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Abstract. Let Ω := (a, b) ⊂ R, m ∈ L1(Ω) and φ : R → R be an odd in-
creasing homeomorphism. We consider the existence of positive solutions
for problems of the form{ −φ(u′)′ = m(x)f(u) in Ω,

u = 0 on ∂Ω,

where f : [0, ∞) → [0, ∞) is a continuous function which is, roughly
speaking, superlinear with respect to φ. Our approach combines the
Guo-Krasnoselskĭı fixed-point theorem with some estimates on related
nonlinear problems. We mention that our results are new even in the
case m ≥ 0.
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Keywords. Elliptic one-dimensional problems, φ-Laplacian, positive so-
lutions.

1. Introduction

Let Ω := (a, b) ⊂ R, m ∈ L1(Ω) with m+ �≡ 0, and let φ : R → R be an odd
increasing homeomorphism. In this paper, we proceed with the investigation
of positive solutions of the problem{

−φ(u′)′ = m(x)f(u) in Ω,
u = 0 on ∂Ω,

(1.1)

where f : [0,∞) → [0,∞) is a continuous function. The existence of positive
solutions for problems as (1.1) involving the so-called φ-Laplacian has been
intensively studied over the last 20 years. We cite, among many others, the
articles [1,3,8,12,14–16,18,22,23]. These problems arise in a number of ap-
plications such as reaction–diffusion systems, population biology, glaciology,
nonlinear elasticity, combustion theory, non-Newtonian fluids, etc., see for in-
stance [5,6,9,17]. We remark that they also appear naturally in the study of
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radial solutions for nonlinear equations in annular domains (see e.g., [12,20]
and its references).

In particular, the problem (1.1) with either sublinear or superlinear
nonlinearities was considered in [2, Corollary 3.4], [19, Theorem 1.1] and [21,
Theorem 2], but with some rather strong hypothesis on m and φ (for the
special case φ(x) = x with sublinear or superlinear nonlinearities we refer to
[10] and [7] respectively, and the references therein). More precisely, in [2] it
was assumed that m ∈ C(Ω) with minΩ m > 0, while in [19,21] it was required
that m ≥ 0 in Ω and m �≡ 0 on any subinterval of Ω. Regarding the conditions
on φ, the restrictions imposed in all of these papers do not allow neither
exponential-like nor logarithmic-like nonlinearities. On the other hand, in
[13], we recently studied the sublinear case, for any nonnegative (nontrivial)
m and also weakening the conditions on φ.

Our aim in this article is to deal with the superlinear case. Here, we shall
even allow m to change sign in Ω as long as its negative part is small, and
we shall also be able to treat nonlinearities φ that are not covered by [2,19,
21]. We shall rely on the well-known Guo-Krasnoselskĭı fixed point theorem
combined with some estimates derived in [13].

In the next section, we compile some auxiliary results, while in Sect. 3,
we state and prove our main theorem. Finally, at the end of the paper, we
give several examples illustrating our results and their relation with the ones
in [2,19,21] (see also Remark 3.2).

2. Preliminaries

Let φ : R → R be an odd increasing homeomorphism and h ∈ L1(Ω). We
start considering the problem{

−φ(v′)′ = h(x) in Ω,
v = 0 on ∂Ω.

(2.1)

Remark 2.1. For every h ∈ L1(Ω), (2.1) has a unique solution v ∈ C1(Ω) such
that φ(v′) is absolutely continuous and that the equation holds pointwise, a.e.
x ∈ Ω. In fact,

v(x) =
∫ x

a

φ−1

(
ch −

∫ y

a

h (t) dt

)
dy, (2.2)

where ch is the unique constant such that v(b) = 0. Furthermore, the solution
operator Sφ : L1(Ω) → C1(Ω) is completely continuous and nondecreasing,
see [4, Lemma 2.1] and [13, Lemma 2.2]. In addition,

0 ≤ ch ≤
∫ b

a

h (2.3)

whenever h ≥ 0 in Ω (see [13, (2.5)]).

Let us now introduce some notation. For h ∈ L1(Ω) with 0 ≤ h �≡ 0,
define

Ah := {x ∈ Ω : h(y) = 0 a.e. y ∈ (a, x)} ,
Bh := {x ∈ Ω : h(y) = 0 a.e. y ∈ (x, b)} ,
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and

αh :=
{

supAh if Ah �= ∅,
a if Ah = ∅,

βh :=
{

inf Bh if Bh �= ∅,
b if Bh = ∅,

θh := min
{

1
βh − a

,
1

b − αh

}
, θh :=

αh + βh

2
.

We note that since h �≡ 0, θh is well defined and αh < βh (and hence,
θh ∈ (αh, βh)). Observe also that if g ∈ C(Ω) with g > 0 in Ω, then θh = θhg

and θh = θhg. We also set

δΩ(x) := dist(x, ∂Ω) = min(x − a, b − x).

We shall employ the following estimates several times in the sequel. For
the proof, see [13, Lemma 2.3 and its proof].

Lemma 2.2. Let 0 ≤ h ∈ L1(Ω) with h �≡ 0. Then, in Ω it holds that

θh ‖Sφ(h)‖∞ δΩ ≤ Sφ(h) ≤ φ−1

(∫ b

a

h

)
δΩ. (2.4)

In addition,

‖Sφ(h)‖∞ ≥ min

{∫ θh

a

φ−1

(∫ θh

y

h

)
dy,

∫ b

θh

φ−1

(∫ y

θh

h

)
dy

}
> 0. (2.5)

We conclude this section with a particular case of the well-known Guo-
Krasnoselskĭı fixed-point theorem (e.g., [11, Theorem 2.3.4]).

Lemma 2.3. Let X be a Banach space and let K be a cone in X. Let Ω1,Ω2 ⊂
X be two open sets with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that T : K ∩
(Ω2�Ω1) → K is a completely continuous operator and

‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω2, ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω1.

Then, T has a fixed point in K ∩ (Ω2�Ω1).

3. Main results

Let us introduce the following assumptions on φ and f :
H1. There exist t, t > 0 and two increasing homeomorphisms ϕ : [0, t] →

[0, ϕ(t)] and ψ : [t,∞) → [ψ(t),∞), such that

φ(tx) ≥ ϕ(t)φ(x) for all t ∈ [0, t], x ≥ 0, (3.1)

φ(tx) ≤ ψ(t)φ(x) for all t ∈ [t,∞), x ≥ 0. (3.2)
F1. There exist t0, k1, k2, q1, q2 > 0 such that

f(t) ≥ k1t
q1 for all t ≥ 0 and f(t) ≤ k2t

q2 for t ∈ [0, t0]. (3.3)

We shall write as usual m = m+ − m− with m± := max(±m, 0). Let us
also set C1

0(Ω) := {u ∈ C1(Ω) : u = 0 on ∂Ω} and denote the interior of its
positive cone by

P◦ :=
{
u ∈ C1

0(Ω) : u > 0 in Ω and u′(b) < 0 < u′(a)
}

.
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Theorem 3.1. Let m ∈ L1 (Ω) with m+ �≡ 0. Assume H1 and F1 with

limt→∞
tq1

ψ(t)
= ∞ and limt→0+

tq2

ϕ(t)
= 0. (3.4)

Then, there exists δ0 > 0 such that for all δ ∈ [0, δ0] the problem{
−φ(u′)′ = (m+(x) − δm−(x))f(u) in Ω,
u = 0 on ∂Ω,

admits a solution u ∈ P◦.

Remark 3.2. (i) A quick look at the final two paragraphs in the proof of
Theorem 3.1 shows that one can replace the last conditions in (3.3) and
(3.4) by

f is increasing in (0, t0) for some t0 > 0 and limt→0+
f (t)
ϕ(t)

= 0.

(ii) In the particular case of the p-Laplacian, i.e., φ(t) = |t|p−2
t with p > 1,

clearly H1 (with ϕ(t) = ψ(t) = tp−1) is true. Moreover, (3.4) is valid
if and only if q1, q2 > p − 1, so that here we get the standard growth
condition that characterizes superlinear problems.

Proof. Let t, t, t0, k1, k2, q1, q2 > 0 and ϕ,ψ be as in H1 or F1, as appropriate.
For δ ≥ 0, let mδ := m+ − δm− and K be the cone given by

K :=
{

v ∈ C(Ω) : v ≥ θm+

2
‖v‖∞ δΩ in Ω

}
, (3.5)

and for v ∈ K define Tδv := Sφ(mδf(v)). Observe that, C1
0(Ω) ∩ (K�{0}) ⊂

P◦.
Let BR(0) be the open ball in C(Ω) with radius R and centered at 0. We

shall first show that, for any fixed R > r > 0, Tδ : K∩
(
BR(0)�Br(0)

)
→ K if

δ is small enough. Indeed, let uδ := Tδv and C := maxt∈[0,R] f(t). Integrating
over (a, x) and recalling that Sφ and φ are nondecreasing we obtain

φ(u′
δ(x)) − φ(u′

0(x)) ≤
∫ x

a

φ(u′
δ)

′ − φ(u′
0)

′ = δ

∫ x

a

m−f(v) ≤ δC

∫ b

a

m−,

and integrating over (x, b) and arguing as above we have φ(u′
0(x))−φ(u′

δ(x)) ≤
δC

∫ b

a
m−. Then, letting x → a+ we infer that

|φ(u′
δ(a)) − φ(u′

0(a))| ≤ δC

∫ b

a

m−. (3.6)

Now, by (2.2), u′
δ(x) = φ−1(cmδf(v) −

∫ x

a
mδf(v)) with cmδf(v) = φ(u′

δ(a)).
Note also that, (2.3) and (3.6) yield that, for all x ∈ Ω,∣∣∣∣cmδf(v) −

∫ x

a

mδf(v)
∣∣∣∣ ≤ |φ(u′

δ(a))| +
∫ b

a

|mδ| f(v) ≤ 2C

∫ b

a

|mδ|

and ∣∣∣∣cmδf(v) −
∫ x

a

mδf(v) −
(

cm+f(v) −
∫ x

a

m+f(v)
)∣∣∣∣ ≤ 2δC

∫ b

a

m−.
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Hence, since φ−1 is uniformly continuous on compact intervals, it follows
that, given any ε > 0, ‖u′

δ − u′
0‖C(Ω) < ε if δ = δ(ε, C,m−) > 0 is sufficiently

small. Moreover, taking this into account we deduce that there exists some
δε > 0 (depending only on ε, C and m−) such that

‖uδ − u0‖C1(Ω) < ε for all δ ∈ [0, δε]. (3.7)

On the other side, from the first condition in F1, for every 0 �≡ v ∈ K
we have that f(v) > 0 in Ω. Thus, employing the first inequality in (2.4) we
get

u0 ≥ θm+f(v) ‖u0‖∞ δΩ = θm+ ‖u0‖∞ δΩ in Ω.

Also, since v ∈ K�Br (0), from (2.5) and F1 we deduce that ‖u0‖∞ ≥ c
for some c > 0 depending on r but not on v. Thus, we may choose 0 <

η ≤ θm+

2 ‖u0‖∞. So, having in mind (3.7) and that u0 ∈ P◦ and Sφ is
nondecreasing,

uδ ≥ u0 − ηδΩ ≥
(
θm+ ‖u0‖∞ − η

)
δΩ ≥ θm+

2
‖u0‖∞ δΩ ≥ θm+

2
‖uδ‖∞ δΩ in Ω

for all δ ∈ [0, δ0], for some δ0 > 0 (not depending on v). Therefore, for such δ,
Tδ(v) ∈ K as asserted. Furthermore, taking into account (2.5), making δ0 > 0
smaller if necessary and reasoning as above we may also derive that

‖uδ‖∞ ≥ 1

2
min

{∫ θm+

a

φ−1

(∫ θm+

y

m+f(v)

)
dy,

∫ b

θm+

φ−1

(∫ y

θm+

m+f(v)

)
dy

}
.

(3.8)
Note also that, since v → mδf(v) is continuous from C(Ω) into L1(Ω), Remark
2.1 yields that Tδ is completely continuous.

On the other hand, (3.2) implies that tφ−1(x) ≤ φ−1(ψ(t)x) for all
t ∈ [t,∞) and x ≥ 0. In addition, since ψ : [t,∞) → [ψ(t),∞) is an homeo-
morphism, ψ−1(t) ≥ t for all t ≥ ψ(t). Hence,

ψ−1(t)φ−1(x) ≤ φ−1(tx) for all t ∈ [ψ(t),∞), x ≥ 0. (3.9)

Let us now define

M1 :=
∫ θm+

a

φ−1

(
k1

(
θm+

2

)q1 ∫ θm+

y

m+δq1
Ω

)
dy,

M2 :=
∫ b

θm+

φ−1

(
k1

(
θm+

2

)q1 ∫ y

θm+

m+δq1
Ω

)
dy,

M :=
2

min {(M1,M2)}
.

By the first condition in (3.4), there exists tψ ≥ max{t, ψ(t)} such that
tq1 ≥ Mq1ψ(t) for all t ≥ tψ. Recalling that ψ : [t,∞) → [ψ(t),∞) is an
homeomorphism, there also exists some t̃ ≥ tψ such that ψ−1(t̃) ≥ tψ. Hence,
ψ−1(t̃) ≥ Mt̃1/q1 . Let us fix R := t̃1/q1 . Then, Rq1 ≥ ψ(t) and

ψ−1(Rq1) ≥ MR. (3.10)



 134 Page 6 of 9 U. Kaufmann and L. Milne

We claim that ‖Tδv‖∞ ≥ ‖v‖∞ for v ∈ K∩∂BR(0). Indeed, since φ−1 is
increasing, taking into account (3.8), F1, (3.5), (3.9) and (3.10) we see that

‖Tδv‖∞ ≥ 1

2
min

{∫ θ
m+

a
φ−1

(
k1

∫ θ
m+

y
m+vq1

)
dy,

∫ b

θ
m+

φ−1

(
k1

∫ y

θ
m+

m+vq1

)
dy

}

≥ 1

2
min

{∫ θ
m+

a
φ−1

(
k1

(
θm+

2
‖v‖∞

)q1 ∫ θ
m+

y
m+δq1

Ω

)
dy,

∫ b

θ
m+

φ−1

(
k1

(
θm+

2
‖v‖∞

)q1 ∫ y

θ
m+

m+δq1
Ω

)
dy

}

≥ 1

2
ψ−1

(
‖v‖q1∞

)
min {M1, M2}

≥ ‖v‖∞ .

We notice next that (3.1) says that tφ−1(x) ≥ φ−1(ϕ(t)x) for all t ∈ [0, t]
and x ≥ 0, and therefore,

ϕ−1(r)φ−1(x) ≥ φ−1(rx) for all r ∈ [0, ϕ(t)], x ≥ 0. (3.11)

Let

ε :=

(
2

(b − a) φ−1(k2

∫ b

a
m+)

)q2

> 0.

The second condition in (3.4) tells us that there exists tϕ ≤ t such that
tq2 ≤ εϕ(t) for all t ≤ tϕ. Thus, ϕ−1(t) ≤ (εt)1/q2 for t ≤ ϕ(tϕ) and hence

ϕ−1(rq2) ≤ ε1/q2r for all r ≤ ϕ(tϕ)1/q2 . (3.12)

We choose now r := min
{

t0, ϕ (tϕ)1/q2 , R/2
}

. Having in mind that Sφ

and φ−1 are nonincreasing, the second inequality in (2.4), F1, (3.11) and
(3.12) we find that for v ∈ K ∩ ∂Br(0),

0 ≤ Tδv = Sφ(mδf(v)) ≤ Sφ(m+f(v)) ≤ φ−1

(∫ b

a

m+f(v)

)
δΩ

≤ φ−1

(
k2 ‖v‖q2

∞

∫ b

a

m+

)
δΩ ≤ ϕ−1 (‖v‖q2

∞) φ−1

(
k2

∫ b

a

m+

)
b − a

2

≤ ‖v‖∞ .

Thus, ‖Tδv‖∞ ≤ ‖v‖∞ for such v. Now, from a direct application of Lemma
2.3, the theorem follows. �

Let us write as above mδ = m+ − δm−. As an immediate consequence
of Theorem 3.2 we have the following corollary.

Corollary 3.3. Let m, φ and f be as in Theorem 3.2, and let λ > 0. Then,
there exists δ0 = δ0(λ) > 0 such that for all δ ∈ [0, δ0] the problem{

−φ(u′)′ = λmδ(x)f (u) in Ω,
u = 0 on ∂Ω,

admits a solution u = uλ ∈ P◦. Moreover, uλ can be chosen such that

lim
λ→0+

‖uλ‖C(Ω) = ∞. (3.13)
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Proof. The existence assertion is clear. Suppose now (3.13) does not hold.
Then, recalling that Sφ is nondecreasing and Lemma 2.2 we get

0 ≤ uλ = Sφ(λmδf(uλ)) ≤ Sφ(λm+f(uλ)) ≤ φ−1

(
λ

∫ b

a

m+f(uλ)

)
δΩ → 0

uniformly in Ω as λ → 0+. In other words, uλ → 0 in C(Ω). But this is
not possible because in the proof of the above theorem we can choose r
uniformly away from 0 for all λ close to 0 (see the last two paragraphs of the
aforementioned proof). �

Examples. We assume without loss of generality that x ≥ 0.
Let η : (0,∞) → (0,∞) be a continuous and nonincreasing function

with limx→0+ xpη(x) = 0 for some p > 0. Define

φ(x) := xpη(x) for x > 0, φ(0) := 0.

Then, clearly φ fulfills H1 with t = t = 1 and ϕ(t) = ψ(t) = tp. Moreover,
(3.4) holds if and only if q1, q2 > p.

Note that, the above paragraph implies that if φ : [0,∞) → [0,∞) is
an increasing homeomorphism such that φ(x)/xp is nonincreasing for some
p > 0, then φ satisfies H1.

Let us exhibit next a few particular cases. We notice that in all the
examples below it is easy to check that φ : [0,∞) → [0,∞) is indeed an
increasing homeomorphism.

(e1) Let

φ(x) := xp1 + xp2 , p1 ≥ p2 > 0.

Since φ(x)/xp1 is nonincreasing, we see that H1 holds.
(e2) Let

φ(x) :=
xp1

1 + xp2
, p1 > p2 > 0.

Then, φ(x)/xp1 is decreasing, and therefore, H1 is valid.
(e3) Let

φ(x) := (ln(x + 1))p, p > 0.

A few computations show that φ(x)/xp is decreasing and thus H1 is true. Let
us observe that since

lim
x→∞

φ(tx)
φ(x)

= 1 for all t > 0, (3.14)

it is easy to check that φ does not satisfy the conditions in [2,19,21].
(e4) Let

φ(x) := arsinhx.

Then, φ(x)/x is decreasing and so H1 holds. Since here φ also satisfies (3.14),
φ does not meet the assumptions in [2,19,21].

(e5) The functions

φ(x) := x(|ln x| + 1) and φ(x) := x − ln(x + 1)
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satisfy H1 since in both cases φ(x)/x2 is decreasing.
(e6) Let β : [0,∞) → (0,∞) be continuous and concave. Then, for any

p > 0, φ(x) := xpβ(x) fullfils H1 with ϕ(t) = ψ(t) = tp+1. Indeed, this follows
from the fact that β(x)/x is nonincreasing.
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