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Abstract. The point graph of a generalized quadrangle GQ(s, t) is a strongly reg-
ular graph Γ = srg(ν, κ, λ, µ) whose parameters depend on s and t. By a detailed
analysis of the adjacency matrix we compute the Terwilliger algebra of this kind
of graphs (and denoted it by T ). We find that there are only two non-isomorphic
Terwilliger algebras for all the generalized quadrangles. The two classes correspond
to wether s2 = t or not. We decompose the algebra into direct sum of simple ideals.
Considering the action T × CX −→ CX we find the decomposition into irreducible
T -submodules of CX (where X is the set of vertices of the Γ).

1. Introduction

The subconstituent algebra was first introduced by P. Terwilliger in his paper [13].
It was defined on a class of combinatorial objects known as association schemes (see
also [2, 3]). It is a noncommutative, finite dimensional, semisimple C algebra. We will
denote it by T .

It has been studied for many examples such as P - and Q- polynomial association
schemes [6], distance-regular graph that supports a spin model [7], group association
schemes [4, 5], strongly regular graphs [17].

In [8] it was given an explicit description of the T -algebra of the hypercube and more
generally in [10] of a Hamming scheme H(d; q). The case of the Johnson schemes it was
analyzed in [9].

In this paper we focus on the T -algebra of a special family of strongly regular graphs,
which are examples of association schemes: generalized quadrangles GQ(s, t) .

They are indeed a subfamily of partial geometries defined in [1]. A strongly regular
graph is associated to them, so we can study the T -algebra of such a family. We show
that there are only two non-isomorphic T -algebras for all the generalized quadrangles.
The two classes correspond to whether s2 = t or not. We obtain the dimension of T in
both cases. This is in agreement with the result expected from [17] that gives dimensions
of the T -algebra attached to a strongly regular graph. The particular class of GQ(s, s2)
has a combinatorial characterization given by J.A. Thas in [16].

With a detailed analysis of the adjacency matrix, we obtain restriction on the pa-
rameters (s, t) (also given in 1.2.2 of [12]).

The paper is organized as follows: in section 2 we give the basic definitions and
comment on some known basic results of algebraic combinatorics. In section 3 we
analyze the blocks of the matrices in T and we give a basis of T in Proposition 3.21.

In section 4 we find the simple ideals of T (Propositions 4.3, 4.4) and in Theorem 4.5
we decompose T into direct sum of simple ideals.

Finally in section 5 we give the irreducible T -submodules of the action

T × CX −→ CX

(where X is the set of vertices of the Γ).

Key words and phrases. strongly regular graphs, generalized quadrangles, Terwilliger algebra.
This work supported by FACEPE, CCEN UFPE and CIEM-FaMAF UNC, CONICET..

1



2 F. LEVSTEIN† AND C. MALDONADO‡

2. Definitions

2.1. Strongly regular graphs.

Definition 2.1. (see [11]) A strongly regular graph Γ = srg(ν, κ, λ, µ) is a graph with
ν vertices that is regular of degree κ and that has the following properties:

• for any two adjacent vertices x, y there are exactly λ vertices adjacent to x and
to y

• for any two nonadjacent vertices x, y there are exactly µ vertices adjacent to x
and to y

2.2. Generalized Quadrangles.

Definition 2.2. (see [1] , [12])
A generalized quadrangle GQ(s, t) is a system of points and lines with an incidence

relation satisfying the axioms (1)− (4) below. We will use standard geometric language.
A point incident with a line is said to lie on the line and the line is said to pass through
the point. If two lines are incident with the same point, we say that they intersect.

Axioms

(1) for any two distinct points there is at most one line passing through them;
(2) there are exactly r = t + 1 lines passing for each point;
(3) there are exactly k = s + 1 points lying on each line;
(4) if a point p does not lie on the line l , then there is exactly one line passing

through p and intersecting l

If two points lie on a common line, we say that they are collinear and we write x ∼ y.
The point graph of a generalized quadrangle is the graph with the points of the quad-
rangle as vertices, and edges {x, y} such that x ∼ y.
It is well known by [1, 12] that the point graph of a GQ(k − 1, r − 1) is a (possibly
trivial) Γ = srg(ν, κ, λ, µ) with:

ν = k (1 + (k − 1)(r − 1)) , κ = r(k − 1), λ = k − 2, µ = r(1)

2.3. Bose-Mesner algebra.
Let Γ = srg(ν, κ, λ, µ) be a strongly regular graph, X be the set of vertices and

∂ : X ×X → {0, 1, 2}
be the path-length distance for Γ. Let MatX(C) denote the C-algebra of matrices with
complex entries, where the rows and columns are indexed by X.

Definition 2.3. The adjacency matrix of Γ of is the following (0, 1)-matrix in MatX(C):

(A)xy =
{

1 if ∂(x, y) = 1
0 otherwise

Proposition 2.4. (see [11])
Let Γ = srg(ν, κ, λ, µ) be a strongly regular graph, A the adjacency matrix of Γ and

I, J ∈ MatX(C) the identity and the full ones matrix respectively. Then

AJ = κJ(2)
A2 + (µ− λ)A + (µ− κ)I = µJ(3)
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Proof. By definitions 2.1 and 2.3; A is a symmetric matrix with κ 1’s on each row and
column. This proves equation (2). To prove (3) we observe that defining

(A2)xy =
{

1 if ∂(x, y) = 2
0 otherwise ,

axioms of definition 2.1 imply that

I + A + A2 = J

(A2 6= J − I) otherwise Γ would be a complete graph).
Computing:

(A2)xy = Σz∈X AxzAzy

= |{z : ∂(x, z) = 1 and ∂(z, y) = 1}|

=





κ if x = y
λ if ∂(x, y) = 1
µ if ∂(x, y) = 2

Therefore
A2 = κI + λA + µA2

= κI + λA + µ(J − I −A)

which implies the (3). ¤

Definition 2.5. (see [2], [3] )
The Bose-Mesner algebra of a strongly regular graph Γ is the 3-dimensional algebra

of matrices in MatX(C) which are linear combinations of I, J and A. We denoted it by
A.

That this is indeed an algebra is a consequence of equations (2) and (3) in Proposition
2.4.

The following facts are well known in algebraic combinatorics (see [2, 3]).
The algebra A consists of symmetric commuting matrices and identifying

CX = {f : X → C}
we can consider for all M ∈ A the action:

M × CX → CX .

Since {I, J,A} consists of symmetric commuting matrices , they are diagonalyzed simul-
taneously by a unitary matrix. That is, we have a decomposition of CX into common
eingenspaces of I, J,A. The number of eigenspaces is 2 + 1 since any strongly regular
graph has diameter= 2 (diameter:= the greatest distance in the graph).

Therefore, let Γ be a strongly regular graph,

CX = V0 ⊕ V1 ⊕ V2

be such a decomposition and let Ei, i = 0, 1, 2 be the orthogonal projections

Ei : CX → Vi

expressed in matrix form with respect to the canonical basis {ei} i = 1...|X|. Then,

E0 =
1
|X|J (J the matrix of all 1,s)

E0 + E1 + E2 = I

EiEj = δijEi

The Ei are called the primitive idempotents of Γ.
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2.4. Dual Bose-Mesner algebra.

Definition 2.6. (see [13]) The ith dual idempotent with respect to the vertex x denoted
by E∗

i := E∗
i (x) is the diagonal matrix in MatX(C) defined by

(E∗
i )yy =

{
1 if ∂(x, y) = i
0 if ∂(x, y) 6= i

Lemma 2.7. The matrices {E∗
i }2i=0 satisfy the following equations:

E∗
0 + E∗

1 + E∗
2 = I(4)

E∗
i

t = E∗
i(5)

E∗
i E∗

j = δijE
∗
i(6)

Proof. Its follows straightforward from definition above. ¤
Definition 2.8. Let Γ be a strongly regular graph. For x ∈ X, the Dual Bose-Mesner
algebra of Γ with respect to x, is the 3-dimensional algebra of matrices in MatX(C)
which are linear combinations of {E∗

i }2i=0. We denoted it by A∗ := A∗(x).

That this is indeed an algebra is a consequence of equations (4),(5) and (6) in the
previous Lemma.

2.5. Terwilliger algebra.

Definition 2.9. (see [13]) Let Γ be a strongly regular graph and X be its set of vertices.
The subconstituent or Terwilliger algebra of Γ with respect to the vertex x ∈ X is the
algebra generated by the Bose-Mesner algebra A := A(x) and the dual Bose-Mesner
algebra A∗ := A∗(x). We denote this algebra by T := T (x).

Remark 2.10. T is closed under the conjugate-transpose map, so it is semi-simple.

3. T -algebra of GQ(k − 1, r − 1).

In this section we consider a connected strongly regular graph Γ = srg(ν, κ, λ, µ)
coming from a generalized quadrangle GQ(k − 1, r − 1).

We fix x0 ∈ X and we analyze the associated T (x0)-algebra .

In the following we analyze the structure of the matrices belonging to T in a more
detailed way .

Lemma 3.1. For all T ∈ T , T is generated by A,E∗
0 , E∗

1 , E∗
2

Proof. By definition T is generated by the algebrasA = 〈{I, J,A}〉 andA∗ = 〈{E∗
0 , E∗

1 , E∗
2}〉.

That is T consist on sum and products of matrices in {I, J,A,E∗
0 , E∗

1 , E∗
2}.

Equation (3) shows that J can be obtained as a linear combination of A2, A, I and
equation (4) shows that the identity is the sum of {E∗

i }2i=0. ¤

Remark 3.2. It is well known that for the point graph of a generalized quadrangle the
isomorphism class of T (x) is independent on the vertex x, since the group of automor-
phism of the graph Γ acts transitively on X preserving the distance.

Then any automorphism

g : X → X
x → y, induces an isomorphism

Tg : T (x) → T (y).
Mx → My

where My
uv := Mx

g−1ug−1v, for Mx ∈ T (x),My ∈ T (y); u, v ∈ X

and then T (x) ' T (y)
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In view of Lemma 3.1 we consider the products

E∗
i AE∗

j i, j = 0, 1, 2

where A is the adjacency matrix and E∗
i the dual idempotents of definitions 2.3 and 2.6

respectively.

3.1. Block analysis. We will use an order of the set of vertices X that allows us to
analyze the matrices in T (x0) in a convenient way.

Let x0 be a fixed vertex of X. Take

Ω0 = {x0}, Ωi = {y ∈ X | ∂(x0, y) = i}
We consider the matrices in MatX(C) indexed by the blocks Ωi × Ωj .
Just to give examples, we have:

E∗
0 =




x0 Ω1 Ω2

x0 1 0 0
Ω1 0 0 0
Ω2 0 0 0




E∗
1 =




x0 Ω1 Ω2

x0 0 0 0
Ω1 0 I 0
Ω2 0 0 0




E∗
1AE∗

2 =




x0 Ω1 Ω2

x0 0 0 0
Ω1 0 0 A|Ω1×Ω2

Ω2 0 0 0




We will denote
P := A|Ω1×Ω1 Q := A|Ω1×Ω2 S := A|Ω2×Ω2

and Iik := I|Ωi×Ωk
, Jik := J|Ωi×Ωk

, that is the submatrix of I or J of size Ωi × Ωk.

Then A|x0×Ω1 = J01 = (1, ..., 1) and since A is symmetric we have

A|Ω2×Ω1 = Qt, A|Ω1×x0 = J t
01 = (1, ..., 1)t.

Then A looks like:

A =




x0 Ω1 Ω2

x0 0 1...1 0
1

Ω1

... P Q
1

Ω2 0 Qt S




The following lemma gives some descriptions of blocks of A.

Lemma 3.3.
Let Γ = srg(ν, κ, λ, µ) be a srg associated to a generalized quadrangle GQ(k−1, r−1)

(that is the parameters (ν, κ, λ, µ) satisfy equations in (1)). Let Jkl, P, Q, S be defined
as above. Then
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(1) A|x0×Ω1 = J01

(2) J10 = J t
01

(3) |Ω1| = r(k − 1); |Ω2| = (r − 1)(k − 1)2

(4) P is a block of size |Ω1| × |Ω1| with (k − 2) 1′s on each row and column,
(5) Q is a block of size |Ω1| × |Ω2| with (r− 1)(k− 1) 1′s on each row and r 1′s on

each column and
(6) S has size |Ω2| × |Ω2| with r(k − 2) 1′s on each row and column.

Proof.

• (1) holds since by definition of A, the block indexed by x0 × Ω1 is the set of
neighbors of x0.

• (2) holds since A is symmetric.
• (3) holds since |Ω1| = κ (the degree of Γ) and 1 + |Ω1|+ |Ω2| = ν (the number

of vertices of Γ). Parameters κ, ν are given in Equations (1).
• Assertion (4) holds since for a fixed x ∈ Ω1 there are λ = k − 2 neighbors of x

in Ω1.
• On the same way for a fixed x ∈ Ω2 there are µ = r neighbors of x in Ω1 which

implies that Q has r 1’s on each column. The number of 1’s on each row of Q
is |Ω1| − (k − 2)− 1.

• The number of 1’s on each row and column of S is |Ω1| − r.

¤

Remark 3.4. We have already discussed that in order to describe T we should analyze
the products among the matrices in {E∗

i AE∗
j }i,j=0,1,2. That is essentially the products

among the blocks J01, J10, P, Q,Qt and S.

In the following subsections we analyze the structure of each block Ωi×Ωj and finally
we give a basis for each one.

3.2. Ω1 × Ω1-block.
We start giving expressions for some products belonging to the Ω1 × Ω1-block:

{Pn, QQt, PJ11, J11P, J10J01}.
We describe the powers of P .

Lemma 3.5. P satisfies P 2 = (k − 3)P + (k − 2)I11

Proof. The Ω1×Ω1-block has size r(k− 1)× r(k− 1) and P has (k− 2) 1’s on each row
and column. It is indexed by the vertices in Ω1.
It has a one in the (xi, xj) entry if and only if the common neighbors xi, xj of x0 form
an edge of the graph Γ.

As the equation for P does not depend on the order of the vertices of Ω1 we will
consider a special ordering in which P has a simple form.
We label the vertices in the following way: Ω0 = {x0} and l1, l2...lr the r lines passing
through the point x0. We call x1,1, x1,2, ...x1,k−1 the (k−1) points lying on the l1 \{x0};
x2,1, x2,2, ...x2,k−1 the points lying on the l2 \ {x0} and so on.
All the points lying on the same line are collinear points. Then any two of them form
an edge on the point graph of the generalized quadrangle. If we order the vertices of
the Ω1 × Ω1-block with the order of the lines, that is

l1 l2 . . . lr︷ ︸︸ ︷
x1,1, x1,2, ...x1,k−1;

︷ ︸︸ ︷
x2,1, x2,2, ...x2,k−1; . . . ;

︷ ︸︸ ︷
xr,1, xr,2, ...xr,k−1

P has the form:
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P =





J-I 0 ... ... ... 0

0 J-I ... ... ... 0

... ... ... ... ... ...

... ... ... ... ... ...

0 ... ... ... J-I 0

0 ... ... ... 0 J-I





and is not difficult to see that P 2 = (k−3)P +(k−2)I11, which implies the lemma. ¤

Corollary 3.6. The matrices P, I11 and J11 are independent and P 2 depends on P and
I11.

Proof. P, I11 and J11 are independent, otherwise the relation among them should be
P = J11 − I11. But this would imply that the graph is not connected. Since we omit
these cases we have the conclusion. ¤

Lemma 3.7. Using the same ordering as above for Ω1 and any order for Ω2 we have

QQt = (r − 1)(k − 2)I11 − (r − 1)P + (r − 1)J11

J10J01 = r(k − 1)J11

PJ11 = (k − 2)J11

Proof. Equating the Ω1 × Ω1-block of (3) we have

J10J01 + P 2 + QQt + (µ− λ)P + (µ− κ)I11 = µJ11.

Replacing the parameters λ, µ, κ by Equation (1) and P 2 as in the previous lemma, we
get

J11 + (k − 3)P + (k − 2)I11 + QQt + (r − k + 2)P − r(k − 2)I11 = rJ11.

which implies the expression for QQt. The other equations are easy to check. ¤

Proposition 3.8. The products Pn, QQt, J10J01 y PJ11 can be expressed as a linear
combinations of P, I11, J11 and they are linearly independent.

Proof. It follows directly from lemmas 3.5 and 3.7. ¤

3.3. Ω1 × Ω2- block.
Now we give expressions for the products PQ, QS, J11Q, QJ22, J12S

Lemma 3.9. Using the same ordering for Ω1 as in the Lemma 3.5 the following equation
holds:

PQ = J12 −Q

Proof. The Ω1×Ω2 -block has size r(k− 1)× (r− 1)(k− 1)2. From Lemma 3.3, we now
that Q has (r− 1)(k− 1) 1’s on each row and r 1’s on each column. By hypothesis, the
rows of Q are indexed by the vertices of the lines l1, l2, ...lr.
The columns are indexed by the set Ω2 (the vertices which are not neighbors of x0).
Let (xij , y) be an entry of the product PQ where y ∈ Ω2 and xij is the ith vertex of the
line lj . Then

(PQ)(xij ,y) =
r∑

m=1

k−1∑
n=1

P(xij ,xmn)Q(xmn,y).



8 F. LEVSTEIN† AND C. MALDONADO‡

Since P vanishes on the vertices lying on different lines (P(xij ,xkl) = 0 for i 6= k),

(PQ)(xij ,y) =
k−1∑
n=1

P(xij ,xin)Q(xin,y).

Each vertex of Ω2 has exactly one neighbor on the line li (fourth axiom of definition
2.2). Therefore for y ∈ Ω2 there exist a unique xiny

∈ li such that

Q(xij , y) =
{

1 if j = ny

0 if j 6= ny

Then
(PQ)(xij ,y) =

∑k−1
n=1 P(xij ,xin)Q(xin,y)

= P(xij ,xiny )

= (J − I)(xij ,xiny )

=
{

0 if j = ny

1 if j 6= ny

= (J −Q)(xij ,xiny ),

which proves the lemma. ¤

Lemma 3.10. Q and S satisfy:

QS = (r − 1)J12 + (k − 1− r)Q, J11Q = rJ12,
QJ22 = (r − 1)(k − 1)J12, J12S = r(k − 2)J12

Proof. The Ω1 × Ω2-block of identity (3) for A gives PQ + QS + (r − k + 2)Q = rJ12.
Replacing PQ by the result of the lemma 3.9 we have the first equation. For the other
equations, we use that Q has (r − 1)(k − 1) 1′s on each row and r 1′s on each column,
and S has r(k − 2) 1′s on each row and column. ¤

Proposition 3.11. The products PnQ, SnQ, J11Q, QJ22, J12S can be expressed as
linear combinations of Q and J12.

Proof. Using lemmas 3.5 and 3.9 we can prove inductively that PnQ is a linear combi-
nation of Q and J12. On the same way Lemma 3.10 proves inductively the assertion for
SnQ . The other equations were also proved in Lemma 3.10. ¤

3.4. Ω2 × Ω2-block. In the following, we give an expression for Sn, QtQ and J22S.

Lemma 3.12.

QtQ = −S2 + r(k − 2)I22 + (k − 2− r)S + rJ22, SJ22 = r(k − 2)J22(7)

Proof. The Ω2 × Ω2-block of identity (3) for A gives the first equation. The matrix S
has r(k − 2) 1′s on each row and column thus we get the second equation. ¤

Proposition 3.13.

S3 = ((k − 1− r) + (k − 2− r)) S2 + (r(k − 2)− (k − 1− r)(k − 2− r))S

− ((k − 1− r) + r(k − 2)) I22 + (r(r − 1)(k − 2))J22.

Equivalently if we denote

λ1 = k − r − 1, λ2 = k − 2, λ3 = −r,

then S satisfies the equation

(S − λ1I22) (S − λ2I22) (S − λ3I22) = r(r − 1)J22(8)
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Proof. Postmultiplying QtQ given in (3.12) by S we have

QtQS = −S3 + r(k − 2)S + (k − 2− r)S2 + r2(k − 2)J22

Replacing QS by the expression given in the lemma 3.10

Qt ((k − 1− r)Q + (r − 1)J22) = −S3 + r(k − 2)S + (k − 2− r)S2 + r2(k − 2)J22,

S3 = −(k − 1− r)QtQ− r(r − 1)J22 + r(k − 2)S + (k − 2− r)S2 + r2(k − 2)J22.

Replacing QtQ by 3.12 we have the first equation, that is equivalent to

S3 − ((k − 1− r) + (k − 2− r)) S2 − (r(k − 2)− (k − 1− r)(k − 2− r))S

+ ((k − 1− r) + r(k − 2)) I22 = (r(r − 1)(k − 2))J22

¤

At this moment we can not tell whether S2, S, I22 and J22 are independent or not.
In what follows we are going to show that S2 depends on S I22 and J22 if and only if
the parameters of the generalized quadrangle satisfy (k − 1)2 = r − 1.

Corollary 3.14. Denoting

λ0 = r(k − 2), λ1 = k − r − 1,
λ2 = k − 2, λ3 = −r

S satisfies the equation (S − λ0I22) (S − λ1I22) (S − λ2I22) (S − λ3I22) = 0

Proof. By Lemma The Ω2 × Ω2-block has size (r − 1)(k − 1)2 × (r − 1)(k − 1)2. S has
r(k − 2) 1’s on each row and on each column. So we have SJ22 = r(k − 2)J22. Thus, if
we multiply (8) by S − r(k − 2)I22 we have the corollary.

¤

This corollary implies that S has at most four different eigenvalues. We know that
r(k − 2) is an eigenvalue associated to the one dimensional eigenspace generated by
(1, 1, ..., 1). then by Perron-Frobenious Theorem it has multiplicity one.
Let di = dim Vλi , where Vλi is the eigenspace corresponding to λi. We have the following
linear system of equations on d0 and the unknowns: {di}3i=1

trI =
∑3

i=0 di = (r − 1)(k − 1)2,
trS =

∑3
i=0 λidi = 0

and trS2 =
∑3

i=0 λi
2di = r(k − 2)(r − 1)(k − 1)2,

then

trI =
∑3

i=1 di = (r − 1)(k − 1)2 − 1,

trS =
∑3

i=1 λidi = −r(k − 2)
and trS2 =

∑3
i=1 λi

2di = r(k − 2)(r − 1)(k − 1)2 − (r(k − 2))2 ,

with set of solutions

d1 = r(k − 2)
d2 = r(k−1)2(r−2)

(k+r−2)

and d3 = (k−2)(r−1)((k−1)2−(r−1))
(k+r−2) .

As the dimensions are non negative integers we have (k− 1)2 ≥ (r− 1), which is known
as the inequality of D.G. Higman.(page 3 of [12])
In general k+r−2 must divide both (k−2)(r−1)((k−1)2−(r−1)) and r(k−1)2(r−2)
if the parameters correspond to a generalized quadrangle.
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Dimensions {di}3i=1 are always positive integers unless (k−1)2 = r−1, in which case
d3 = 0 and λ3 is not an eigenvalue. Thus we have the following:

Proposition 3.15. S has λ3 = −r as eigenvalue if and only if the parameters r and k
satisfy (k − 1)2 > r − 1.

Proof. It follows by the comments above. ¤

Corollary 3.16. The matrices S, I22, J22 are linearly independent. S2 depends on such
matrices if and only if (k − 1)2 = r − 1

Proof. We have seen in Proposition 3.13 that the vector space generated by {Sn}n≥0

has dimension 3 or 4. This depends on the minimal polynomial of S and we have shown
it has 3 different eigenvalues if and only if (k − 1)2 = r − 1. ¤

Proposition 3.17. The products {QtQ, J22S, {Sn}n≥0} can be expressed as a linear
combinations of S, I22 and J22 , if and only if the parameters r, k of the generalized
quadrangle satisfy (k − 1)2 = r − 1. Otherwise S2, S, I22 and J22 span these products.

Proof. Follows directly from Lemma 3.10 and Corollary 3.16 . ¤

Theorem 3.18. The following spanning set are basis for the corresponding blocks.

{x0} × Ωi = 〈J0i〉 i = 0, 1, 2
Ω1 × Ω1 = 〈{I11, J11, P}〉
Ω1 × Ω2 = 〈{J12, Q}〉
Ω2 × Ω2 = 〈{I22, J22, S}〉 ⇔ (k − 1)2 = r − 1

=
〈{

I22, J22, S, S2
}〉 ⇔ (k − 1)2 6= r − 1

Proof. It follows straightforward from Propositions 3.8, 3.11 and 3.17. ¤

3.5. Basis for T as a vector space.
The previous block-analysis allows to give a basis (as a vector space) of the T -algebra

attached to a GQ(k−1, r−1). Actually we have analyzed the blocks of arbitrary matrices
in T . To be rigorous we should embed each block in MatX(C) . To do this we propose
the following

Definition 3.19. Let B an arbitrary block indexed by the vertices in
{Ωi × Ωj} i, j = 0, ...2. We identify the block B with a matrix ι(B) in MatX(C) in the
following way:

ι(B)xy =
{

Bxy if(x, y) Ωi × Ωj

0 otherwise

Example 3.20. Let B be a block-matrix indexed by Ω2 × Ω1. Then

ι(B) =




x0 Ω1 Ω2

x0 0 0 0
Ω1 0 0 0
Ω2 0 B 0




Proposition 3.21. If the parameters of GQ(k − 1, r − 1) satisfy (k − 1)2 6= r − 1 then

T =
〈{ {ι(Jij)}2i,j=0, {ι(Ijj)}2j=1, ι(P ), ι(Q), ι(Qt), ι(S), ι(S2)

}〉
otherwise

T =
〈{ {ι(Jij)}2i,j=0, {ι(Ijj)}2j=1, ι(P ), ι(Q), ι(Qt), ι(S)

}〉
.

Therefore dim(T ) = 16 or dim(T ) = 15 respectively.
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Proof. By Theorem 3.18 ,the matrices

{ι(Jmn)}2m,n=0, {ι(Imm)}2m=1, ι(P ), ι(Q), ι(Qt), ι(S)

and eventually ι(S2) (when (k− 1)2 6= r− 1) give a basis (as a vector space) of a subal-
gebra of T . This subalgebra contains the adjacency matrix A and the dual idempotents
{E∗

i } since

A = ι(J00) + ι(J10) + ι(J10)t + ι(P ) + ι(Q) + ι(Qt) + ι(S)
E∗

m = ι(Imm).

Therefore it coincides with T . ¤

4. Simple ideals of T
In this section we decompose T as a direct sum of orthogonal simple ideals. We will

guide us by the expression given by Proposition 3.21. There is one ideal present in every
T -algebra: the ideal M linearly generated by {ι(Jmn)}2m,n=0.

Definition 4.1. For m,n = 0, 1, 2 let Mmn ∈ MatX(C) be:

Mmn = 1√
|Ωm||Ωn|

ι(Jmn)

Proposition 4.2. The vector subspace M =
〈{Mmn}2m,n=0

〉
is a simple ideal of T and

M' End(C3).

Proof. It not difficult to prove that

MmnMpq = δnpMmq m, n, p, q = 0, 1, 2

which implies the proposition. ¤

Using standard techniques we compute the following basis for the second ideal.
Let us denote

N11 = 1
k−1 ι ((k − 2)I11 − P ) , N12 = 1

(k−1)
√

(k−1)(r−1)
ι ((k − 1)Q− J12) ,

N21 = N t
12, N22 = 1

(k−1)2(r−1) ι ((k − 1)QtQ− rJ22)

We have the following

Proposition 4.3. The vector subspace N =
〈{Nmn}2m,n=1

〉
is a simple ideal of T

orthogonal to the ideal M and N ' End(C2).

Proof. It not difficult to prove that

NmnNpq = δnpNmq m,n, p, q = 1, 2
MN = 0 ∀ M ∈M, N ∈ N ,

which implies the proposition. ¤

Now we give the expressions for the remaining one-dimensional ideals of T . One can
easily prove the following:

Proposition 4.4. The matrices

P11 = 1
k−1 ι

(
P + I11 − 1

r J11

)

R22 = 1
(r−1)(k−2+r) ι

(
S2 − (k − 1− 2r)S − r(k − 1− r)I22 − rJ22

)

S22 = 1
(k−1)(k−2+r) ι

(
S2 − (2k − r − 3)S + (k − 1− r)(k − 2)I22 − (k−2)(r−1)

(k−1) J22

)
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are idempotents and orthogonal to the ideals M and N .
Moreover, if (k − 1)2 = (r − 1)

R22 = 1
r−1 ι

(
S − (k − 1− r)I22 − 1

k−1J22

)
, S22 = 0

If not, R22 y S22 are linearly independent and orthogonal.
Then P = 〈P11〉,R = 〈R22〉, S = 〈S22〉 are ideals of T , orthogonal among them and
orthogonal to M and to N .

We get directly the following:

Theorem 4.5. Let M,N ,P,R,S ⊆ T be the simple ideals described above.
Then, the T -algebra of a GQ(k − 1, r − 1) has the following decomposition as a direct
sum of orthogonal simple ideals:

T = M⊕N ⊕P ⊕R⊕ S
' End(C3)⊕ End(C2) ⊕ End(C1) ⊕ End(C1) ⊕ End(C1)
⇐⇒ (k − 1)2 6= r − 1

T = M⊕N ⊕P ⊕R
' End(C3)⊕ End(C2) ⊕ End(C1) ⊕ End(C1)
⇐⇒ (k − 1)2 = r − 1

Proof. It follows straightforward from Propositions 4.2, 4.3 and 4.4. ¤

5. Decomposition of CX into irreducible T -submodules

In this section we consider the action of the T -algebra

T × CX −→ CX

(X is the set of vertices of the generalized quadrangle).
We have that

T CX ⊆ CX

and since I ∈ T it holds
T CX = CX .

In the following we give a decomposition of CX into irreducible left T -submodules.

5.1. Isotypic left T -submodules.

Let T = M⊕N ⊕P ⊕R⊕ S
be the decomposition of Theorem 4.5. We can associate to each simple ideal a left
T −submodule in the following way:

{simple ideals of T } : → {
left T -submodules of CX

}
Z → ZCX

They are indeed left T -submodules since by the orthogonality of the simple ideals we
have

T ZCX ⊆ ZCX for any simple ideal Z ∈ {M,N ,P,R,S} .

We call them isotypic T -submodules.
Then the decomposition of CX is :

CX = MCX ⊕NCX ⊕ PCX ⊕RCX ⊕ SCX(9)

SCX = 0 ⇐⇒ (k − 1)2 = r − 1(10)
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5.2. Irreducible left T -submodules.
In this section we decompose each of the left isotypic T -submodules into irreducible

left T -submodules.
To give the needed definitions we use as a guide the simple idealN = {N11, N12, N21, N22}

associated to the left isotypic T -submodule NCX .

The matrices of the basis satisfy

(11) Nij Nkl = δjk Nil i, j, k, l = 1, 2

In particular, {Nii}i=1,2 are idempotents and they have a (not unique) decomposition
as a sum of rk(Nii) projectors of rank one.(Here rk(A) denote rank of A.)

That is, there exist

{N (j)
11 }rk(N11)

j=1 , {N (l)
22 }rk(N22)

l=1 one-rank projectors such that(12)

N11 =
rk(N11)∑

j=1

N
(j)
11 , N22 =

rk(N22)∑

l=1

N
(l)
22 which satisfy(13)

N
(j)
ii N

(k)
ii = δjk N

(j)
ii for i = 1, 2(14)

Remark 5.1. By equation (11) we have for example,

N21 = N21N11 then

N21 =
rk(N11)∑

j=1

N21 N
(j)
11

The remark carries out to define the following subspaces of NCX

Definition 5.2. For i = 1, . . . , rk(N11)

W
N

(i)
11

:=
{

N
(i)
11 v + (N21N

(i)
11 )w v, w ∈ CX ;

}

Then we have:

Proposition 5.3.
For i = 1, . . . , rg(N11); W

N
(i)
11

is an irreducible left T -submodule of dimension 2 and

W
N

(i)
11
' W

N
(j)
11

.

Proof. Equation (9) and the fact that mutually different ideals are orthogonal implies
that W

N
(i)
11
⊆ NCX and that W

N
(i)
11

is a left T -submodule. W
N

(i)
11

is two dimensional

since N
(i)
11 is a one-rank projector ∀ i = 1, . . . , rk(N11).

Therefore given {ej}|X|j=1 the canonical basis of CX , the subspace
〈{

N
(i)
11 ej

}|X|
j=1

〉
has

dimension one as well has
〈{

N21N
(i)
11 ej

}|X|
j=1

〉
, which implies that W

N
(i)
11

has dimension

two.

It is irreducible since if we consider a one dimensional subspace, it should be of the
form {(

αN
(i)
11 + βN21N

(i)
11

)
v; v ∈ CX

}

but the following actions of T would imply

N11 (αN
(i)
11 + βN21N

(i)
11 )CX ⊆ αN

(i)
11 C

X ⇒ β = 0

N22 (αN
(i)
11 + βN21N

(i)
11 ) CX ⊆ βN21N

(i)
11 ⇒ α = 0
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(which is a contradiction since it was a one dimensional subspace.)
It is easy to check that W

N
(i)
11
' W

N
(j)
11

considering the isomorphism:

σN :
(
N

(i)
11 + N21N

(i)
11

)
CX −→

(
N

(j)
11 + N21N

(j)
11

)
CX

N
(i)
11 v + N21N

(i)
11 w −→ N

(j)
11 v + N21N

(j)
11 w

which preserve the action of T . ¤

Proposition 5.4.

NCX =
rk(N11)⊕

j=1

W
N

(j)
11

Proof. We have that
∑rk(N11)

j=1 W
N

(j)
11
⊆ NCX .

Conversely,

N11 CX ⊆ ∑rk(N11)
j=1 W

N
(j)
11

since by equation (13)

N11 CX =
(∑rk(N11)

j=1 N
(j)
11

)
CX ⊆ ∑rk(N11)

j=1 W
N

(j)
11

. Also

N21CX ⊆ ∑rk(N11)
j=1 W

N
(j)
11

, since

N21 CX = N21N11 CX = N21

(∑rk(N11)
j=1 N

(i)
11

)
CX

=
(∑rk(N11)

j=1 N21N
(i)
11

)
CX

=
∑rk(N11)

j=1

(
N21N

(i)
11

)
CX

But we also have N12CX ⊆ ∑rk(N11)
j=1 W

N
(j)
11

, since by equation (9)
N12CX = N12NCX by equation (11)

= N11NCX

= N11CX

Analogously N22CX = N22NCX

= N21NCX

= N21CX .

which implies
∑

j W
N

(j)
11
⊇ NCX and therefore the equality holds.

We will prove that it is a direct sum by comparing

dim




rk(N11)∑

j=1

W
N

(j)
11


 with dimNCX .

We have rk(N11) 2-dimensional subspaces. By equation (14) and by definition of W
N

(j)
11

given in 5.2; it follows that

rk(N11)∑

j=1

dimW
N

(j)
11

= 2 rk(N11) = 2 tr(N11) = 2 r(k − 2).
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On the other hand, we obtain the dimension of NCX , computing the rank of the pro-
jection

N : CX → NCX

N = N11 + N22 which has the form

=




0 0 0
0 ((k−2)I11−P )

k−1 0

0 0 ((k−1)QtQ−rJ22)
(k−1)2(r−1)


 .

It is easy to check that
rk(N) = tr(N)

= tr
(

((k−2)I11−P )
k−1

)
+ tr

(
((k−1)QtQ−rJ22)

(k−1)2(r−1)

)

by Lemmas 3.3 and 3.5 = k−2
k−1 |Ω1|+ (k−1)r−r

(k−1)2(r−1) |Ω2|

= k−2
k−1r(k − 1) + (k − 2)r

= 2r(k − 2)

¤

Analogously we can decompose the other isotypic left T -submodules. Considering
the matrices Mij , P11, R22, S22 we define (the same way as for W

N
(i)
11

),

Definition 5.5.

WM00 :=
{
M00u + M10M00v + M20M00w u, v, w ∈ CX

}

W
P

(i)
11

:=
{

P
(i)
11 u u ∈ CX , i = 1, . . . , rk(P11)

}

W
R

(i)
22

:=
{

R
(i)
22 u u ∈ CX , i = 1, . . . , rk(R22)

}

W
S

(i)
22

:=
{

S
(i)
22 u u ∈ CX , i = 1, . . . , rk(S22)

}

Then we have the following

Theorem 5.6.

CX = WM00 ⊕r(k−2)
j=1 W

N
(j)
11
⊕r−1

j=1 W
P

(j)
11
⊕dR

j=1 W
R

(j)
22
⊕dS

j=1 W
S

(j)
22

and

MCX = WM00 where WM00 is an irreducible left T -module of dimension 3

PCX = ⊕r−1
j=1 W

P
(j)
11

where WP j
11

are irreducible left T -modules of dimension 1

RCX = ⊕dR
j=1 W

R
(j)
22

where W
R

(j)
22

are irreducible left T -modules of dimension 1

SCX = ⊕dS
j=1 W

S
(j)
22

where W
S

(j)
22

are irreducible left T -modules of dimension 1

where

dR = r(r−2)(k−1)2

(k−2+r) , dS =
(r−1)(k−2)((k−1)2−(r−1))

(k−2+r)

and

rk(M00) = 1, rk(P11) = (r − 1), rk(R22) = dR , rk(S22) = dS
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Proof. The proof is analogous to the one given for the decomposition of NCX .
The number of irreducible left T -submodules that appear on each decomposition de-
pends on the rank of the projections to corresponding isotypic leftT -submodule:

M : CX → MCX

M = M00 + M11 + M22

=




1 0 0
0 J11√

|Ω1||Ω1|
0

0 0 J22√
|Ω2||Ω2|


 .

P : CX → PCX P := P11

R : CX → RCX R := R22

S : CX → SCX S := S22

From the definition of such matrices, and computing its trace, we get the correspond-
ing ranks. ¤
Corollary 5.7.

k (1 + (k − 1)(r − 1)) = 3 + 2r(k − 2) + r − 1 + r(r−2)(k−1)2

(k−2+r) +
(r−1)(k−2)((k−1)2−(r−1))

(k−2+r)

Proof. One can get the equation by computing the dimensions of the decomposition
given in Theorem 5.6. ¤

Remark 5.8. In subsections 5.1 , 5.2 we can exchange ”left” by ”right” considering
the action of the T -algebra

CX × T −→ CX

that gives
CX T = CX
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