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ABSTRACT

In major rivers with extensive floodplains, the exchanges 
between the main channel and the floodplain are the main 

force that organizes the structure and maintains the stabil-
ity of the landscape. The time period of flooded soil at each 
point on the floodplain indicates the extent of connectivity 
of each landscape with the river’s main channel. However, 
not all populations and organisms and river processes are 
stimulated (or limited) by these pulse characteristics in the 
same way. Pulse attributes are synthesized with the function 
FITRAS, an acronym for Frequency, Intensity, Tension (or 
Stress), Regularity (or Recurrence), Amplitude and Sea-
sonality. Hydrological variability in a time series is repre-
sented by the curve visualized as a sinusoidal function, and 
the overflow level defines the connectivity of each site by 
assigning the values of the historical series as “positive” to 
those that exceed the reference level, and “negative” to the 
records that are below that overflow line. In this contribu-
tion, we provide a discussion of processes related to pulse 
attributes and a simple procedure for assessing ecohydro-
logical connectivity in river floodplains using the Pulso 
software, as well as complementary tools for assessing the 
predictability of cyclical components of the hydrograph and 
their relationship to vegetation distribution.

INTRODUCTION
The importance of connectivity in maintaining regional 
stability of terrestrial ecosystems has been a concern since 
the late 1980s and more recently for large rivers with 
floodplains. In these rivers (predominantly horizontal flow 

systems) the connectivity between the river channel and the 
floodplain is the main force that organizes the structure and 
maintains the stability of the landscape (Conner et al. 1981; 
Conner and Day 1988; Amoros and Roux 1988; Hughes 
1988; 1990; Junk et al. 1989; Neiff 1990; Ward 1997; 
Amoros and Roux 1988; Tockner et al. 1998; Schwarzbold 
2000; Pringle 2001; Amoros and Bornette 2002; Neiff and 
Poi de Neiff 2003; Wiens 2002, 2009; Junk and Wantzen, 
2004; Cruz et al. 2010). As early as the beginning of the 
field of limnology (the scientific study of lakes and fresh 
water), Forbes, i n his 1887 article “The lake as a micro-
cosm” stated that the quantity and variety of animal species 
in river floodplain lakes depended mainly on the “frequen-
cy, extent and duration of overflows” and added that “the 
flexible system of organic life adapts itself, without injury, 
to widely and rapidly fluctuating conditions” (Forbes 1887).

While connectivity in terrestrial landscapes can be in-
terpreted as the degree of continuity or proximity of patches 
in the landscape (structural connectivity) or as a measure 
of how the kind of elements and spatial configuration affect 
the movement of organisms between patches (Taylor et 
al. 2006), in floodplain rivers it is related to the horizontal 
movements of water from the main channel to floodplain 
and vice versa.

The concept of connectivity emerged from landscape 
ecology and was introduced into river ecology to describe 
the lateral connections in large rivers (Amoros and Roux 
1988). However it has been tacitly recognized as a funda-
mental process in river dynamics since the middle of the 
last century (Arenas-Ibarra and Souza Filho 2010). Ac-
cording to Ward and Stanford (1995a,b), connectivity acts 
interactively in one temporal dimension (time scales) and 
three spatial dimensions: longitudinal (headwater-mouth), 
lateral (main channel/floodplain) and vertical (fluvial chan-
nel/groundwater); with the concept being defined as the 
transfer of energy and matter across the river landscape via 
the water environment (Ward et al. 2002) or the transfer of 
matter, energy and/or organisms within or between ele-
ments of the hydrological cycle by means of water (Pringle 
2001, 2003).

Attempts to assess the influence of connectivity on 
river dynamics have been related to: 1) distance from the 
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main channel (Amoros and Roux 1989; Ward and Stanford 
1995b), 2) water body characteristics and type of connec-
tion (Bornette et al. 1998; Agostinho et al. 2001; Arenas-
Ibarra et al. 2012), 3) time gradient of the connection 
(Amoros 2001; Okada et al. 2003), 4) relative proportion 
of the upstream surface connection (Ward et al. 2002), or 
5) different time phases reflecting a type of connection and 
discharges (Tockner et al. 2000). Whol (2017) references 
16 different concepts of connectivity in the scientific lit-
erature. Obviously, the various theoretical attempts lead to 
different conclusions, although together they highlight and 
demonstrate the importance of connectivity in structuring 
and supporting biodiversity in rivers.

Biogeochemical processes (Tabacchi et al. 1998), 
diversity in riverine wetlands (Worbes 1985; Budke et al. 
2010; Assis and Wittmann 2011; Marchetti and Aceñolaza 
2012), and productivity, decomposition and distribution of 
trees in riverine forests (Brinson 1990; Mitsch and Gosse-
link 1993; Neiff 2001; Cruz 2005; Neiff et al. 2006; Poi de 
Neiff et al. 2006; Casco et al. 2010; Marchetti and Aceñola-
za 2012; Casco and Neiff 2013; Casco et al. 2015; Balestrin 
et al. 2019) are influenced by ecohydrological connectiv-
ity.  Consequently, they all may be affected by hydrological 
regulation, although difficulties have been noted in assess-
ing them (Furness and Breen 1980; Hughes 1990). 

In projects such as landscape restoration in areas af-
fected by hydroelectric dams, it is necessary to have a 
quantitative understanding of the distribution of vegetation 
in relation to the dynamics of pulses and levels of connec-
tivity (Casco et al. 2010; Casco and Neiff, 2011; Marchetti 
and Aceñolaza 2012; Neiff et al. 2020). It is also essential 
to know the temporal and spatial conditioning associated 
with the alternation of periods of flooded soil - potamo-
phase and periods of emerged soil – limnophase (Neiff 
1990), because adaptations to both phases are different in 
each species, in each assembly, and also in each phase of 
the organism’s development. Most processes occurring in 
wetlands have a positive or negative relationship with the 
pulse regime (Neiff 1996; Neiff et al. 2020). This contribu-
tion, based on the concept of river connectivity, examines 
a simple procedure for establishing the periods when each 
landscape or population on the floodplain remains con-
nected (or disconnected) to the river flow and provides an 
example of its application. 

ECOHYDROLOGICAL PULSE
The pulse regime in rivers is the repetition of pulses over a 
time series (annual, decades, and centuries). Each pulse has 
two complementary phases (potamophase and limnophase) 
whose dynamics are characterized by properties that vary 
at each site on the floodplain (Neiff 1990; Dawidek and 

Ferencz 2016). In other words, each pulse is defined as the 
time between the beginning of the flooding and the end of 
the isolated phase for each topographic site on the flood-
plain, from the overflow level (a threshold established by 
the researcher; Neiff 1996). That level is a reference value 
recorded from the nearest river gauge station which records 
height or streamflow, for example, over time.  Consequent-
ly there is a series of hydrological records that can be used 
to assess seasonal and annual changes over time. Such data 
pertain only to sites influenced by river flows.

When the river flow exceeds the hydraulic capacity of 
the channel, it overflows, covering the land on a floodplain. 
This scenario is taken as the connectivity level for that topo-
graphical position. The operator will repeat this measure-
ment for “n” sites in the study area where he or she wants to 
evaluate the connectivity with the river course, such as where 
trees of “species A” (for a population analysis) are found, or 
where landscape “X” is different from landscape “Z” (if the 
aim is to explain possible causes of the landscape pattern). 
Also, another application is to determine the topographic 
level where active flux of river water to the floodplain begins 
through a crevasse splay (Cremon et al. 2010).

The phase of the pulse in which the reference site 
meets the flooded soil is called the potamophase and the 
horizontal flows occur from and to the course of the river. 
When the water level drops and that reference site is iso-
lated from the river course, the limnophase (emerged soil) 
begins, a period without exchanges (nutrients, sediments, 
seeds, eggs) with the river. From that moment on, the local 
water conditions of the site, in the absence of local rainfall, 
will vary from the condition of soil saturation (field capac-
ity), through a progressive decline of the water table until 
the soil eventually reaching wilting point. In the classical 
wetland literature, the seasonal pattern of the water level is 
referred to as the hydroperiod (Mitsch and Gosselink 1993).

The ecohydrological attributes of the pulses can be 
represented by the acronym FITRAS which stands for 
Frequency, Intensity, Tension (or Stress), Regularity (or 
Recurrence), Amplitude and Seasonality (Neiff 1990; 
Neiff et al. 1994; Neiff 1999). The curve representing the 
hydrological variability in a time series is visualized as a 
sinusoidal form with the overflow level being the refer-
ence elevation that defines the connectivity of each site. 
“Positive” values for a site are those that exceed the refer-
ence level, and “negative” ones are those below that line 
(Figure 1). A pulse consists of the flood and drawdown, 
ending when the next overflow starts. Frequency is de-
fined as the number of pulses per time unit for each level 
of connectivity in the hydrographic series considered. 
Intensity is the level of water above the soil measured 
by comparison with the nearest river gauge expressed 
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in meters. Tension is the value of the standard deviation 
of the maximum and minimum means in the analyzed 
hydrological series. Regularity is the number of times 
each level of connectivity is repeated over time. Seasonal-
ity indicates at what time each phase occurs (Neiff 2001). 
Amplitude represents the duration, in days, of each phase 
of the pulse. 

Quantitative relationships between ecological charac-
teristics (e.g., species richness, abundance, and diversity) at 
each level of floodplain connectivity can be linked to the up-
stream or downstream duration of each area of the landscape 
using Pulso software (Neiff and Neiff 2004; https://neiff.com.
ar/) which allows the correlation of hydrological fluctuation 
with the biological characteristics of the landscape, e.g., the 
distribution of vegetation patterns relative to flooding (Figure 
2). With this objective, Neiff and Poi de Neiff (2003) pro-
posed the Fluvial Connectivity Quotient (FCQ):

FCQ = FD/LD
where FD = number of days in potamophase and LD = 

number of days in limnophase.
Pulso version 2.0 has a frequency estimation function 

(Prism) that uses genetic algorithms to decompose the fre-
quencies that make up a series to complete an incomplete 
series of hydrological data, as well as to anticipate a future 

trend based on available historical information. We have a 
simple way to evaluate the ecohydrological connectivity in 
wetlands, using the Pulso software. Although this applica-
tion was developed for floodplains of large rivers, it can be 
used in coastal wetlands (such as mangroves), lagoons, and 
lakes formed by groundwater rises or to study the organ-
isms that live in the area of fluctuation of lakes and ponds 
or in the intertidal zone of the sea as long as there is record-
ed hydrologic data available from a nearby gauging station. 
The procedure has been used to study the dynamics of the 
plankton (Frutos et al. 2006), periphyton (Rodrigues et al. 
2008), fish populations (Fernandes et al. 2009; Neiff et al. 
2009), and the process of formation of the islands and the 
texture of the soils that compose them (Neiff et al. 2005), 
since it is possible to process flow values and thus analyze 
any process that varies over time according to a sinusoidal 
function (e.g., rainfall). It is also very useful for ex-post 
environmental evaluation of structural interventions on the 
river such as dams, course straightening, or marginal dikes 
(Neiff et al. 2020), such as to reveal effects of those structures 
on the hydrological connectivity (Arenas-Ibarra 2008).

In addition to the properties of the pulse regime that 
are characterized in the FITRAS function, Cruz (2005) 
proposed the analysis of the predictability of different 

FIGURE 1. Graphic representation of the ecohydrological Pulse for a site containing willow tree (Salix humboldtiana). Potamophase represents the 
flooding period, while the limnophase is the drying period. In this example, two flood pulses are shown. (Modified from Casco 2003)

https://neiff.com.ar/
https://neiff.com.ar/
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periodic components of the hydrograph and their relation-
ship with the distribution of the functional characteristics 
of the plants (for example: growth form (solitary, rosette, 
caespitose); plant slope (prostrate, semierect, erect); type 
of leaves (membranous, herbaceous, other); waxiness in 
the leaves (Yes, No); glands on the leaves (Yes, No); type 
of stem (herbaceous, woody); stem with inter-nodes (Yes, 
No) along the flood profile of a river section. Cruz devel-
oped the application (FFTSint) to filter the most predictable 
components of the time series, allowing the degreeof pre-
dictability of each pulse to be identified. He assumes that 
the more predictable pulses, with more recurrence, favor 
the adaptation processes, while the less predictable ones 
provoke succession and regression processes (Cruz 2005; 
Cruz et al. 2015). This complementary approach can be 
used to compare functional diversity, in applications related 
to prescription of ecological flow regimes and for restora-
tion of riparian vegetation (Cruz 2005; Silveira et al. 2006; 
Silveira et al. 2009; Cruz et al. 2010; Balestrin et al. 2019).

THE METHOD AND AN EXAMPLE OF ITS 
APPLICATION 
The proposed method will be described using Argentina’s 
Lower Paraná as an example. Before describing the method 
let us introduce the study area.
Study Area
The Paraná River below the confluence with Paraguay River 
has distinguishing features: the west bank has suspended 
solids from the Bermejo River, a tributary of the Paraguay 
River, and the east bank is influenced by the transparent 
water of the Upper Paraná River. The main channel has a 

braided design (Orfeo 1995) and the floodplain of stretches 
over 8 km on the west bank, with more islands than the east.

The landscape units (lakes, forests, marshlands) of 
floodplain are distributed in different levels of connectivity 
with the river main channel (Figure 3). Salix humboldtiana 
(willow) forests whose seeds are provided mainly by the 
river and colonize the sandbanks, constitute monotypic 
stands that have a wide distribution in the topographic 
gradient (Figure 3 B).          

We propose an example of Pulso application during the 
hydrological series 1970-2020 with extraordinary high and 
low water phases (El Niño/La Niña events), to determine 
when adults trees of willow forest located at 2 m in the 
topographic gradient colonized that site, how long the soil 
was covered or uncovered with water and how many flood 
events occurred since the willow forest established.
The Method 
The method uses different scales of analysis involving four 
stages 1) laboratory analysis, 2) field investigations, 3) data 
analysis, and 4) study findings. 

Stage 1. Laboratory Analysis. Landscape features are 
defined by examining satellite images at an appropriate 
scale. For the Lower Paraná we are using maps of 1:10000 
to 1:30000 scale derived from satellite images with spatial 
resolutions of 30, 20 or 15 m (e.g., Landsat TM5, ETM7, 
CBERS 2, 2B, 4, Resourcesat-1, Resourcesat-2 or As-
ter) for the floodplain of the Paraná River to establish the 
survey sites for field sampling. A false color composition 
R(4)G(3)B(2) or R(5)G(6)V(2) could be useful for recog-
nition of landscape features (Ponzoni et al. 2012). Also, 

 

2 m 

A 

C 
5 m 

B 

3 m 

FIGURE 3. Study sites: A - floodplain lake, B - willow gallery forest, and C - 
mixed gallery forest. Image below shows a willow forest of Lower Paraná. 

FIGURE 2. Paraná River floodplain showing hydrograms of study sites from 
various time periods: A - floodplain lake (January 1997-December 1999), 
B - willow gallery forest (January 1979- December 1999), and C - mixed 
gallery forest (January 1949-December 1999). Note that the horizontal line 
represents the elevation at which overflow occurs.
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SAR products and UAV images could be used to accurately 
discrimination of wet soil and vegetation (Plank et al. 
2017; Van Iersel et al. 2018). For these types of projects, 
one could use a variety of technological tools and image 
processing software, whatever is available. In fact, we 
have also used only the images of Google Earth-Pro with 
good results, identifying different landscape units (forests, 
marshlands, and lakes) that are readily observed at study 
area (Figure 3).

Stage 2. Field Investigations. In this stage, the topo-
graphical position of the survey sites is established and the 
biological information at each site is recorded. For example, 
we identify the species that make up the landscape unit, the 
strata that are present, the diameter at breast height (DBH) 
and the height of the trees, the separation between them, or 
for grasses, their biomass based on small plot sampling.

In high water, when the river overflows the floodplain, 
sites must be accessed by boat (e.g., 3-5m in length). The 
topographic position of each site is established by measur-
ing water depth in several ways. The simple way is to drop 
a plumb into the water and when it hits bottom, record the 
depth. We use a 200g metal disc (Figure 4), located at the 
end of a thin cord that is graduated every 10 cm. Alterna-
tively, when possible, an echo sounder with built-in GPS 
should be used; this provides the most accurate depth and 
geographical position information. If a highly accurate 
diagnosis is required for each site, the thickness of the 
water sheet is measured through the same process. Detailed 
bed topography could also be obtained with an Acoustic 
Doppler Current Profilers (ADCP) river profiler, Light De-
tection And Ranging (LiDAR) images, Unmanned Aerial 
Vehicle Laser Scanning (UAV), Synthetic Aperture Radar 
(SAR) topographic models or a combination of ADCP and 
Digital Elevation Model (DEM) products (Straatsma 2009; 
Guerrero and Lamberti 2013; Rudorff et al. 2014; Cao et 
al. 2018; Resop et al. 2019). These measurements are then 
related in the laboratory to the level of the river at the near-
est hydrometric station. 

 We also establish elevations on the islands that are 
inundated at different frequencies, thereby establishing 
connectivity between the river course and the floodplain. 
This connectivity can take place in two ways: 1) where the 
islands have inland courses that remain connected to the 
main course even in low water and the connection is made 
by crevasses that allow flow from the river to the plain, 
and 2) where the inflow is produced by lateral overflow 
(laminar, or not) on the islands. In the first case, the connec-
tivity was defined determining the date for initial connection to 
the river in relation to the water level of the Paraná River in the 
gauge located near the study site. In the second situation, the 
procedures are illustrated by the example in willow forest 

at Lower Paraná. 
An individual willow tree on Chouí island (Figure 3) 

that has the soil covered by a two-meter water column, 
in the field, was noted as -2m, which is the depth of the 
ground surface with respect to the current level of the water 
sheet at that site. This is calibrated to current reading at the 
nearest hydrometer (at Corrientes city) which reads 5m on 
January 26, 1998. So, the zero position of the hydrometer 
at that point is 3m. That is, whenever the river is above 3m 
on the hydrometric ruler in the historical data series, the 
ground at our sample location should have been covered 
by water (Figure 5). The 3m value is the reference level or 
“overflow level” that will be used to obtain the attributes 
of the ecohydrological pulse, using the Pulso software. If 
the objective is to relate the topographic position to the sea 
level, we use the zero position of the hydrometer at Cor-
rientes city, which is known to be 44.57 m.a.s.l. (meters 
above sea level) and add the 3m from our current readings 
for a level of 47.57 m.a.s.l. for the site-example. 

While it is desirable to conduct the survey during the 
flood phase in order to save effort and time in accessing 

FIGURE 4. Measurement of the topographical position of a floodplain point 
during high water (left picture) with a metal disc ("scandal"), placed at the 
end of a thin cord which is graduated every 10 cm (right picture).
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floodplain sites, the procedure 
can also be applied when the 
river is at low water using other 
technological resources (Mar-
chetti and Aceñolaza 2012; 
Stevaux et al. 2013). Topo-
graphic data could be taken from 
LIDAR or SAR images (Yuan et 
al. 2017; Lague and Feldmann 
2020) and DEM (Tandem-X, 
ALOS World 3D30, SRTM, As-
ter G-DEM), corrected by some 
geoprocessing tools that increase 
its vertical resolution (Shastry 
and Durand 2019; Mudd 2020). 
AUV DEM is another good 
source of topographic data in 
small areas (Woodget et al. 
2017; Annis et al. 2020). 

In sampling during the limno-
phase (low water), since the sites 
are emergent (not flooded soil) in 
this period all topographic mea-
surements will be positive. For example, for the willow for-
est, which is located at 3m in the topographic gradient and 
the Paraná River level in nearest hydrometer (in Corrientes 
city) has a reading of 2m on October 6, 1999 the estimation 
would be: 

2m (near hydrometer)+3m (place) = 5m from the hy-
drometer. Every time when the water marks over 5m on the 
hydrometer, the water will be covering the soil where this 
willow forest are growing.

Pulso will divide the series of historical hydrometric 
data into two groups: those above 3m will be recorded as 
“potamophase” (flooded soil) and those below 3m as “lim-
nophase” (emergent soil) for that point where willow forest 
is located.

Stage 3. Data analysis. In the laboratory, the daily hydro-
metric data are analyzed over a time series. In our example we 
take the period 1970-2020 at Corrientes gauge, because we 
know that the willow trees are 30-50 years old. It is important 
to filter the information to ensure the right notation, integrity 
and reliability of the series. When only incomplete series are 
available, we should previously try to complete the series 
using the Prism module included in the Pulso 2.0 application. 
The next step is to calculate the frequency, amplitude (such 
as number of flooding days and number of days of emergent 
soil) and seasonality for each site. In our example, for the 3m 
overflow level of willow trees, the attributes of the hydrosedi-
mentological pulse for the years 1998-1999 of the hydrologi-
cal series considered are shown in Figure 1.

Stage 4. Study Findings. With the pulse analysis, we 
can obtain information about the connectivity of our object 
of study with the course of the river.

The willow tree used as in our example was connected 
to the course of the Paraná River for 6,422 days (1979-
1999), receiving 52 pulses and a FCQ of 7.26 (Table 1).

Figure 6 shows the seasonality with which the flooding 
and emergent soil phases occurred, as a frequency histo-
gram. In ordinary phases, potamophases are more frequent 
in spring-summer and limnophases in autumn-winter. Be-
cause three “El Niño” events were recorded during 1979-
1999 (1982/1983, 1992 and 1998), for willow forest, there 
was a higher frequency of potamophases (Figure 6 B).

The time period analyzed in the example comprises 
a multi-year series corresponding to the approximate life 
span of the willow trees in the landscape. However, for the 
study of populations with a high rate of change (plankton, 
periphyton), the length of the hydrological series analyzed 
can be annual or seasonal. As a synthesis, the sequence of 
tasks is presented in Figure 7.

Geographical distance from the river may not always 
predict connectivity because disparities in floodplain slopes 
whereas hydrologic distance (topographic position) appears 
a good predictor of connectivity. 

In a sector of the Lower Paraná River floodplain the oxbow 
lakes that were more connected during high water (Sites 1, 
2 and 3 in Figure 8) showed higher values of fish density 
and species richness than sites less connected (Neiff et 
al 2009), although site 1 is the most distant of the Paraná 

FIGURE 5. Hydrometric fluctuation of the Paraná River at Corrientes gauge during last 50 years. 
The solid horizontal line represent the overflow of floodplain where willow forest growth that was 
mentioned as an example. 
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River (Figure 8). Sites 2 and 3 are near the Paraná River 
but separated by alluvial levees occupied by gallery forest 
and has indirect connection. Other work carried out on the 
floodplain of large river such as the Missisippi (Miranda 
2005), the Volga (van de Wolfshaar et al. 2011) and the Bug 
River (Dawideck and Ferencz 2016) have highlighted the 
importance of considering the slope.

RESULTS FOR THE PARANA RIVER FLOODPLAIN 
We compared the ecological attributes of willow forest (B) 
with other landscape units, floodplain lake (A) and a mixed 
gallery forest (C), that occur in different topographic posi-
tions on the floodplain: 2 m and 5 m, respectively (Figure 2).

Hydrographs were prepared using the Pulso software 
for period January 1997-December 1999 to analyze the 
floodplain lake; between January 1979 and December 1999, 
for willow forest, and between January 1949 and December 
1999 for the mixed gallery forest (Figure 2). 

The floodplain lake was connected with the main 
channel during 1086 days, with a lower pulse frequency 
(6), highest FCQ (120.66) and more frequency of potamo-
phases than the other landscape units (Table 1, Figure 6 A). 
The forests receiving between 52 (willow) and 126 pulses 
(mixed gallery) and the number of days with emerged soils 
was more in mixed gallery forest (Table 1).

The frequencies of limnophases were the highest dur-
ing the whole period (1949-1999) in the mixed gallery for-
est (Figure 6 C), while potamophases were more frequent 
in summer (Figure 6 C).

In the Lower Paraná, topographic position is an indicator 
along the complex gradient of floodplain, of the flood/drought 
periods and the resilience of trees to extreme hydrological 
phases. Because of disparities in the slopes of the study flood-
plain, topographic position of each site rather than distances 
from the river indicated the connectivity of each sites.

TABLE 1. Ecohydrological connectivity of floodplain lake, willow forest and mixed gallery forest, during January 1997-December 1999; January 1979-De-
cember 1999 and January 1949-December 1999, respectively and pulse's attribute obtained with Pulso software. FCQ = FD/LD. where FD = number of 
days in potamophase and LD = number of days in limnophase.

FIGURE 6. Histogram of frequencies of seasonality of potamophase (black 
bars) and limnophase (grey bars) for each landscape unit: A - floodplain 
lake, B - willow forest, and C - mixed gallery forest.
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FINAL REMARKS
The approach presented here extends the 
scope that is traditionally used to char-
acterize river ecohydrological dynamics, 
which focuses on the main river course 
and its low, medium, high and extreme 
flows in a time series (Richter et al. 
2003). With the methodology presented, 
it is possible to obtain the ecohydrologi-
cal dynamics of different sectors of the 
alluvial plain and verify the dynamics 
of their connectivity over time, associ-
ating them with biotic variables such 
as species richness, distribution and 
abundance of populations, life forms, 
biomass and other characteristics of the 
biotic arrangement of both the aquatic 
media and the floodplain landscape. 
Theoretically, the procedure is useful to 
establish the age of each sedimentary 
stratum or the age of the trees in each 
location of the floodplain.

FIGURE 7. Summary of proposed procedure for measuring connectivity in river plains. HW - High 
water (potamophase), LW - Low water (limnophase), and DBH –Diameter at breast height.

FIGURE 8. Floodplain of the Paraná River downstream of the confluence with Paraguay River. The sites were connected to the river above different hydro-
metric levels measured in the in the gauge located near the study sites Scored from 1 to 7 indicated the decreasing order in connectivity according the 
number of days in which sites were connected to the river channel. 1 = 3.8 m, 2 = 4.2 m, 3 = 4.8 m,  4 = 5.2 m, 5 = 5.4 m, and 6 and 7 = 5.6 m. (Adapted 
from Neiff et al. 2009)
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The assessment of the connectivity of the floodplain el-
ements with the river flow is the basis for comparing spatial 
differences and temporal variability. However, its analysis 
should be taken as an approximation to the knowledge of 
the influence of horizontal flows from/to the river course in 
a wide environment of variability.

According to Burel and Baudry (2002), landscapes, as 
self-organizing systems, have a time delay in their adaptive 
response, such that there is always an asynchrony between 
the moment of perturbation and the moment of the adap-
tive response. This asynchrony results in the imbalance that 
maintains the potential energy of self-organization. The 
identification of the pulse patterns and their relationship 
with the landscape structure must be analyzed taking into 
account the possibility of this delay and also the possibil-
ity of non-stationarity in the hydrograph. Carvalho (2020), 
through wavelet analysis and the KPSS non-stationarity 
test, found no stationary segments for more than three years 
and that 99% of the time the stationary segments are less 
than two weeks, for a historical series of 71 years (Station 
87440000 - Passo das Canoas, Gravataí River Watershed, 
RS, Brazil). The incorporation of non-stationary and self-
organized dynamics in the analysis of ecohydrological 
pulses are challenges that arise for the future development 
of large rivers of South America and other rivers (Dawidek 
and Ferencz 2016). n
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