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Abstract

This work deals with the definability problem by quantifier-free first-order formulas over a finite algebraic
structure. We show the problem to be coNP-complete and present a decision algorithm based on a semantical
characterization of definable relations as those preserved by isomorphisms of substructures. Our approach
also includes the design of an algorithm that computes the isomorphism type of a tuple in a finite algebraic
structure. Proofs of soundness and completeness of the algorithms are presented, as well as empirical tests
assessing their performances.
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1 Introduction

Given a logic L, a model-theoretic semantics for L is a function that assigns to each
formula ϕ of L and each structure A for L a set of tuples from the domain of A.
This set of tuples is called the extension of ϕ in A, and we usually think of these
tuples as the interpretations that make ϕ true in A, though it also makes sense
to think of them as the ones singled out, or named, by the properties expressed in
ϕ. Various fundamental computational problems arise from this setting, of which
surely the most prominent one is the satisfiability problem for L, that for a given
formula ϕ from L asks whether there is model A such that the extension of ϕ in A is
non-empty. The model-checking problem for L, which consists in computing, given
a model A and a formula ϕ, the extension of ϕ in A, has also played an important
role in computational logic. A third fundamental problem, the one that concerns us
in this article, is the definability problem for L, which given a finite model A and a
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set R of tuples from A asks whether there is a formula ϕ such that the extension of
ϕ in A agrees with R. This problem has been studied for several logics, due to its
fundamental nature and its applications, for example to the Theory of Databases
[11] and in the Generation of Referral Expressions [10,4,3]. The computational
complexity of the definability problem has also been investigated for various logics.
The article [9] investigates the definability problem for classical propositional logic
under the name of inverse satisfiability, proving it is complete for coNP in the general
case. They also characterize for which special syntactical cases the problem lies in
P. It is proved in [5] that the definability problem is GI-complete (under Turing
reductions) for first-order logic. For the primitive positive fragment of first-order
logic the definability problem is coNEXPTIME-complete [12], and for basic modal
logic [4] and some of its fragments [3] it is in P. In the article [1], it is shown that for
the quantifier-free fragment of first-order logic with a purely relational vocabulary
the definability problem is coNP-complete, and in the same article a parameterized
version of the problem is proved to be complete for the complexity class W[1].

To illustrate the concept of definability let us look at an example. Let D =

〈{⊥,�, u, u′},∧,∨〉 be the lattice depicted below, and let R = {(a, b) ∈ D2 : a ≤ b}.

⊥

u′u

�

Figure 1. The lattice D

We want to know if R is quantifier-free definable in D. That is, if there exists
a quantifier-free formula ϕ(x, y), in the vocabulary of D, such that R = {(a, b) ∈
D2 : D � ϕ(a, b)}. It is easy to see that the formula ϕ(x, y) := (x ∨ y) = y

works. Next, consider the relation R′ = {(⊥, u), (⊥, u′), (⊥,�)}; is it quantifier-free
definable in D? The answer is no, and here is why. Note that the map γ : {⊥,�} →
{u,�} is an isomorphism between sublattices of D, and quantifier free formulas are
preserved by such maps. That is, if ϕ(x, y) is quantifier free and D � ϕ(a, b), then
D � ϕ(γa, γb). Thus, for any structure, every relation definable by a quantifier-free
formula is preserved by isomorphisms between substructures (we call these maps
subisomorphisms). Returning to our example, we can see that (⊥,�) ∈ R′ but
(γ⊥, γ�) /∈ R′, so R′ is not preseved by γ, and thus it is not quantifier-free definable
in D. Interestingly, the converse of this criterion holds for finite structures; i.e., if
a A is a finite structure, then a relation R ⊆ Ak is quantifier-free definable in A if
and only if R is preserved by all subisomorphisms of A (see Theorem 2.1 below).

This characterization of quantifier-free definable relations is applied in [2] to
obtain an algorithm that decides the definability problem for the quantifier-free
fragment of first-order logic with a purely relational vocabulary (called the open-
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definability problem in [2]). In the current note, which continues and complements
the work in [2], we develop an algorithm based on the same semantical character-
ization but for algebraic vocabularies (i.e., without relation symbols). It is worth
noting that in fragments of first-order logic that allow quantification, the relational
and algebraic definability problems collapse, since, at the expense of introducing
quantifiers, every formula can be effectively transformed into an equivalent one
which is unnested. However, in the quantifier-free case the problems are not the
same and require different algorithmic strategies. The main difference lies in the
fact that computing the isomorphisms between substructures of a structure in the
algebraic case, requires computing the subuniverses of the structure. The approach
of our algorithm to decide definability in this article is based on the observation that
computing the subuniverse generated by (the elements of) a tuple ā in a structure
A is not far off from computing the isomorphism type of ā in a A (see Section 4).

In addition to presenting the above mentioned algorithm, we prove that the
computational complexity of the quantifier-free definability problem for algebraic
vocabularies is complete for coNP.

The paper is organized as follows. In the next section we fix notation and pro-
vide the basic definitions. In Section 3 is the exposition of our complexity result.
In Section 4 we introduce the algorithm that computes the isomorphism type of a
tuple in an algebra. The algorithm to decide quantifier-free-definability for algebraic
structures is presented in Section 5. In Section 6 some empirical tests are performed,
showing that our algorithm performs better on models with a large amount of sym-
metries. Finally, Section 7 provides a summary of the results obtained as well as
further research directions which arise from the developments we present here.

2 Preliminaries

In this section we provide some basic definitions and fix notation. We assume basic
knowledge of first-order logic. For a detailed account see, e.g., [7]. Given a first
order vocabulary τ and k ∈ ω let Tk denote the set of τ -terms of depth k with
variables from VAR := {x1, x2, . . . , xn, . . .}. We write T :=

⋃
k∈ω Tk for the set of

all τ -terms over VAR. For a function or relation symbol s we write ar(s) denote
the arity of s. In this note we are concerned with algebraic vocabularies, that is,
without relation symbols. In this context, atomic formulas are of the form t =

t′ where t and t′ are terms. A quantifier-free formula is a boolean combination
of atomic formulas. We write ϕ(v1, . . . , vk) for a formula ϕ whose variables are
all included in {v1, . . . , vk}. An algebra is a structure of an algebraic vocabulary;
algebras are denoted by boldface letters (e.g., A,B,C,...) and their universes by the
corresponding non-bold letter. Given an algebra A, a formula ϕ(v1, . . . , vk), and a
sequence of elements ā = (a1, . . . , ak) ∈ Ak we write A |= ϕ(ā) if ϕ is true in A under
an assignment that maps vi to ai. We say that a subset R ⊆ Ak is quantifier-free
definable in A (qf-definable for short) provided there is a quantifier-free first-order
formula ϕ(x1, . . . , xk) in the vocabulary of A such that

R = {ā ∈ Ak : A |= ϕ(ā)}.
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In this article we study the following computational decision problem:

QfDefAlg

Input : A finite algebra A and a target relation R ⊆ Ak.
Question: Is R qf-definable in A?

Let A be an algebra. A subset S ⊆ A is a subuniverse of A if S is nonempty and
it is closed under the fundamental operations of A. For a tuple ā = (a1, . . . , ak) ∈
Ak we write Sg(ā) to denote the subuniverse of A generated by {a1, . . . , ak}. Let
γ : dom γ ⊆ A → A be a function. we say that γ preserves R ⊆ Ak if for all
(a1, . . . , ak) ∈ R ∩ (dom γ)k we have (γa1, . . . , γak) ∈ R. The function γ is a
subisomorphism of A provided that γ is injective, dom γ is a subuniverse of A, and
γ preserves the graph of fA for each f ∈ τ . (Note that a subisomorphism of A

is precisely an isomorphism between two substructures of A.) The following result
characterizing qf-definability in terms of subisomorphisms plays a central role in this
article.

Theorem 2.1 [6, Thm 3.1]
Let A be a finite model of an arbitrary first order signature and let R ⊆ Ak. The

following are equivalent:

• R is definable in A by a quantifier-free first-order formula.
• R is preserved by all isomorphisms between k-generated substructures of A.

3 QfDefAlg is coNP-complete

In what follows a graph is a model G of the language with a single binary relation
E, such that EG is symmetric and irreflexive. In [1] it is proved that the following
problem is complete for coNP.

QfDef[Graphs]

Input : A finite graph G and a target relation R ⊆ Gk.
Question: Is R qf-definable in G?

A subisomorphism of a graph G = (G,E) is an injective function γ : dom γ ⊆
G → G such that (a, b) ∈ E if and only if (γa, γb) ∈ E.

Theorem 3.1 QfDefAlg is coNP-complete.

Proof Given a finite graph G = (G,E) let 0̂ and 1̂ denote the first two positive
integers not in G. We define the algebra G∗ := (G∪{0̂, 1̂}, f) where f is the binary
operation

f(a, b) =

{
1̂ if (a, b) ∈ E or a = b ∈ {0̂, 1̂}
0̂ otherwise.

It is straightforward to check that:
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(i) If γ is a subisomorphism of G, then the extension γ∗ of γ given by γ∗(0̂) = 0̂

and γ∗(1̂) = 1̂ is a subisomorphism of G∗.

(ii) If δ is a subisomorphism of G∗, then δ[G] ⊆ G and δ|G is a subisomorphism of
G.

We prove next that 〈G, R〉 �−→ 〈G∗, R〉 is a polynomial time (Karp) reduction from
QfDef[Graphs] to QfDefAlg. Clearly G∗ can be computed from G in polynomial
time, so it remains to show that R is qf-definable in G if and only if R is qf-definable
in G∗. Fix a finite graph G and R ⊆ Gk. Suppose R is not qf-definable in G. Then,
by Theorem 2.1, there is γ, a subisomorphism of G, that does not preserve R. Now
(1) says that γ∗ is a subisomorphism of G∗, and since it does not preserve R, it
follows that R is not qf-definable in G∗. For the remaining direction, suppose R is
not qf-definable in G∗. Once again Theorem 2.1 produces a subisomorphism δ of
G∗ that does not preserve R. It follows from (2), that δ|G is a subisomorphism of
G that does not preserve R; hence R is not qf-definable in G.

Showing that QfDefAlg is in coNP is a straightforward application of Theorem
2.1. In fact, each negative instance 〈A, R〉 of QfDefAlg is witnessed by a bijection
γ between subsets of A satisfying conditions easily checked in poly-time w.r.t. the
size of 〈A, R〉. �

It follows from the proof of Theorem 3.1 that the restriction of QfDefAlg to
structures with a single binary commutative operation is already complete for coNP.

4 Computing the isomorphism type of a tuple

In this section we present an algorithm to compute the isomorphism type of a tuple
ā in a finite algebraic structure A, and prove it to be correct. We start with some
needed definitions and preliminary results.

Let A be a finite algebra, for each k ∈ ω we define the equivalence relation ≈k

over An by ā ≈k b̄ if and only if for all terms t, s ∈ Tk(x0, . . . , xn−1) we have that

tA(ā) = sA(ā) ⇐⇒ tA(b̄) = sA(b̄).

Define the equivalence relation ≈ over An by ā ≈ b̄ if and only if ā ≈k b̄ for all k ∈ ω.
For ā ∈ An let

Kā := min{k ∈ ω : for all t ∈ Tk(x̄) there is t̂ ∈ Tk−1(x̄) such that tA(ā) = t̂A(ā)}.

Note that, since A is finite, this minimum always exists.

Lemma 4.1 Let A be a finite algebra and ā, b̄ ∈ An.

(i) If ā ≈Kā b̄, then for any term t(x̄) there is a term t̂(x̄) ∈ Tl with l < Kā such
that tA(ā) = t̂A(ā) and tA(b̄) = t̂A(b̄).

(ii) If ā ≈Kā b̄, then ā ≈ b̄.

Proof (i) Observe first that from the definition it follows that Kā = Kb̄; we write
K for Kā. Fix a term t(x̄). If t(x̄) ∈ TK−1 we can take t = t̂, so suppose t ∈ TK+j
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with j ≥ 0. We show that t̂ exists by induction on j. Suppose j = 0; by the
definition of Kā there is t̂ ∈ TK−1 such that tA(ā) = t̂A(ā), and since ā ≈K b̄ it
follows that tA(b̄) = t̂A(b̄). Assume next that j > 0 and suppose t = f(t1, ..., tr),
with each ti ∈ TK+j−1. By the inductive hypothesis, there are terms t̂1, ..., t̂r ∈ Tu
with u < K, each satisfying tAi (ā) = t̂i

A
(ā) and tAi (b̄) = t̂i

A
(b̄). That means

t̃ := f(t̂1, ..., t̂r) ∈ Tu+1 satisfies t̃A(ā) = tA(ā) and ťA(b̄) = tA(b̄). Since u+1 ≤ K,
by the case j = 0 we have a term t̂ ∈ Tl with l < K for which t̂A(ā) = t̃A(ā) = tA(ā)

and t̂A(b̄) = t̃A(b̄) = tA(b̄).
(ii) Let t, s ∈ T such that tA(ā) = sA(ā). Take t̂, ŝ the terms given by (i).

Since t̂A(ā) = ŝA(ā), by the hypothesis we have t̂A(b̄) = ŝA(b̄), and therefore
tA(b̄) = sA(b̄). �

Next we introduce, in the form of pseudocode, the algorithm that computes the
function isoType (see Algorithm 1 below). This function takes a finite algebra A

and a tuple ā from A and returns a representation of the isomorphism type of ā,
and the subuniverse of A generated by ā listed in a specific order. The isomorphism
type is obtained by traversing the terms in a specified order and evaluating them on
ā. As we shall see (Corollary 4.3), it suffices to record which terms return the same
value to capture the isomorphism type of ā.

Let us describe how Algorithm 1 works. Fix an input algebra A with vocabulary
τ (assume the function symbols in τ are listed in a specific order). Given a tuple
ā ∈ An, at the start of the algorithm, variable V is set to [a0, . . . , an−1]. Then the
while loop starts, and the elements added to V are obtained by applying fundamental
operations of A to earlier values in V. Thus, all elements in V belong to Sg(ā). Vari-
able P records the repetitions in appearances of such elements as they are computed,
while variable H stores the indexes where each element of Sg(ā) appears for the first
time in V. At the end of each pass through the while loop, variable N is assigned
with the indexes that were added to H on that pass. Since A is finite, eventually no
new elements are produced, and N is assigned with the empty list. This guarantees
termination and the fact that all elements of Sg(ā) are listed in V when the algorithm
halts. Observe that the while loop is executed exactly Kā times on input ā. We
remark that lines 3 and 16 - 17 in Algorithm 1, whose purpose is to initialize and
update the variable V′, are not actually needed to compute the function isoType,
but are included to make our proofs easier to follow.

To compute elements in V on each pass, for each arity of some fundamental
operation we construct a list T of tuples of indexes of elements where the fundamental
operations of that arity will be applied. We require these tuples have at least one
element that has not appeared before to avoid unnecessary computations.

To illustrate how this algorithm functions let us work out an example. Let
D = 〈{�,⊥, u, u′},∧,∨〉 be the lattice from the introduction (see Figure 1). The
fundamental operations are assumed to be ordered: [∧, ∨]. On input D, ā =

(u, u′,⊥), the variables are initialized as follows:

V = [u, u′,⊥] P = [[0], [1], [2]] H = [0, 1, 2] N = [0, 1, 2].

After the first pass through the while loop the state is:
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V= [u, u′,⊥, u︸︷︷︸
u∧u

, ⊥︸︷︷︸
u∧u′

, ⊥︸︷︷︸
u∧⊥

, ⊥︸︷︷︸
u′∧u

, u′︸︷︷︸
u′∧u′

, ⊥︸︷︷︸
u′∧⊥

, ⊥︸︷︷︸
⊥∧u

, ⊥︸︷︷︸
⊥∧u′

,

⊥︸︷︷︸
⊥∧⊥

, u︸︷︷︸
u∨u

, �︸︷︷︸
u∨u′

, u︸︷︷︸
u∨⊥

, �︸︷︷︸
u′∨u

, u′︸︷︷︸
u′∨u′

, u′︸︷︷︸
u′∨⊥

, u︸︷︷︸
⊥∨u

, u′︸︷︷︸
⊥∨u′

, ⊥︸︷︷︸
⊥∨⊥

]

P= [[0, 3, 12, 14, 18], [1, 7, 16, 17, 19], [2, 4, 5, 6, 8, 9, 10, 11, 20], [13, 15]]

H= [0, 1, 2, 13]

N= [13].

Now the element �, which was not in V before, makes its first appearance in position
13. Thus, on the next pass the fundamental operations will be applied to all pairs
with elements from [u, u′,�,⊥] in which � appears at least once. So, the next round
produces:

V = V+[ u︸︷︷︸
u∧�

, u′︸︷︷︸
u′∧�

, ⊥︸︷︷︸
⊥∧�

, u︸︷︷︸
�∧u

, u′︸︷︷︸
�∧u′

, ⊥︸︷︷︸
�∧⊥

, �︸︷︷︸
�∧�

, �︸︷︷︸
u∨�

, �︸︷︷︸
u′∨�

, �︸︷︷︸
⊥∨�

, �︸︷︷︸
�∨u

, �︸︷︷︸
�∨u′

, �︸︷︷︸
�∨⊥

, �︸︷︷︸
�∨�

]

P = [[0, 3, 12, 14, 18, 21, 24], [1, 7, 16, 17, 19, 22, 25], [2, 4, 5, 6, 8, 9, 10, 11, 20, 23, 26, ],

[13, 15, 27, 28, 29, 30, 31, 32, 33, 34]]

H = [0, 1, 2, 13]

N = [ ].
The variable N is now empty due to the fact that no new elements have been pro-
duced, so Algorithm 1 halts returning the partition P and U = [u, u′,⊥,�] = Sg(ā).
Running the algorithm for the tuple b̄ = (u′, u,⊥) we get:

V= [u′, u,⊥, u′,⊥,⊥,⊥, u,⊥,⊥,⊥,⊥, u′,�, u′,�, u, u, u′, u,⊥, u′, u,⊥, u′, u,⊥,

�,�,�,�,�,�,�,�]

H= [0, 1, 2, 13]

P= [[0, 3, 12, 14, 18, 21, 24], [1, 7, 16, 17, 19, 22, 25], [2, 4, 5, 6, 8, 9, 10, 11, 20, 23, 26],

[13, 15, 27, 28, 29, 30, 31, 32, 33, 34]]

U= [u′, u,⊥,�].

Since the final partitions are the same for ā and b̄, by Corollary 4.3 below, the map
γ from [u, u′,⊥,�] to [u′, u,⊥,�] is a subisomorphism satisfying γ : ā �→ b̄.

4.1 Soundness and completeness

For X a variable name in {V, V′, P, H, N} and k ∈ {0, . . . ,Kā}, let

• Xā,k be the value of variable X in a run of Algorithm 1 with input A, ā, after k

executions of the while loop.

Also, given an arity r of a function symbol of A, let

• Trā,k be the value assigned to variable T in a run of Algorithm 1 with input A, ā,
once an arity r has been fixed in the for loop (line 10), during the kth execution
of the while loop.

We write Xā for Xā,Kā , and for k > Kā we define Xā,k to be Xā. The subindex ā is
omitted when no confusion may arise.
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Algorithm 1 Tuple isomorphism type
1 function IsoType(A, ā)

� A is an algebra and ā is a tuple from A

2 V = [a0, . . . , an−1]

3 V′ = [“x0”, . . . , “xn−1”] � this is a list of variables (terms are represented as strings)
4 P = [B1, . . . , Bk] the partition of {0, . . . , n− 1} where i, j are in the same block iff ai = aj

5 H = sorted([min(Bj) : Bj ∈ P]) � sorted increasingly
6 N = H

7 arities =[r1, ..., rk] � where r1 < ... < rk are all the arities of operations in A

8 while N 	= ∅ do
9 H_old = copy(H)

10 for r ∈ arities do
11 T = sorted([l̄ ∈ (H_old)r : lj ∈ N for some j]) � sorted lexicographically
12 for f ∈ op(r) do � op(r) is the list of operation symbols of arity r in the order given by τ

13 for l̄ ∈ T do
14 value = fA(V[l0], ..., V[lr−1])

15 append value to V
16 term = f ++ “(” ++ V′[l0] ++ “, ” ++ ...++ “, ” ++ V′[lr−1] ++ “)”

17 append term to V′
� update of the partition P

18 if there is j ∈ H such that value = V[j] then � value was already in V
19 add |V| − 1 to the block of P that contains j

20 else � value is new
21 add the block {|V| − 1} to P
22 add |V| − 1 to H

� update of N
23 N = [l : l ∈ H and l /∈ H_old]

24 U = [V[j] : j ∈ H] � U lists the elements of Sg(ā) in the order they appeared in V
25 return P, U

Given a tuple ā ∈ An and k ∈ ω let ρā,k be the equivalence relation over
Tk(x0, . . . , xn−1) defined by t ρā,k s ⇐⇒ tA(ā) = sA(ā). Also, Eq(Y ) denotes
the set of all equivalence relations over the set Y . The following lemma provides a
series of technical results necessary to establish the soundness of Algorithm 1, which
is done in Corollary 4.3 below.

Lemma 4.2 For any ā ∈ An and k ∈ ω we have:

(i) Each member of V′k is term in the variables x0, . . . , xn−1 of degree at most k.

(ii) The invariant Vk[i] = V′k[i]
A(ā) holds throughout the for loop in line 13.

(iii) If ā ≈k b̄ then Xā,k = Xb̄,k for X any variable name in {V′, P, H, N}.
(iv) For all 1 ≤ k ≤ Kā there is a function

Fk : Tk(x0, . . . , xn−1)× Eq(Tk−1(x0, . . . , xn−1)) → ω,

such that for each t ∈ Tk(x0, . . . , xn−1) the index i = Fk(t, ρā,k−1) satisfies
i ≤ |Vk| − 1 and tA(ā) = Vk[i].

(v) For all k ≤ Kā we have that Pk determines Xj for all j < k and X any variable
name in {V′, P, H, N}.

(vi) If Pā = Pb̄, then ā ≈ b̄.
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Proof (i) is easily proved by induction in k. (ii) is clear from lines 14 to 17.
(iii) We proceed by induction in k. The case k = 0 is straightforward. Assume
now k + 1 ≤ min(Kā,Kb̄), and suppose ā ≈k+1 b̄. Since ā ≈k b̄, by our inductive
hypothesis we have that

• Xā,k = Xb̄,k for X any variable name in {V′, P, H, N}.
Note that the first line executed when starting the k+1th run of the while loop sets
the value of H_old to the value of Hk. Now, observe that the value assigned to T for
each arity r only depends on H_old and Nk. Thus Trā,k+1 = Tr

b̄,k+1
for all arities r.

This, along with the fact that the function symbols at the for loop starting at Line 12
appear always in the same order, implies that V′ā,k+1 = V′̄

b,k+1
. We prove next that

Pā,k+1 = Pb̄,k+1; suppose the indexes i and j are in the same block of Pā,k+1. That is,
Vk+1(ā)[i] = Vk+1(ā)[j], so, by (ii), we have V′ā,k+1[i]

A(ā) = V′ā,k+1[j]
A(ā). Now, (i)

says that V′k+1(ā)[i] and V′k+1(ā)[j] are terms of degree at most k+1, and they agree
on ā. Hence they agree on b̄, since ā ≈k+1 b̄. Invoking (ii) once again yields that i

and j are in the same block of Pb̄,k+1. From the fact that Pā,k+1 = Pb̄,k+1 it easy to
see that Hā,k+1 = Hb̄,k+1 and Nā,k+1 = Nb̄,k+1. In particular, for any l ≤ min(Kā,Kb̄)

we have that Nā,l = ∅ if and only if Nb̄,l = ∅. So Kā = Kb̄, from which it follows at
once that (iii) holds for k + 1 > min(Kā,Kb̄).
(iv) Take t = f(t0, . . . , tr−1) ∈ Tk+1 and suppose k + 1 ≤ Kā. For k = 0, define
F0(xj) = j. If k ≥ 1, by inductive hypothesis we have the function Fk, and thus we
can obtain indexes i0 := Fk(t0, ρk−1), . . . , ir−1 := Fk(tr−1, ρk−1) functionally from t

and ρk (obviously t0, . . . , tr−1 can be obtained as functions of t and ρk−1 = ρk∩T 2
k−1).

If k = 0, just take i0 := F0(t0), . . . , ir−1 := F0(tr−1). Next, define

t̃0 := V′k[i0]
...

t̃r−1 := V′k[ir−1],

and once again, note that these t̃l can be obtained functionally since V′k can be
obtained functionally from ρk. Also, by our inductive hypothesis, we have tA(ā) =

f(t̃0, . . . , t̃r−1)
A(ā).

Assume first that there is l ∈ {0, . . . , r−1} such that il ∈ Hk \Hk−1. Then il ∈ Nk,
so 〈i0, . . . , ir−1〉 ∈ Trk+1, and we have that the term f(t̃0, . . . , t̃r−1) is appended to V′,
say with index j, during the (k + 1)th pass of the while loop. Observe that j only
depends on the signature of A and the numbers

∣∣Tuk+1

∣∣ for u an arity less or equal
than r. But Tuk+1 depends only on Hk and Nk, which in turn are determined by ρk.
Thus j can be obtained as a function of t and ρk, and we can define Fk+1(t, ρk) := j

in the case that there is l ∈ {0, . . . , r − 1} such that il ∈ Hk \ Hk−1. Suppose on the
other hand that i0, . . . , ir−1 ∈ Hk−1. Then, by (i), we have that t̃0, . . . , t̃r−1 ∈ Tk−1,
and thus f(t̃0, . . . , t̃r−1) ∈ Tk. Hence, in this case we can define Fk+1(t, ρk) :=

Fk(f(t̃0, . . . , t̃r−1), ρk−1).
(v) Notice first that, for j ≤ k, we have Pj is the restriction of Pk to the set
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{0, ..., |Vj | − 1}. Also, Hj = [min(B) : B ∈ Pj ], so that Pj determines Hj . On
the other hand, N0 is defined as H0, while Nj+1 = Hj+1 \ Hj . Observe also that V′0 is
also determined just by the length of ā, and that V′j+1 is obtained from Hj and Nj ,
so it is determined by Hj and Hj−1. Using these observations, the conclusion follows
now from an easy inductive argument.
(vi) Let K = Kā. By (v), for every k ≤ K we have Pā,k = Pb̄,k and V′ā,k = V′̄

b,k
. Let

t, s ∈ TK such that tA(ā) = sA(ā). Define i = FK(t, ρā,K−1) and j = FK(s, ρā,K−1).
Define also t̂ = V′ā,k[i] and ŝ = V′ā,k[j]. This means t̂A(ā) = ŝA(ā) and, since
V′ā,K = V′̄

b,K
, we have t̂A(b̄) = ŝA(b̄), which in turn implies tA(b̄) = sA(b̄). This

shows ā ≈K b̄, so by Lemma 4.1.(ii) we have ā ≈ b̄. �

Given a finite algebra A and ā ∈ An, define iType(ā) and iUniv(ā) by isoType(A, ā)

= (iType(ā), iUniv(ā)). Notice that iUniv(ā) is a list without repetitions of all the
elements in Sg(ā).

The next corollary summarizes the results collected in Lemma 4.2 using the
terminology just introduced. It shows that the output of our algorithm captures the
isomorphism type of a tuple ā in a finite algebraic structure.

Corollary 4.3 Let A be a finite algebra. Then for any ā, b̄ ∈ An the following are
equivalent:

(i) ā ≈ b̄

(ii) iType(ā) = iType(b̄).

Moreover, if either of these conditions hold, then the map γ : iUniv(ā)[j] �→ iUniv(b̄)[j]

for j ∈ {0, ..., | iUniv(ā)| − 1} is an isomorphism from Sg(ā) into Sg(b̄) mapping ā

to b̄.

Proof If ā ≈ b̄, in view of Lemma 4.2.(iii) we have iType(ā) = iType(b̄). Conversely,
if iType(ā) = iType(b̄), then by lemma (4.2).(vi) we have ā ≈ b̄. In either case, by
lemma (4.2).(iii), we get Xā = Xb̄ for X ∈ {V′, P, H, N}. In particular, Hā = Hb̄, from
which it follows that | iUniv(ā)| = | iUniv(b̄)|. Since all the elements in iUniv(ā)

(and also those in iUniv(b̄)) are different, we have that γ is a well-defined bijection.
Also, since Pā,0 = Pb̄,0, we have that γ sends each aj into bj . To prove γ is an
homomorphism, let t be a term. Let i ∈ Hā be such that tA(ā) = Vā[i], and define
t̂ = V′̄a[i]. By (ii), t and t̂ agree on ā, hence they also agree on b̄. So we have
γ(tA(ā)) = γ(t̂A(ā)) = Vb̄[i] = V′b̄[i]A(b̄), and since V′ā = V′̄

b
, this equals t̂A(b̄) =

tA(b̄) = tA(γ(ā)). �

5 Computing QfDefAlg

In this section we present our algorithm to decide qf-definability in a finite algebraic
structure. The algorithm is based on a slight improvement of Theorem 2.1, stated
below as Corollary 5.1.

Let ā = (a1, . . . , ak) be a tuple. We define the pattern of ā, denoted by pattern ā,
to be the partition of {1, . . . , n} such that i, j are in the same block if and only if
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ai = aj . For example, pattern(a, a, b, c, b, c) = {{1, 2}, {3, 5}, {4, 6}}. We write �ā�
to denote the tuple obtained from ā by deleting every entry equal to a prior entry.
E.g., �(a, a, b, c, b, c)� = (a, b, c). Let R be a relation and θ a pattern, we define:

• �R� := {�ā� : ā ∈ R},
• spec(R) := {|�ā�| : ā ∈ R},
• Rθ := {ā ∈ R : pattern ā = θ}
Given a tuple ā from A and relations R1, . . . , Rl over A, let relType(ā, R1, . . . , Rl) ∈
{True,False}l be the tuple (R1(ā), . . . , Rl(ā)). For a positive integer k let A(k) :=

{(a1, . . . , ak) ∈ Ak : ai = aj ⇔ i = j}.

Corollary 5.1 Let A be a finite algebra, R ⊆ Am and let R1, . . . , Rl be all the
relations of the form �Rpattern ā� for ā ∈ R. The following are equivalent:

(i) R is qf-definable in A.

(ii) R1, . . . , Rl are qf-definable in A.

(iii) For all k ∈ spec(R) and for all ā, b̄ ∈ A(k) we have that ā ≈ b̄ implies
relType(ā, R1, . . . , Rl) = relType(b̄, R1, . . . , Rl).

Proof The equivalence between (i)⇔(ii) is an easy exercise, and (ii)⇔(iii) is just a
restatement of Theorem 2.1. �

5.1 Breakdown of Algorithm 2

Let A be an finite algebra and let R ⊆ An. Our strategy to decide if R is qf-definable
in A can be summarized as follows.

(i) Compute all the relations of the form �Rpattern ā� for ā ∈ R. Suppose these are
R1, . . . , Rl.

(ii) For each k ∈ spec(R) compute the partition induced by the equivalence relation
≈ on A(k).

(iii) If for some k ∈ spec(R) there are ā, b̄ ∈ A(k) such that relType(ā, R1, . . . , Rl) �=
relType(b̄, R1, . . . , Rl) and ā ≈ b̄ return False. Otherwise, return True.

Step (i) strips down the target relation into relations without superfluous informa-
tion. This can have a serious impact on performance, given that the search space
depends exponentially on the arity of the target.

An obvious method for carrying out steps (ii) and (iii) is to use the function
isoType to tag each tuple in

⋃
k∈spec(R)A

(k) with its isomorphism type, and every
time two tuples have the same iType check that they have the same relType with
respect to R1, . . . , Rl. Clearly, it is convenient to carry out this test as soon as
two tuples with the same isomorphism type are discovered, because if it fails the
algorithm can stop (and return False). Another observation to improve on this first
approach is that, whenever we find tuples ā, b̄ with the same isomorphism type, we
have access (essentially without any further computational cost) to an isomorphism
γ between Sg(ā) and Sg(b̄). If two tuples are connected by γ, they have the same
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isomorphism type, and thus it suffices to compute the isomorphism type of one of
them. These observations together with a deliberate strategy to cycle through the
tuples comprise the main ideas behind our algorithm. We explain next how they are
implemented.

At every point during an execution, the data stored in orbitsk is a partition
of A(k) where each block is annotated with some additional information. We call
these annotated blocks orbits, and they have the form (B,RT, T, U) where B ⊆ A(k)

is the actual block, RT is the relType of all tuples in B, T shall store the iType

of the tuples in B (when known), and U shall store the iUniv of a tuple in B

(when known). When the algorithm starts, every block is a singleton annotated
with its relType, and T ,U are set to Null. The algorithm traverses and processes
the tuples in

⋃
k∈spec(R)A

(k) in a DFS-like fashion. The tree that is traversed is
comprised by the subuniverses of A and has A as its root. At every point of an
execution, the algorithm is working on a node S of this tree by processing the tuples
in

⋃
k∈spec(R) S

(k). To keep track of the current and previously visited nodes, and
the tuples already processed at each node, a stack is used. The entries in the stack
have the form (S,L,G) where S is a subuniverse, L is the list of tuples from S still
to be processed, and G ⊆

⋃
k∈spec(R) S

(k) is a set of tuples such that: every tuple in
G generates S, and no two tuples in G have the same isomorphism type. (The point
of keeping track of such a G shall become clear below.) The stack is initialized with
(A,L0, ∅) where L0 is a list of the tuples in

⋃
k∈spec(R)A

(k) ordered increasingly by
arity. The first tuple processed during an execution is the first element in L0, and
every time the algorithm is ready to process a new tuple, there is a triplet (S,L,G)

on the top of the stack and the first element of L is popped and processed. To see
how a tuple is processed, suppose the top of the stack is (S,L,G) and a tuple ā has
been popped from L. If the isomorphism type of ā is known (i.e., if ā belongs to an
orbit with known type), we pop the next tuple in L (if there are no more tuples in
L, the entry (S,L,G) is removed from the stack). If, on the other hand, the type
of ā is unknown, the function isoType is called to compute it, and the next step is
to search through the orbits to see if there is one tagged with iType(ā). However,
which orbits we inspect (and the behaviour of the algorithm afterwards) depends on
whether Sg(ā) is smaller than S.
Case |Sg(ā)| = |S|. Here we only inspect the orbits of tuples in G for one tagged
with iType(ā) (to see why this suffices see Lemma 5.3). If none of these orbits is
tagged with iType(ā), we call the function tag_orbit to tag ā’s orbit with iType(ā)

and iUniv(ā), and add ā to G. If, on the other hand, there is an orbit (B,RT, T, U)

of an element in G with T = iType(ā), then, by Corollary 4.3, the function γ :

iUniv(ā)[i] �→ U [i] is a subisomorphism of A. So, we proceed to merge orbits
containing tuples connected by γ. In particular, the orbit containing ā is merged
with (B,RT, T, U), and thus ā ends up in an orbit tagged with iType(ā). The
merging is done by the function try_merge_orbits (see Algorithm 3), which also
checks that any two orbits to be merged have the same relType (if this test fails,
Algorithm 2 stops and returns False).
Case |Sg(ā)| < |S|. In this case we inspect all orbits in orbits|ā| in search for one
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Algorithm 2 Quantifier-free Definability Algorithm
1 function isQfDefAlg(A, R)

� A is an algebra and R is a relation over A

2 targets = (R1, . . . , Rl) where the Rj ’s are all the distinct relations of the form �Rpattern ā� for
ā ∈ R.

3 spec = sorted(spec(R)) � sorted increasingly
4 for k ∈ spec do
5 orbitsk = {({ā}, relType(ā, targets), Null, Null) : ā ∈ A(k)} � initialization of the orbits

6 orbits = {orbitsk : k ∈ spec}
7 tuples_to_process = sorted(

⋃
k∈spec A

(k)) � sorted decreasingly by arity

8 stack = [(A, tuples_to_process, ∅)] � initialization of the stack
9 while stack is not empty do

10 Let (current_sub, tuples_to_process, generators) be a reference to the top of stack
11 while tuples_to_process 	= [] do
12 ā = pop first element of tuples_to_process

13 if Type(ā) = Null then � ā’s type is unknown
14 (type_a, universe_a) = IsoType(A, ā)

15 if |universe_a| = |current_sub| then � Sg(ā) is not smaller
16 if there is (B, RT, T, U) ∈ {orbits of tuples in generators} such that type_a = T then
17 γ = the isomorphism from universe_a to U

18 if not try_merge_orbits(γ, orbits) then � see Algorithm 3
19 return False

20 else � ā’s type is new
21 tag_orbit(ā, type_a, universe_a)

22 add ā to generators

23 else � Sg(ā) is smaller
24 if there is (B, RT, T, U) ∈ orbits|ā| such that type_a = T then � ā’s type is not new
25 γ = the isomorphism from universe_a to U

26 if not try_merge_orbits(γ, orbits) then � see Algorithm 3
27 return False

28 else � ā’s type is new
29 tag_orbit(ā, type_a, universe_a)

30 new_current_sub = universe_a

31 new_tuples_to_process = sorted(
⋃

k∈spec universe_a(k))

32 new_generators = {ā}
� push new node on the stack

33 push (new_current_sub, new_tuples_to_process, new_generators) onto stack
34 tag_orbit(ā, type, universe)

35 break

36 if tuples_to_process = [] then
37 delete top of the stack

38 return True

with isomorphism type iType(ā). If there is no such orbit, then orbit containing ā

is annotated with iType(ā) and iUniv(ā). We also push (Sg(ā), L′, {ā}) on top of
the stack (i.e. we move to a new node of the subuniverse tree). If there is an orbit
in orbits|ā| tagged with iType(ā), we proceed in the same way as above by calling
try_merge_orbits.
Eventually, if no call to try_merge_orbits returns False, every tuple in

⋃
k∈spec(R)A

(k)

is processed, and when the algorithm halts we have computed for each k ∈ spec(R)
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the partition induced by ≈ on A(k). Since we ensure that all tuples in the same orbit
have the same relType, Corollary 5.1 guarantees that R is qf-definable in A.

Algorithm 3 Merging orbits
1 function try_merge_orbits(γ, orbits)
2 for k ∈ spec do
3 for ā ∈ (Dom(γ))(k) do
4 if orbit(ā) 	= orbit(γ(ā)) then
5 (B, RT, T, U) = orbit(ā)

6 (B′, RT′, T′, U′) = orbit(γ(ā))

7 if RT 	= RT′ then
8 return False � RelTypes differ

9 B_merge = B ∪ B′ � blocks are merged
10 RT_merge = RT

11 if T 	= Null then � first block was tagged
12 T_merge = T

13 U_merge = U

14 else if T′ 	= Null then � second block was tagged
15 T_merge = T′

16 U_merge = U′

17 else � no block is tagged
18 T_merge = Null

19 U_merge = Null

20 delete (B, RT, T, U) and (B′, RT′, T′, U′) from orbitsk

21 add (B_merge, RT_merge, T_merge, U_merge) to orbitsk]

22 return True

5.2 Proof of soundness and completeness

To prove soundness and completeness we need some auxiliary lemmas.

Lemma 5.2 The following properties hold throughout an execution of Algorithm 2
for each k ∈ spec(R):

(i) The set {B : (B,RT, T, U) ∈ orbitsk} is a partition of A(k).

(ii) For each (B,RT, T, U) ∈ orbitsk we have that:
(a) For all ā in B we have relType(ā, R1, . . . , Rl) = RT .
(b) For all ā, b̄ in B we have ā ≈ b̄.
(c) If U �= Null, then there is ā0 ∈ B such that iUniv(ā0) = U.

(d) If T �= Null, then T = iType(ā) for every ā in B.

Proof The properties are obviously true at the initialization of orbitsk. Note
that the only instructions of Algorithm 2 that may change orbitsk are calls to
the functions try_merge_orbits and tag_orbit, and it is easy to see that these
functions preserve (i) and (ii). �

In order to make the proofs below more succinct, we say that (at a certain point
of an execution of Algorithm 2):

• an orbit (B,RT, T, U) is tagged if T �= Null.
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• the tuple ā has known type if the (unique) orbit containing ā is tagged.

Lemma 5.3 The following properties hold throughout an execution of Algorithm 2:

(i) If the stack is [(Sm, Lm, Gm), (Sm−1, Lm−1, Gm−1), . . . , (S0, L0, G0)] then |Sm| <
· · · < |S0|.

(ii) If an entry (S,L,G) is removed from the stack, then every tuple in
⋃

k∈spec(R) S
(k)

has known type.

(iii) Suppose the top of the stack is (S,L,G). If ā is a tuple with known type such
that |Sg(ā)| < |S|, then every tuple in

⋃
k∈spec(R) Sg(ā)

(k) has known type.

(iv) Suppose the top of the stack is (S,L,G). If ā is a tuple with known type such
that |Sg(ā)| = |S|, then either:
(a) there is ḡ ∈ G and ḡ is in the same orbit as ā, or
(b) every tuple in

⋃
k∈spec(R) Sg(ā)

(k) has known type.

(v) For all k ∈ spec(R), and for any O = (B,RT, T, U) and O′ = (B′, RT ′, T ′, U ′)
in orbitsk such that T �= Null, we have that

T = T ′ ⇐⇒ O = O′.

Proof Item (i) is easily seen to hold. We prove (ii). When an element (S,L,G) is
pushed onto the stack then L is a list containing all tuples in

⋃
k∈spec(R) S

(k), and
(S,L,G) is only removed from the stack when all tuples in T have been processed.
It is not hard to see that when a tuple ā is processed, we find that either:

• the orbit containing it is already tagged , or
• it is tagged by a call to tag_orbit or try_merge_orbits, unless the call to
try_merge_orbits returns False (making Algorithm 2 halt and return False).

Let us prove (iii). Suppose the top of the stack is (S,L,G), and let ā be as in
the statement. Note that there are two ways in which the orbit containing ā could
have been tagged: either by a call to tag_orbit or by the merging of ā’s orbit
with another orbit that was already tagged. Suppose first that at some point the
algorithm executed the call tag_orbit(ā, iType(ā), iUniv(ā)). The key observation
is that then (Sg(ā), L′, G′) has been on the stack. Now, since |Sg(ā)| < |S|, item (i)
says that (Sg(ā), L′, G′) is no longer on the stack, and, by (ii), it follows that every
tuple from Sg(ā) has known type. Next, assume that ā’s orbit was not tagged by
such a call to tag_orbit.Since the only way to introduce a new type in orbits is
with a call to tag_orbit, there must exist a tuple b̄ such that:

• iType(b̄) = iType(ā), and tag_orbit(b̄, iType(ā), iUniv(b̄)) has been executed at
an earlier time, and

• ā’s orbit was tagged by eventually being merged with b̄’s orbit.

Using the same reasoning as above we can conclude that every tuple from Sg(b̄) has
known type. Finally, observe that through the merging process every tuple from
Sg(ā) ends up in an orbit with a tuple from Sg(b̄), and thus has known type.

We leave (iv) to the reader as the proof is similar to the one of (iii).
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To conclude we prove (v). Note that it suffices to check that the calls to
tag_orbit and try_merge_orbits preserve (v). This is clear for try_merge_orbits,
since this function does not tag orbits with new types. So we focus on the calls to
tag_orbit; let us begin with the one on line 34 of Algorithm 2. Notice that im-
mediately before this call is executed we check that the type to be introduced does
not occur anywhere in orbits, and thus (v) is preserved. Finally, assume a call
tag_orbit(ā, iType(ā), iUniv(ā)) on line 21. Due to the tests carried out before
this call we know that (at the time of this call) the top of the stack is (Sg(ā), L,G)

and that no tuple in G has the same type as ā. We want to show that no orbit
is tagged with iType(ā). For the sake of contradiction assume there is b̄ such that
its orbit, say O′, has type iType(ā). So, since no tuple from G is in O′, item (iv)
says that every tuple from Sg(b̄) has known type. It follows that Sg(b̄) �= A, since
otherwise ā would have had known type. Hence (Sg(ā), L,G) was pushed on the
stack by processing a tuple ḡ which was found to have a new type. But this is a
contradiction, since Sg(b̄) contains an isomorphic copy of ḡ, and thus would have
had known type. �

Proposition 5.4 Algorithm 2 is sound and complete.

Proof Note that the algorithm terminates if and only if either:

• a call to try_merge_orbits returns false and Algorithm 2 returns false, or
• the stack is empty and Algorithm 2 returns true.

In the former case, it is clear from an inspection of Algorithm 3, that try_merge_orbits
returns false if and only if there are two orbits tagged with the same isomorphism
type and different relTypes. Thus, by Lemma 5.2, there are tuples ā, b̄ such that
ā ≈ b̄ and relType(ā, R1, . . . , Rl) �= relType(b̄, R1, . . . , Rl). So, Corollary 5.1 says
that R is not qf-definable in A.

Suppose next that the algorithm ends due to the stack being empty. Recall
that the stack is initialized with (A,L0, ∅), so, by Lemma 5.3.(ii), every tuple in⋃

k∈spec(R)A
(k) has known type when the algorithm halts. We prove that (3) of

Corollary 5.1 holds. Fix k ∈ spec(R) and take ā, b̄ ∈ A(k) such that ā ≈ b̄.
Now Lemma 5.2 together with Lemma 5.3.(v) guarantee that ā and b̄ are in the
same orbit, and thus item (a) of Lemma 5.2 says that relType(ā, R1, . . . , Rl) =

relType(b̄, R1, . . . , Rl). �

6 Empirical tests

In this section we present an empirical testing of the performance of algorithm
IsoType (Algorithm 1) versus the isomorphisms search via CSP, as well as an
empirical testing of algorithm QfDefAlg for different input algebras. Our imple-
mentations are written in Python 3 under GPL 3 license, source code available in
https://github.com/pablogventura/QfDefAlg. All tests were performed using an In-
tel Xeon E5-2620v3 processor with 12 cores (however, our algorithm does not make
use of parallelization) at 2.40GHz, 128 GiB DDR4 RAM 2133MHz. Memory was
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never an issue in the tests we ran.

6.1 Comparing isoType to a CSP solver

In our previous work [2], we used the CSP solver Minion [8] to compute isomor-
phisms between substructures in our algorithm to decide qf-definability in a rela-
tional structure. In this new approach to the problem we use the function IsoType
to compute those isomorphisms. In order to compare our previous strategy with
the one we present here, we designed the following test. Given an algebra A, the
test consists in partitioning a random subset R of Ak, first using IsoType, and then
via CSP to find relational isomorphisms in the following way: for each ā ∈ R, we
compute the subuniverse it generates Sg(a) and then construct a relational struc-
ture ARel

Sg(a) with universe Sg(a) and, for each operation symbol f in A, the relation
F = graph(fA|Sg(a)) (the graph of the restriction of fA to Sg(a)). Note that A � B

if and only if ARel � BRel. This allows us to use CSP to search for isomorphisms
between ARel

Sg(a) and ARel
Sg(b) that extend the map ā → b̄. We compare running times

of this last strategy to one of the first one.

Figure 2. Time to compute the isomorphism
types

Figure 3. Time to decide definability

Since there is no standard set of tests for these problems, we used five families of
algebras: distributive lattices, boolean algebras, groups, abelian groups and finally
random algebras. These latter were generated by choosing random operations over
a fixed universe. For each family we ran the test on 300 algebras and we took the
median of the wall time samples. In figure 2 we can see how the IsoType strategy is
faster; the reason behind this is that IsoType stores the isomorphism type instead
of computing it every time, as CSP does. It is interesting to note how the amount
of time increases as the number of subisomorphisms decreases, where our strategy
based on inner symmetries is less efficient.

6.2 Assessing the performance of QfDefAlg

Now we present testings of algorithm 2 to decide definability, varying both the
size of universes and the families of algebras. In these tests we used universes of
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cardinality 4, 8, 16 and 32. In all cases the target relation was the binary relation
consisting of all pairs from the domain of the algebra. Random algebras are endowed
with a binary and a ternary operation. Abelian groups are obtained as products of
cyclic groups Zk. In Figure 3 we can see how the algorithm takes advantage of
inner symmetries of the algebras; the phenomenon of increasing time for decreasing
number of subisomorphisms is again observed, as in Figure 2. It is interesting to
observe the behaviour of the abelian groups curve. Since all groups in the test are
direct products with factors in {Z2,Z4} (e.g., the 16-element one is Z2×Z2×Z4 and
the 32-element one is Z2 × Z4 × Z4), the fact that the larger groups have repeated
factors increases the number of subisomorphisms, and thus our algorithm has a
better performance.

7 Conclusions and future work

We have presented an algorithm that decides the definability problem by quantifier-
free first-order formulas over a purely functional language. This algorithm relies on
the semantic characterization of quantifier-free definability given in [6]. We showed
that this problem is coNP-complete, which is the same complexity we obtained on
the relational case [1]. Prior to this we developed an algorithm that gives a charac-
terization of the isomorphism type of a tuple ā in the given structure (in particular,
the subuniverse it generates is obtained), and showed, by means of empirical tests,
that this task is performed very efficiently.

Our definability-decision algorithm partitions the set of all k-tuples from the
universe with k ∈ spec(R), and has to exhaust the search space to give a positive
answer. Therefore, the execution time of our algorithm depends exponentially on
the parameter k. Our empirical tests confirm the exponential dependence on k,
and give us an idea of the impact of the cardinality of the input structure and
the family of algebras on which we performed the tests. They also confirm the
hypothesis that our algorithm, which is based on the existence of symmetries, would
perform better on models with a large amount of subisomorphisms, as we observed
in the case of relational models; see [2]. We may add that the strategy used in our
previous work [2] on quantifier-free definability for relational structures, based on
the search of isomorphisms using CSP, proves much less efficient when applied to
purely functional structures.

There are several possible lines for future research. Due to the lack of standard
testings to decide definability, the empirical tests we presented are preliminary, and
more evaluation is needed. We hope to extend the design of models to reach a
broader class of algebras, and to be able to introduce control variables, as we extend
our approach and tool to other fragments of first-order logic. It would also be natural
to study definability over finite classes of models instead of a single structure. Lastly,
it would be useful to find classes of algebras in which the problem is well-conditioned
and for which polynomial time algorithms exist.

M. Campercholi et al. / Electronic Notes in Theoretical Computer Science 348 (2020) 23–4140



References

[1] C. Areces, M. Campercholi, D. Penazzi, and P. Ventura. The complexity of definability by open first-
order formulas. Submitted, arXiv:1904.04637, 2019.

[2] C. Areces, M. Campercholi, and P. Ventura. Deciding open definability via subisomorphisms. In Logic,
Language, Information, and Computation - 25th International Workshop, WoLLIC 2018, Bogota,
Colombia, July 24-27, 2018, Proceedings, pages 91–105, 2018.

[3] C. Areces, S. Figueira, and D. Gorín. Using logic in the generation of referring expressions. In
S. Pogodalla and J. Prost, editors, Proceedings of the 6th International Conference on Logical Aspects
of Computational Linguistics (LACL 2011), volume 6736 of Lecture Notes in Computer Science, pages
17–32. Springer, 2011.

[4] C. Areces, A. Koller, and K. Striegnitz. Referring expressions as formulas of description logic. In
Proceedings of the Fifth International Natural Language Generation Conference (INLG’08), pages 42–
49. Association for Computational Linguistics, 2008.

[5] M. Arenas and G. Diaz. The exact complexity of the first-order logic definability problem. ACM
Transactions on Database Systems, 41(2):13:1–13:14, 2016.

[6] M. Campercholi and D. Vaggione. Semantical conditions for the definability of functions and relations.
Algebra universalis, 76(1):71–98, Sep 2016.

[7] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag, 1994.

[8] I. Gent, Ch. Jefferson, and I. Miguel. MINION: a fast, scalable, constraint solver. In Proceedings of
the 17th European Conference on Artificial Intelligence (ECAI 2006), pages 98–102. IOS Press, 2006.

[9] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on Computing,
28(1):152–163, January 1998.

[10] E. Krahmer and K. van Deemter. Computational generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218, 2012.

[11] Q. T. Tran, C.Y. Chan, and S. Parthasarathy. Query by output. In Proceedings of the 35th SIGMOD
international conference on Management of data - SIGMOD ’09. ACM Press, 2009.

[12] R. Willard. Testing expressibility is hard. In D. Cohen, editor, Principles and Practice of Constraint
Programming – CP 2010, pages 9–23, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

M. Campercholi et al. / Electronic Notes in Theoretical Computer Science 348 (2020) 23–41 41


	Introduction
	Preliminaries
	QfDefAlg is coNP-complete 
	Computing the isomorphism type of a tuple
	Soundness and completeness

	Computing QfDefAlg
	Breakdown of Algorithm 2
	Proof of soundness and completeness

	Empirical tests
	Comparing `39`42`"613A``45`47`"603AisoType to a CSP solver
	Assessing the performance of QfDefAlg

	Conclusions and future work
	References

