables 
considered relevant in each situation. 

This argument shows that the splitting of the whole system into an 
open “system” and its environment is just the adoption of a descriptive 
perspective. There are many ways of performing that splitting: each 
decomposition represents a decision about which degrees of freedom are 
relevant and which can be disregarded in any case. Since there is no 
privileged or essential decomposition, there is no need of an unequivocal 
criterion for deciding where to place the cut between “the” system and 
“the” environment. Decoherence is not a yes-or-not process, but a 
phenomenon relative to the chosen partition of the whole quantum 
system, and in each case the particular form of the resulting Hamiltonians 
determine whether the so defined “system of interest” decoheres or not. 

Summing up, quantum mechanics is a theory whose dynamical 
postulate refers to closed systems: the time-behavior of the parts resulting 
from different partitions of the closed system has to be inferred from that 
postulate. This means that the total Hamiltonian rules the dynamical 
evolution of the closed system, and the time-behavior of its parts depends 
on the form in which the Hamiltonian is decomposed in each particular 
partition. If all these elements are taken into account, Zurek’s “looming 
big problem” does not constitute a real threat to the decoherence 
program: the supposed challenge dissolves once the relative nature of 
decoherence is admitted.  

The irony of this story is that the problem of defining the systems 
involved in decoherence is the consequence of what has been considered 
to be the main advantage of the decoherence program: its “open-system” 
perspective. This perspective is what deprives the program of a precise 
definition of systems and subsystems, and of a clear distinction between 
subsystems and parts of a quantum system. As I have shown, those 
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precise definitions can be given when the Hamiltonian of the system is 
seriously taken into account. 

 
4.c. Two compatible accounts of quantum measurement 

As we have seen in Subsection 3.c, the actualization rule of the 
modal-Hamiltonian interpretation explains the definite reading of the 
pointer  of the measuring apparatus P M  by considering that P  
commutes with the Hamiltonian MH  of M  and does not break the 
degeneracies of such a Hamiltonian. This account of the quantum 
measurement seems to be at odds with the explanation given by the 
decoherence program, according to which the decoherence of the 
measuring apparatus in interaction with its environment is what causes 
the apparent “collapse” that suppresses superpositions. In fact, in the 
modal-Hamiltonian interpretation, the environment is absent: M  is a 
closed quantum system unitarily evolving with its own Hamiltonian MH . 
Moreover, this seems to flagrantly contradict the fact that real measuring 
apparatuses are never isolated, but they interact significantly with their 
environments. However, this apparent conflict vanishes when the 
physical situation is considered in detail from a “closed-system” 
perspective. 

If measurement is described in terms of the quantum −and, 
therefore, closed− systems involved in the process, the measuring 
apparatus M  has not to be considered as an open macroscopic device 
surrounded by a “bath” of particles in interaction with it. In the third 
stage of the measurement process, the measuring apparatus is the entire 
quantum system that interacted with the system S  in the second stage: it 
is this system what has to have an observable pointer commuting with its 
Hamiltonian MH . On this basis, we can now analyze the elements 
participating in the process as described in the framework of the modal-
Hamiltonian interpretation. 
• The system M  −e.g., the device and the bath of particles− is certainly a 

macroscopic system, whose Hamiltonian is the result of the interaction 
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among a huge number of degrees of freedom. Since, in general, 
symmetries are broken by interactions, the symmetry of a Hamiltonian 
decreases with the complexity of the system. Then, a macroscopic 
system having a Hamiltonian with symmetries is a highly exceptional 
situation: in the generic case, the energy is the only constant of motion 
of the macroscopic system. As a consequence, in realistic measurement 
situations, MH  is non-degenerate, 

 
M n nH nω = ω ω  with   (4-13) nω ≠ ωn'

 
and, therefore, { }nω  is a basis of the Hilbert space MH  of M . 
This means that, when [ ] 0MP,H = , we can guarantee that  has, at 
least, the same degeneracies as 

P
MH  because MH  is non-degenerate. 

• The pointer  cannot have such a huge number of different 
eigenvalues as 

P
MH , because the experimental physicist must be able 

to discriminate among them (for instance, in the Stern-Gerlach 
experiment the pointer has three eigenvalues). This means that  is a 
“collective” observable of 

P
M  (cfr. Omnés 1994, 1999), that is, a highly 

degenerate observable that does not “see” the vast majority of the 
degrees of freedom of M : 

 
n n

n
P p= P∑              (4-14) 

 
where the set { }nP  of the eigenprojectors of  spans the Hilbert 
space 

P
MH  of M . In other words, the eigenprojectors of  

introduce a sort of “coarse-graining” into the Hilbert space 
P

MH . 
Therefore, if the Hamiltonian MH  is non-degenerate (see eq.(4-13)), 
the condition [ ] 0MP,H =  implies that  can be expressed in terms 
of the energy eigenbasis 

P
{ }nω  as 

 

n

n

n n n i i
n n i

P p P p
n

= = ω ω∑ ∑ ∑   (4-15) 
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This expression shows that, since n n'p p≠ P,  has more degeneracies 
than MH . 

• The requirement [ ] 0MP,H = , far from being an ad hoc condition 
necessary to apply the actualization rule, has a clear physical meaning: it 
is essential to preserve the stationary behavior of  during the third 
stage of the measurement process. If this requirement did not hold 
because of the uncontrollable interaction among the microscopic 
degrees of freedom of the macroscopic device or between the 
macroscopic device and an external “bath”, the reading of  would 
constantly change and measurement would be impossible. It is 
precisely at this point that the skills of the experimental physicist play a 
central role: he has to be capable of designing a complete experimental 
arrangement such that the uncontrollable degrees of freedom of 

P

P

M  
−internal or external to the macroscopic device− do not affect 
significantly the stationary character of the pointer. This goal may be 
achieved by many different technological means; but, in any case, 
measurement has to be a controlled situation where the reading of a 
stable pointer can be obtained. 

Now let us analyze the third stage of the measurement process 
from the viewpoint of the decoherence program. In this context, during 
the third stage the “measuring apparatus” does no longer interact with the 
measured system  but interacts with the “environment”. If we call, as 
before, 

S
M  the whole system that interacted with  in the second stage 

but remains closed during the third stage, the question is how to identify 
the open parts of 

S

M  to be conceived as “measuring apparatus” and as 
“environment”. This is a legitimate question because, as we have seen, a 
whole closed system may be partitioned in many different ways, none of 
them more “essential” than the others. 

The usual assumption is to consider the macroscopic, material 
device  built for measurement as “the apparatus”, and the bath D B  of 
the particles scattering off  as “the environment”; then, D M D B= +  
is the closed system resulting from the interaction between  and D B . 
From this usual position, it is supposed that  is the open system that D
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decoheres: the reduced density operator  of  should converge 
to a final time-independent 

( )D
r tρ D

D
rρ , diagonal in the preferred basis of , 

that is, of its Hilbert space , and the pointer P  should define such a 
basis. However, even if apparently “natural”, this is not the best choice 
for the splitting of 

D
HD

M , since it does not take into account the 
environment internal to the device . In fact, being a macroscopic body, 

 also has a huge number of degrees of freedom, which have to be 
“coarse-grained” by  if it is to play the role of the pointer. In other 
words, since the pointer P  must have a small number of different 
eigenvalues to allow the experimenter to discriminate among them,  is 
a highly degenerate observable on the Hilbert space  of  and, as a 
consequence, it does not define a basis of H . 

D
D

P

P
HD D

D
When we recall that the only univocally definable entity is the 

−closed− quantum system, and that a quantum system can be partitioned 
in many, equally legitimate manners, the system M  can be split in a 
theoretically best founded way in the measurement case. Let us recall that 
the pointer P  is the observable whose eigenvectors became correlated 
with the eigenvectors of an observable of the measured system during the 
second stage of the process, and that the interaction in that stage was 
deliberately designed to introduce such a correlation. So, if we want that 
during the third stage P  really defines a basis, the open “measuring 
apparatus” A  must be the part of M  corresponding to the Hilbert 
space HA  where the pointer is non-degenerate; if we call AP  the pointer 
belonging to ⊗H HA , it reads 

 
A n n n

n
P p p

A

p= ∑    (4-16) 
 
where { }np  is a basis of HA . Then, the relevant partition (the relevant 
TPS) is = ⊗H = H HM A E , where  is the Hilbert space of the 
“environment” 

HE
E . If { }  is a basis of H , the pointer acting on ie E

H =M  can be expressed as a highly degenerate observable: 
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(4-17) 

 
This agrees with the features of  in the modal-Hamiltonian framework: 

 introduces a sort of “coarse-graining” into the Hilbert space 
P

P H =M  
(compare eq.(4-17) with eq.(4-14)). The many degrees of freedom 
corresponding to the degeneracies of  in HP =M  play the role of the 
“environment”, composed by the microscopic degrees of freedom of the 
device  −internal environment− and the degrees of freedom of the 
bath 

D
B  −external environment−. 
Now we can introduce the condition for the stability of the 

pointer. As we have discussed in Subsection 4.a, if the total Hamiltonian 
of M A E= +  is 

 
int

M A E A E AH H I I H H= ⊗ + ⊗ + E   (4-18) 
 
then the self-Hamiltonian  of the environment does not affect the 
behavior of 

EH
A EP P I= ⊗ , since [ ] 0A E A EP I ,I H⊗ ⊗ = . Therefore, 

the stability condition results (compare with eq.(4-12)): 
 

 int 0A E AEP,H I H⎡ ⎤⊗ + =⎣ ⎦         (4-19) 
 
When decoherence is viewed from this perspective, Zurek’s “first regime” 
for the selection of the preferred basis (see Subsection 2.a) can be justified 
on general grounds. According to Zurek, the first regime is the quantum 
measurement situation, where the self-Hamiltonian of the apparatus 
system can be neglected and the evolution is completely dominated by the 
interaction Hamiltonian: this means that int

A EH I H⊗ AE  (see 
Subsection 4.a). If the apparatus is now conceived as the part of the 
system M  “viewed” by the pointer , and the environment carries over P
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almost all the degrees of freedom of M , it seems reasonable to suppose 
that, in general, the Hamiltonian corresponding to the interaction with 
that huge number of degrees of freedom is much greater than the self-
Hamiltonian of the “small” part defined by the pointer. Therefore, the 
condition int

A EH I H⊗ AE  leading to the “first regime” turns out to 
have a physical justification. 

On the basis of the above considerations, it is clear that both 
accounts of quantum measurement, the one supplied by the modal-
Hamiltonian interpretation and the one given by the decoherence 
program, are not in conflict with each other. The stability condition for 
the pointer is the same in both cases: for the modal-Hamiltonian 
interpretation, it reads 

 
 [ ] 0MP,H =        (4-20) 

 
which, for a pointer  highly degenerate in the −internal and external− 
degrees of freedom of the environment, is equivalent to the condition in 
the decoherence context, 

P

 
 int 0A E AEP,H I H⎡ ⎤⊗ +⎣ =⎦   (4-21) 

 
and almost equivalent to the condition for the measurement regime,  
 

 int 0AEP,H⎡ ⎤ =⎣ ⎦         (4-22) 
 
Moreover, the observables selected by decoherence and by the 
actualization rule also agree: 
• The classical-like states einselected by the interaction with the 

environment, according to the decoherence program, are the 
eigenvectors of the pointer (the elements of the preferred basis). 

• According to the modal-Hamiltonian interpretation, the pointer is a 
definite-valued observable belonging to the preferred context. 
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As a consequence, the seeming conflict between both approaches only 
reflects the different viewpoints adopted by each for describing the same 
physical situation: a closed-system perspective in the modal-Hamiltonian 
approach, and an open-system perspective in the decoherence approach. 
 
5. CONCLUSIONS 

The crucial role played by the Hamiltonian in mechanics, both 
classical and quantum, is well-known: as a two-faced Janus, it represents 
the conserved magnitude of the system and, simultaneously, it governs 
the time-evolution. So, it should not be surprising that, when the 
Hamiltonian is seriously taken into account, it also proves to be relevant 
in the interpretation of quantum mechanics and in the understanding of 
the phenomenon of decoherence. 

In this paper, conceptual difficulties of the decoherence program 
and matters of the interpretation of quantum mechanics were brought 
under a comprehensive framework. From this perspective, I have argued 
that (i) the challenges that still threaten the decoherence program can be 
overcome on the basis of an interpretation that defines with precision the 
concepts of quantum system and of quantum subsystem, and (ii) the 
modal-Hamiltonian interpretation supplies that definition and gives an 
explanation of quantum measurement compatible with the account in 
terms of decoherence.  

The agreement between the modal-Hamiltonian interpretation and 
the environment-induced decoherence approach contributes to our 
understanding of the phenomenon of decoherence and, at the same time, 
may count for the adequacy of the interpretation. The purpose of this 
work has been to point out that those conclusions can only be drawn 
when the Hamiltonian is given a leading role both in interpretation and in 
decoherence. 

 
Acknowledgements: I want to thank all the members of the Buenos 
Aires Group on Philosophy and Foundations of Physics and Chemistry, 



OLIMPIA LOMBARDI  

 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

344  

to which I belong, for supplying me the necessary intellectual context to 
develop these ideas. In particular, I am grateful to Mario Castagnino, 
Sebastian Fortin and Juan Sebastian Ardenghi for their patient reading of 
the manuscript and their stimulating comments. I am also specially 
indebted to Roberto Torretti: Section 4.c was written as the direct result 
of his clever observations. Nevertheless, any weakness of the paper is my 
own responsibility. This work has been supported by grants of 
CONICET, ANPCyT, UBA and SADAF, Argentina. 

 

REFERENCES 

ADLER, S. “Why decoherence has not solved the measurement problem: 
A response to P. W. Anderson”. Studies in History and Philosophy of 
Modern Physics, 34: 135-142, 2003. 

ALBERT, D., LOEWER, B. “Wanted dead or alive: two attempts to 
solve Schrödinger’s paradox”. Proceedings of the 1990 Biennial Meeting 
of the Philosophy of Science Association, 1: 277-285, 1990. 

————. “Non-ideal measurements”. Foundations of Physics Letters, 6: 
297-305, 1993. 

ANDERSON, P. W. “Science: A ‘dappled world’ or a ‘seamless web’?”. 
Studies in History and Philosophy of Modern Physics, 34: 487-494, 2001. 

AULETTA, G. Foundations and Interpretation of Quantum Mechanics. 
Singapore: World Scientific, 2000. 

BACCIAGALUPPI, G. “The role of decoherence in quantum 
mechanics”. In: E. N. Zalta (ed.). The Stanford Encyclopedia of 
Philosophy, 2008. (Fall 2008 Edition), URL = 
<http://plato.stanford.edu/archives/fall2008/entries/qm-
decoherence/>. 



THE ROLE OF THE HAMILTONIAN IN QUANTUM MECHANICS 
 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

345  

BACCIAGALUPPI, G., HEMMO, M. “Modal interpretations, decoherence 
and measurements”. Studies in History and Philosophy of Modern Physics, 
27: 239-277, 1996. 

BALLENTINE, L. Quantum Mechanics: A Modern Development. Singapore: 
World Scientific, 1998.  

BUB, J. Interpreting the Quantum World. Cambridge: Cambridge University 
Press, 1997. 

BUTTERFIELD, J. N. “Some worlds of quantum theory”. In: R. Russell, 
P. Clayton, K. Wegter-McNelly and J. Polkinghorne (eds.). 
Quantum Physics and Divine Action. Vatican: Vatican Observatory 
Publications, 2002. 

CALZETTA, E. A., HU, B. L., MAZZITELLI, F. D. “Coarse-grained 
effective action and renormalization group theory in semiclassical 
gravity and cosmology”. Physics Reports, 352: 459-520, 2001. 

CASTAGNINO, M., FORTIN, S., LAURA, R., LOMBARDI, O. “A 
general theoretical framework for decoherence in open and closed 
systems”. Classical and Quantum Gravity, 25: 154002, 2008. 

CASTAGNINO, M., FORTIN, S., LOMBARDI, O. “Decoherence as a 
relative phenomenon: a generalization of the spin-bath model”, 
2008. (Forthcoming) 

CASTAGNINO, M., LAURA, R. “Functional approach to quantum 
decoherence and the classical final limit”. Physical Review A, 62: 
022107, 2000. 

CASTAGNINO, M., LAURA, R., LOMBARDI, O. “A general 
conceptual framework for decoherence in closed and open 
systems”. Philosophy of Science, 74: 968-980, 2007. 

CASTAGNINO, M., LOMBARDI, O. “Self-induced decoherence: a 
new approach”. Studies in History and Philosophy of Modern Physics, 35: 
73-107, 2004. 



OLIMPIA LOMBARDI  

 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

346  

CASTAGNINO, M., LOMBARDI, O. “Decoherence time in self-
induced decoherence,” Physical Review A, 72: 012102, 2005a. 

————. “Self-induced decoherence and the classical limit of quantum 
mechanics”. Philosophy of Science, 72: 764-776, 2005b. 

————. “The role of the Hamiltonian in the interpretation of quantum 
mechanics,” Journal of Physics. Conferences Series, 2008. (In press) 

D’ESPAGNAT, B. Conceptual Foundations of Quantum Mechanics. Reading, 
Mass.: Benjamin., 1976.  

————. “A note on measurement”. Physics Letters A, 282: 133-137, 
2000. 

DIEKS, D. “The formalism of quantum theory: An objective description 
of reality?”. Annalen der Physik, 7: 174-190, 1988. 

————. “Resolution of the measurement problem through 
decoherence of the quantum state,” Physics Letters A, 142: 439-444, 
1989. 

ELBY, A. “The ‘decoherence’ approach to the measurement problem in 
quantum mechanics”. Proceedings of the of the 1994 Biennial Meeting of 
the Philosophy of Science Association, 1: 355-365, 1994. 

HARSHMAN, N. L., WICKRAMASEKARA, S. “Galilean and dynamical 
invariance of entanglement in particle scattering”. Physical Review 
Letters, 98: 080406, 2007a. 

————. “Tensor product structures, entanglement, and particle 
scattering”. Open Systems and Information Dynamics, 14: 341-351, 
2007b. 

HEALEY, R. “Dissipating the quantum measurement problem”. Topoi, 
14: 55-65, 1995. 

JOOS, E. “Elements of environmental decoherence”. In: P. Blanchard, 
D. Giulini, E. Joos, C. Kiefer and I.-O. Stamatescu (eds.). 



THE ROLE OF THE HAMILTONIAN IN QUANTUM MECHANICS 
 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

347  

Decoherence: Theoretical, Experimental, and Conceptual Problems, Lecture 
Notes in Physics, Vol. 538. Heidelberg-Berlin: Springer, 2000. 

KOCHEN, S. “A new interpretation of quantum mechanics”. In: P. J. 
Lahti and P. Mittelsteadt (eds.). Symposium on the Foundations of 
Modern Physics. Singapore: World Scientific, 1985. 

LOMBARDI, O., CASTAGNINO, M. “A modal-Hamiltonian inter-
pretation of quantum mechanics”. Studies in History and Philosophy of 
Modern Physics, 39: 380-443, 2008. 

MEIJER, P., BAUER, E. Group Theory. The Application to Quantum 
Mechanics. New York: Dover, 2004. 

OMNÈS, R. The Interpretation of Quantum Mechanics. Princeton: Princeton 
University Press, 1994. 

————. Understanding Quantum Mechanics. Princeton: Princeton Uni-
versity Press, 1999. 

————. “Decoherence: An irreversible process”. Los Alamos National 
Laboratory, arXiv:quant-ph/0106006, 2001. 

————. “Decoherence, irreversibility and the selection by decoherence 
of quantum states with definite probabilities”. Physical Review A, 65: 
052119, 2002. 

PAZ, J. P. (1994). “Decoherence in quantum Brownian motion.” In J. J. 
Halliwell, J. Pérez-Mercader and W. H. Zurek (eds.), Physical Origins 
of Time Asymmetry. Cambridge: Cambridge University Press, 1994. 

PAZ, J. P., ZUREK, W. H. “Quantum limit of decoherence: environ-
ment induced superselection of energy eigenstates”. Physical Review 
Letters, 82: 5181-5185, 1999. 

————. “Environment-induced decoherence and the transition from 
quantum to classical”. In: D. Heiss (ed.). Fundamentals of Quantum 
Information, Lecture Notes in Physics, Vol. 587. Heidelberg-Berlin: 



OLIMPIA LOMBARDI  

 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

348  

Springer, 2002. (The page numbers are taken from arXiv:quant-
ph/0010011) 

SCHLOSSHAUER, M. “Decoherence, the measurement problem, and 
interpretations of quantum mechanics”. Reviews of Modern Physics, 
76: 1267-1305, 2004. 

STAPP, H. P. “The basis problem in Many-Worlds theories”. Canadian 
Journal of Physics, 80: 1043-1052, 2002. 

VERMAAS, P. E. “Unique transition probabilities in the modal inter-
pretation”. Studies in History and Philosophy of Modern Physics, 27: 133-
159, 1996. 

VERMAAS, P. E., DIEKS, D. “The modal interpretation of quantum 
mechanics and its generalization to density operators”. Foundations 
of Physics, 25: 145-158, 1995. 

WALLACE, D. “Worlds in Everett interpretation”. Studies in History and 
Philosophy of Modern Physics, 33: 637-661, 2002. 

————. “Everett and structure”. Studies in History and Philosophy of 
Modern Physics, 34: 87-105, 2003. 

ZUREK, W. H. “Pointer basis of quantum apparatus: into what mixture 
does the wave packet collapse?”. Physical Review D, 24: 1516-1525, 
1981. 

————. “Environment-induced superselection rules”. Physical Review 
D, 26: 1862-1880, 1982. 

————. “Decoherence and the transition from quantum to classical”. 
Physics Today, 44: 36-44, 1991. 

————. “Preferred states, predictability, classicality and the environ-
ment-induced decoherence”. Progress of Theoretical Physics, 89: 281-
312, 1993. 



THE ROLE OF THE HAMILTONIAN IN QUANTUM MECHANICS 
 

Manuscrito – Rev. Int. Fil., Campinas, v. 33, n. 1, p. 307-349, jan.-jun. 2010. 

349  

————. “Preferred sets of states, predictability, classicality and environ-
ment-induced decoherence”. In: J. J. Halliwell, J. Pérez-Mercader 
and W. H. Zurek (eds.). Physical Origins of Time Asymmetry. 
Cambridge: Cambridge University Press, 1994. 

————. “Decoherence, einselection, and the existential interpretation”. 
Philosophical Transactions of the Royal Society, A356: 1793-1821, 1998. 
(The page numbers are taken from arXiv:quant-ph/9805065) 

————. “Decoherence, einselection, and the quantum origins of the 
classical”. Reviews of Modern Physics, 75: 715-776, 2003. 

ZUREK, W. H., HABIB, S., PAZ, J. P. “Coherent states via 
decoherence”. Physical Review Letters, 70: 1187-1190, 1993. 


	CDD: 530.12
	THE CENTRAL ROLE OF THE HAMILTONIAN IN QUANTUM MECHANICS: DECOHERENCE AND INTERPRETATION
	Universidad de Buenos Aires/CONICET


