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ABSTRACT The development and maintenance of multicellular organisms require
specialized coordination between external cellular signals and the proteins receiving
stimuli and regulating responses. A critical role in the proper functioning of these
processes is played by endosomal trafficking, which enables the transport of pro-
teins to targeted sites as well as their return to the plasma membrane through its
essential components, the endosomes. During this trafficking, signaling pathways
controlling functions related to the endosomal system are activated both directly
and indirectly. Although there are a considerable number of molecules participating
in these processes, some are more known than others for their specific functions.
Toward the end of the 1990s, Smad anchor for receptor activation (SARA) protein
was described to be controlling and to facilitate the localization of Smads to trans-
forming growth factor � (TGF-�) receptors during TGF-� signaling activation, and,
strikingly, SARA was also identified to be one of the proteins that bind to early en-
dosomes (EEs) participating in membrane trafficking in several cell models. The pur-
pose of this review is to analyze the state of the art of the contribution of SARA in
different cell types and cellular contexts, focusing on the biological role of SARA in
two main processes, trafficking and cellular signaling, both of which are necessary
for intercellular coordination, communication, and development.
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SARA PROTEIN: AN OVERVIEW OF ITS BIOCHEMICAL FEATURES AND CELLULAR
FUNCTIONS

Smad anchor for receptor activation (SARA) is a protein of 180 kDa ubiquitously
expressed during both the developmental and the adult stages of several organ-

isms, including Drosophila melanogaster, mouse, rat, and humans (1–3). In humans,
SARA has been detected in the heart, brain, placenta, lung, liver, muscle, kidney, and
pancreas and thus appears to be widely expressed (1, 4). In mouse, three predicted
SARA proteins have been described and are named SARA1 (the full-length version,
encoded by 17 exons and comprising 1,397 amino acids), SARA2 (lacking the Smad
binding domain [ΔSBD], encoded by 16 exons, and comprising 1,338 amino acids), and
SARA3 (lacking the Fab1, YOTB, Vac1, and EEA1 protein [FYVE] domain [ΔFYVE], encoded
by 16 exons, and comprising 706 amino acids). Mouse SARA1 and SARA2 transcripts are
splicing variants homologous to the human SARA isoforms. In contrast, SARA3 has not
been detected either in humans or in mice (4) (Fig. 1). An association of their temporal
and spatial expression with likely differential roles of these two SARA isoforms (SARA1

and SARA2) has not yet been analyzed. The commercial antibodies used to study SARA
recognize only the N-terminal domain, which is shared by SARA1 and SARA2. Also, only
Tang et al. (5) specifically use the SARA2 isoform (expressed ectopically) as a negative
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control of the interaction with transforming growth factor � (TGF-�) signaling. Given
this, the association is merely hypothetical, and further studies are needed to answer
this question.

Structurally, SARA belongs to the large family of proteins containing the Fab1, YOTB,
Vac1, and EEA1 protein (FYVE) domain (1), which confers the ability to interact with
phosphatidylinositol 3-phosphate (PI3P), a resident phospholipid of membranes highly
enriched in endosomes and directly involved in the recruitment of proteins, membrane
dynamics, and trafficking regulation (6, 7). The fact that SARA contains a FYVE domain
and the fact that this protein localizes on early endosomes (EEs) suggest that it plays
a role in trafficking. SARA was described to be a novel member involved in the
endosomal trafficking pathway in neurons and other cellular models (8, 9).

In addition to trafficking, SARA is also able to mediate cell signaling. For this, SARA
contains structural motifs for biochemical interactions, including a Smad binding
domain (SBD), to interact with the transcription factors Smad2 and Smad3 (Smad2/3),
and a C-terminal region, required for interaction with the TGF-� type I transmembrane
receptor (T�RI) (1, 10). Both domains are indispensable for promoting the interaction
of cytosolic Smad2/3 with the T�RI on the EE membrane, turning on the signaling
through Smad2/3 phosphorylation, and further nuclear translocation (1). However,
SARA may also inactivate TGF-� signaling by recruitment of the catalytic subunit of
protein phosphatase 1 (PP1c) (11) (Fig. 1). The regulatory context for this antago-
nistic effect of SARA on TGF-� signaling is far from being understood. However, we
discuss this phenomenon below in the section “Going out of endosomal trafficking:
differential roles of SARA for cell signaling.” Although proteins interacting with
SARA and the protein belonging to the TGF-� pathway have been widely described,
SARA may also interact with several other molecular partners, briefly summarized in
Table 1.

CONTRIBUTION OF SARA TO EE-MEDIATED TRAFFICKING

Trafficking mediates a broad range of physiological processes, such as differentia-
tion, proliferation, development, and apoptosis, among others. It is carried out via two
basic routes, depending on whether cargo is moved out of the cell (exocytosis) or into
it (endocytosis).

FIG 1 Representative image of the SARA isoforms (SARA1 and SARA2) present in mouse with their
domains and sites of interaction with different proteins, such as Smad2/3, PP1c, and T�RI. aa, amino
acid.
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Ligand-receptor complexes located at the plasma membrane are endocytosed by
different mechanisms to transduce extracellular stimuli into the cell (12). The best-
known mechanism for cargo internalization is clathrin-mediated endocytosis (CME), a
process dependent on the adaptor protein clathrin and several associated proteins to
load cargo in clathrin-coated vesicles (13, 14). Canonical examples of this transport
include internalization of the transferrin receptor (TfR), the epidermal growth factor
receptor (EGFR), the �2-adrenergic receptor (�2AR), and TGF-� receptors (T�Rs)
(15–19). However, clathrin-independent routes have also been described. The most
representative example of this is caveola/raft-dependent endocytosis (20–22), an
internalization mechanism mediated by a lipoprotein system of lipid rafts coated
with caveolins and associated cavins (which are adaptor proteins). Several receptors
located at the plasma membrane are internalized by this mechanism, including G
protein-coupled receptors (GPCRs), receptor-tyrosine kinases (RTKs), T�Rs, Wnt, and
Notch (18, 23–25).

Independently of the internalization route, endocytosed molecules are sorted into
endosomes containing different types of Rabs, a family of small GTPases belonging to
the superfamily of Ras proteins, directly involved in trafficking (26). In their active state
(bound to GTP), Rabs recognize molecular targets that are recruited to endosomes (26,
27). Some of these Rabs are selectively expressed in specific endosome populations,
defining different pools of these. This property makes Rabs good molecular markers for

TABLE 1 Endosomal proteins directly or indirectly associated with SARA that participate in certain cellular functions

Protein Associated function(s) of SARA (reference[s]) SARA domain Cell types Localization

Erbin (ErbB2/Her2-
interacting protein)

Associates with Smad2/3 and is a negative
modulator of TGF-� signaling, blocking
oligomerization of Smad2/3 with Smad4
(88, 89). Competes with ERBIN for binding
to Smad2/3; overexpression of SARA
reverses the inhibitory effect of ERBIN on
Smad2/3-dependent transcription (90).

Amino acids 730–926
(ERBIN-binding
domain)

HEK 293, NIH 3T3, a
keratinocyte cell line
from adult human skin
(HaCaT)

Early endosomes

RNF11 (RING finger
protein 11)

Competes with Smad7 binding to Smurf2,
thereby disrupting the Smurf2-Smad7
complex and restoring TGF� signaling (91).
The RNF11-SARA complex is associated
with endosomal sorting complexes
required for transport (ESCRT-0) core
proteins, participating both structurally and
functionally in the ESCRT-dependent
lysosomal degradation of receptors (T�Rs
and EGFR) (92, 93). Perturbation of RNF11
and SARA levels decreases EGFR
degradation, thereby generating conditions
that may favor their mitogenic signaling
(EGFRs that are constitutively active in
certain cancers) (94, 95).

Amino acids 667–907 HEK 293, human umbilical
vein endothelial (HUVE)

Early, late, and
recycling
endosomes

cPML (cytoplasmic
promyelocytic
leukemia protein)

An essential function in the modulation of
TGF-� signaling in the cytosolic fraction
that is profoundly impaired in the acute
promyelocytic leukemia (APL) blasts (96,
97). Modulates TGF-� signaling, facilitating
the localization of the T�RI-T�RII-SARA-
Smad complex in the early endosome (97).
Physically interacts with Smad2/3 and
SARA, acts as a bridging factor between
them, and is necessary for the formation of
a stable and functional SARA-Smad2/3
complex (97).

No specific direct
interaction

HEK 293T, COS-1, mouse
embryonic fibroblasts
(MEFs)

Discrete
cytosolic
punctate
regions

Hgs (hepatocyte growth
factor-regulated
tyrosine kinase
substrate)

FYVE domain protein involved in Smad
activation through cooperation with SARA
(98). Hgs and SARA, both of which bind to
Smad2, synergistically cooperate in activin
signaling (98). Both SARA and Hgs are
reported to attenuate TGF� signaling (99).

No specific direct
interaction

HepG2, HEK 293T, human
CD4� T, a human
keratinocyte cell line
(HaCaT)

Early endosomes

Endofin May fulfill scaffolding functions together with
SARA to promote R-Smad-Smad4 complex
formation (100).

No specific direct
interaction

HepG2, Hep3B (human
hepatoma-derived
containing hepatitis B
virus surface antigen)

Early endosomes
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defining the identity of endosomes (28). However, there are reports of multiple
combinations of Rabs on the same endosomal membrane, such as the simultaneous
presence of Rab4, Rab5, and Rab11 (29–31). Mosaics of Rabs give endosomes biochem-
ical and functional diversity (30), which may enable them to sort cargo for two main
purposes: first, to regulate intracellular signaling and, second, to define whether cargo
is rapidly recycled back to the plasma membrane or to final degradation through late
endosomes and lysosomes (32, 33).

As we previously mentioned, the finding of the FYVE domain in SARA was the first
indication of its binding to the EE membrane (1, 7, 8). Specifically, SARA has been found
on Rab5 EEs. This pool of EEs receives cargo before it is destined either to rapid
recycling or to lysosome-dependent degradation, an early step in cargo internalization
(8, 9, 34, 35). However, several reports have shown the presence of SARA on EEs lacking
either Rab5, Rab11, or EEA1 (9, 18, 34, 36). The physiological importance of these EE
pools, as well as their spatiotemporal regulation, remains unclear and requires further
research (37).

In addition to its location in the EE membrane, SARA has been proposed to be a key
protein in EE dynamics and morphology. The gain of function of SARA after ectopic
expression induced EE enlargement (38) and reduced the recycling of the transferrin
receptor (TfR) to the cell surface, decreasing transferrin uptake in HEK 293T and MDCK
cells, a phenotype previously observed after Rab5 overexpression (8, 38). This phenom-
enon was reversed after expression of Rab5-GDP, suggesting a functional link between
SARA and Rab5 on EEs (8). SARA thus appears to play a crucial role in both EE dynamics
and morphology.

CONTRIBUTION OF SARA-MEDIATED ENDOCYTOSIS TO NEURONAL
DEVELOPMENT

Neurons present two different domains required for neurotransmission, the axon
and the somatodendritic compartment, which makes neurons one of the most polar-
ized cell types found in animal biology. The proper development and maintenance of
these compartments are crucial for the physiology of the nervous system. To achieve
this morphology, neurons experience several transformations throughout their
lives, in a process known as “the establishment of neuronal polarity” (39). Briefly,
neuronal development in vitro begins with spheres surrounded by an actin-rich
structure (lamellipodium). Subsequently, neurons develop several minor neurites,
conserving cellular symmetry. Then, one of these neurites grows faster than the
others, breaking the symmetry of the cell (polarization) and developing the axon of
the neuron (40–42). Neuronal polarization in vitro is comparable to the same
phenomenon in vivo (43, 44).

For all these reasons and unlike in unpolarized cells, trafficking in neurons has
specific adaptations (45, 46). Neural endosomes are also polarized. For example, an
EEA1-positive EE population segregates to the somatodendritic domain of hippocam-
pal neurons, while Rab5-positive endosome populations are located in both domains,
the somatodendritic domain and the axonal compartment (47, 48).

Considering the participation of SARA in the endosomal system, several studies have
explored the role of SARA in neuronal trafficking models both in vitro and in vivo. SARA is
expressed in cultured hippocampal neurons and is uniformly distributed throughout the
cell body, minor neurites, axon, and axonal growth cone. Functionally, SARA regulates
neuronal development (9, 49). The loss of function of SARA in cultured neurons transfected
with a short hairpin RNA targeting SARA (shSARA) or isolated from the SARA knockout
(SARA-KO) mouse led to the formation of long supernumerary axons, a characteristic
phenotype observed after the loss of polarization mechanisms (9).

In neurons, SARA has been found on endosomes carrying EEA1, Rab5, Rab4, and
Rab11 (9), in agreement with reports suggesting at least 3 different populations of
endosomes (either containing SARA or not): (i) endosomes carrying either EEA1 or
Rab11, (ii) endosomes containing SARA, in addition to either EEA1 or RAb11, and (iii)
endosomes carrying only SARA (8, 9). The suppression of SARA changed the distribu-
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tion of recycling endosomes (REs) and altered the delivery of somatodendritic compo-
nents, such as TfR (50) and the axonal protein L1, a cell adhesion molecule strongly
implicated in cell migration, adhesion, neurite growth, myelination, and neuronal
differentiation (51, 52). SARA also regulates the trafficking of rhodopsin-carrying vesi-
cles in photoreceptors of the rat eye, targeting rhodopsin to nascent discs at the base
of the outer segment (OS), a compartment specialized in light absorption (2). Together,
this evidence supports the notion that SARA regulates and promotes axonal and
dendritic development by delivering specific molecules mediated by its role in endo-
somal trafficking.

The genetic suppression of SARA in vivo after in utero electroporation of shSARA in
embryonic mouse brains suggests that the loss of SARA function impairs neuronal
migration during neocortex development (49). Postnatal analysis of in utero-modified
brains (up to postnatal day 15 [P15]) revealed that cortical neuronal migration is still
incomplete, suggesting a strong delay in neuronal development after embryonic
knockdown of SARA. This suppression leads to an enhancement of L1 at the cortical
surface, increasing contacts with neighboring neurites and changing the adhesion
properties of migrating neurons, which may be explained by the abnormal delivery of
L1 to the growing axons after SARA suppression. In addition, morphological changes
were also detected after silencing SARA expression in vivo, affecting both neuronal
orientation and the transition from multipolar to bipolar morphologies during cortical
development through an L1-mediated mechanism (49).

Research on D. melanogaster and zebrafish revealed a protein that is homologous to
SARA (named Sara) and, therefore, that has developmental functions homologous to
the developmental functions of SARA in rodents, and it has been described that Sara
participates during the division of neural precursors of the spinal cord in zebrafish (53).
Asymmetric division of cells and neural precursors is crucial during early stages of
embryonic development. In zebrafish, a daughter cell may differentiate into a neuron
(called an “n cell”) or divide again before differentiation into two neurons (called a “p
cell”). In this context, differential levels of Sara endosomes in daughter cells determine
the fate of the neural precursors, suggesting that Sara is essential for cell fate commit-
ment in this type of lineage (53). Developmental studies using wing discs of D.
melanogaster revealed that Sara accumulates in EEs, colocalizing with Rab5 (36). In
addition, the phosphorylation of SARA is required during sensory organ precursor
(SOP) division, controlling the dynamics of Sara-containing endosomes from the
spindle during asymmetric division (54, 55) Finally, it has been described that the
molecular motor Kinesp98A (a homolog of the mammalian KIF16B) is located in
Sara-containing endosomes, bringing them to the central axis of the cell during
division, which suggests that SARA participates in SOP development in D. melano-
gaster (56).

In summary, SARA mediates the trafficking of the neural and nonneural cargo
required for development. Clearly, SARA is part of a highly dynamic network of
endosomes that sort and deliver components for both neuronal and nonneuronal
physiology. It seems that different combinations mixing SARA and Rab isotypes define
the usefulness of endosomes, impacting their performance at both the endosomal
trafficking and cell function levels. Further analysis is required to identify the context
and the requirements for the assembly of these combinations.

GOING OUT OF ENDOSOMAL TRAFFICKING: DIFFERENTIAL ROLES OF SARA FOR
CELL SIGNALING

Although SARA has been linked to the trafficking of T�R-associated components,
several articles have shown that it also participates in nontrafficking signaling path-
ways. In this section, we discuss emerging concepts in intracellular signaling mediated
by SARA obtained from different experimental models, focusing on the TGF-�, Notch/
Delta, and epidermal growth factor (EGF) pathways.

Evidence of cooperation between SARA and TGF-� signaling. TGF-� is involved
in numerous cellular processes, such as growth inhibition, proliferation, cell migration,

Minireview Molecular and Cellular Biology

December 2018 Volume 38 Issue 24 e00446-18 mcb.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

cb
 o

n 
30

 J
an

ua
ry

 2
02

3 
by

 4
5.

71
.5

.1
0.

https://mcb.asm.org


invasion, neuronal polarity, the epithelial-to-mesenchymal transition (EMT), remodeling
of the extracellular matrix (ECM), and immune response suppression (57, 58). The
binding of soluble TGF-� to its receptor in the membrane leads to the formation of
receptor heterocomplexes, in which T�RII phosphorylates T�RI (59). T�RI then acquires
a conformation that facilitates its activation and assembly with Smad2/3 at their
COOH-terminal domains (60). Subsequently, Smad2/3 rapidly dissociates from the
receptor to form a trimeric complex with the common mediator Smad4 (through
phosphorylation of threonine 276) (61). This complex translocates to the nucleus, acting
in cooperation with several transcription factors, coactivators, and corepressors to
regulate the expression of target genes, such as those for fibronectin I, Rho-guanine
nucleotide exchange factor 7 (GEF7), fibroblast growth factor 1, and glucocorticoid
receptor DNA binding factor 1, among others (62–64).

The activation of TGF-� signaling can be switched off by the phosphatase PP1c,
whose function is to dephosphorylate T�RI by a negative feedback mechanism that
regulates TGF-� signaling. The formation of a complex between growth arrest and DNA
damage-inducible protein (GADD34) and Smad7, with the consequent recruitment of
PP1c to the site where T�RI is located, allows this regulation (65). In addition, T�RI can
also be dephosphorylated by the protein phosphatase 2A (PP2A) (66).

The participation of SARA in TGF-� signaling is controversial. On the one hand, there
is evidence supporting the hypothesis that SARA is necessary for TGF-� signaling, based
on the following empirical data. First, SARA presents a Smad binding domain (SBD), by
which it interacts with Smad2/3, a member of TGF-� signaling (10, 67). Second, the
C-terminal domain of SARA allows an association with T�RI. It should be noted that
SARA may interact with T�RI regardless of the binding of Smad2, as has been reported
using Mv1Lu and COS-1 cells (1). Third, SARA also participates in the regulation of the
subcellular distribution of Smad2/3. SARA helps to expose Smad2/3 to the activated
T�RI complex for subsequent phosphorylation (7). Finally, SARA recruits PP1c through
its phosphate binding domain (PBD). Experiments in D. melanogaster showed that
overexpression of a mutant form of SARA (SARA-F678A, with a mutation within the PBD
domain that prevents interaction with PP1c) results in the inhibition of PP1c recruit-
ment to the TGF-� complex and, consequently, T�RI hyperphosphorylation. Similar
results were obtained in COS-7 cells (11) (Fig. 2).

On the other hand, it has been suggested that SARA is dispensable for TGF-�
signaling, based on the following findings. First, a SARA binding-deficient Smad2
mutant was phosphorylated by the tyrosine kinase receptors, suggesting that Smad2
phosphorylation and further activation may be mediated by both SARA-dependent and
-independent mechanisms (68). Second, using B-cell lymphomas, no correlation was
found between SARA expression and the TGF-�-induced phosphorylation levels of
Smads. Similarly, the loss of function of SARA did not affect TGF-�-induced Smad
activation, Smad nuclear translocation, or the expression of TGF-�–target gene expres-
sion in HeLa cells (69). Third, endogenous regulation of SARA is produced by phos-
phatidylinositol 3-kinase (PI3K) activity independently of TGF-�, indicating that the
mechanism of PI3K inhibition-mediated SARA downregulation differs from that induced
by TGF-� in human kidney cells (HCKs) (70). Fourth, the internalization of T�Rs into EEs
is not affected in mouse embryonic fibroblasts (MEFs) derived from SARA mutant mice
lacking the FYVE domain (4). Fifth, the depletion of PI3K isoform PI3K-C2� or Vps34
caused a partial reduction of SARA binding to EEs without affecting Smad2/3 phos-
phorylation, suggesting that a reduction in the association between SARA and EEs does
not compromise Smad2/3 phosphorylation in mouse and human vascular endothelial
cells (71, 72).

Participation of SARA in Notch/Delta signaling. Notch/Delta signaling is an
evolutionarily conserved pathway in multicellular organisms that regulates cell fate
determination during development and maintains adult tissue homeostasis (73).

Using the D. melanogaster model, several studies about Sara participation in
endosome-mediated signaling showed that Sara is associated with phosphatidylinosi-
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tol 3-phosphate (PI3P) in multivesicular endosomes, which are directed to the central
axis of the cell during mitosis and involved in the symmetric partition of decapentaple-
gic (Dpp) signaling molecules (TGF-�-type morphogens) between daughter cells during
fly wing development (3, 36).

With the same model, during asymmetric division of the sensory organ precursor
(SOP), Sara endosomes also segregate asymmetrically during cell division and contain
both the Notch receptor and the Delta ligand, segregating these molecules to daughter
precursors of the external sensory organ cell pIIa (the precursor of the sensory organ
external cells), where Notch signaling is activated (53). Also, changes in Sara expression
cause poor targeting of Notch signaling, disturbing its location in daughter cells,
suggesting that Sara endosomes mediate asymmetric Notch/Delta signaling during the
asymmetric division of SOP (3, 55). These results suggest that SARA is required not only
for endosome segregation but also for the proper distribution of the signaling mole-
cules necessary for development.

Participation of SARA in the EGF signaling pathway. The EGF signaling pathway
is one of the most important pathways that regulate growth, survival, proliferation, and
differentiation in mammalian cells. However, deregulation of the EGF/EGFR axis has
been linked to different forms of pathogenesis, diseases, and cancer development (74).
Recently, a link between SARA and the ubiquitin ligase RNF11, which is involved in the
degradation of EGFR, has been reported in the A431 and HeLa cell lines. This study
suggests that depletion of RNF11 increased the recycling of EGF to the plasma
membrane and enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phos-
phorylation induced by EGF stimulation. Accordingly, the loss of function of SARA traps
the EGF-EGFR complex in EEs, delaying its degradation and favoring ERK1/2 signaling.
These results have expanded knowledge about the roles of SARA, offering new insights
into EGF-EGFR trafficking and its intracellular signaling (75).

SARA thus participates in highly conserved signaling pathways, which regulate
critical processes affecting cellular signaling during developmental and adult stages.

FIG 2 Representative image of the participation of SARA in the TGF-� signaling pathway. Once the
receptor complex has been endocytosed with the TGF-� ligand, SARA binds to T�RI and recruits
Smad2/3, and this is phosphorylated. Then, Smad2/3 binds to Smad4, and together they translocate to
the nucleus and modulate the expression of target genes. On the other hand, the complex formed by
Smad7-GADD34-PP1c acts as a negative regulator of the route, dephosphorylating T�RI.
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An interesting but unexplored issue is whether SARA might be involved in Smad-
dependent pathways, such as signaling of bone morphogenetic protein (BMP), a critical
morphogen for neuroectodermal specification, or even in Notch/Delta signaling in
superior organisms as well as D. melanogaster. Moreover, considering that several of the
phenomena described here also occur in humans, we wonder whether SARA may also
contribute to asymmetric cell division in superior mammals, like that which occurs
during hematopoietic stem cell division in humans, among other examples. These
signaling pathways are also involved in the development of pathologies such as cancer
(76–78); however, little is known about any implication that SARA may have in such
diseases or whether it could be a therapeutic target.

EMERGING EVIDENCE OF SARA PARTICIPATION IN SEVERAL DISEASES

There is evidence that SARA is involved either directly or indirectly in pathological
processes. During the epithelial-mesenchymal transition (EMT), a biological process by
which cells lose their relatively differentiated epithelial characteristics and show in-
creased migratory or synthetic properties (79), changes in SARA expression have critical
consequences in the maintenance of the epithelial phenotype, altering Smad2 and
Smad ubiquitination regulatory factor 2 (Smurf2) expression levels (5, 80, 81). SARA also
regulates high-glucose-induced EMT and extracellular matrix (ECM) excretion, by
modulating the activation of Smad2/3 in renal tubular epithelial cells, positioning
SARA as a potential novel target in pre-EMT stages for the improvement of renal
fibrosis in chronic kidney diseases (5). Stimulation of HEK cells with TGF-� decreases
both SARA and Smad2 expression, producing changes in the cell phenotype and
enhancing the expression of EMT markers, such as smooth muscle �-actin (80). A
similar effect was described in renal tubular epithelial cells after induction of the
EMT phenotype (5).

Interestingly, different disease models have revealed changes in SARA expression
levels. As liver fibrosis develops, SARA expression tends to decrease (82), in contrast to
observations obtained from epithelial cells derived from asthmatic human patients (83),
in synovial fluid fibroblasts of rheumatoid arthritis patients (84), and in subcutaneous
white adipose tissue from type 2 diabetes mellitus-induced obese rats (85), where SARA
expression is upregulated. Moreover, using vascular smooth muscle cells of human
patients with Marfan syndrome, an association between Rab5 and SARA in EEs facili-
tating TGF-� trafficking and signaling in these patients has been shown (86). In
addition, evidence from SARA knockout mice suggests that SARA plays a causal role in
skin carcinogenesis, promoting the dedifferentiation of cells to a malignant cell phe-
notype of skin cancer, suggesting a protective role for SARA in this disease (4). Finally,
both SARA and phospho-Smad3 (p-Smad3) expression are increased in the hippocam-
pus of rats after inducing status epilepticus (SE) by pilocarpine treatment (87). The
suppression of SARA by lentiviral transduction delayed the start of SE through a
mechanism dependent on TGF-�/p-Smad3, suggesting that the SARA/Smad3 pathway
contributes to SE development (87).

Although several reports associate SARA with pathological processes, the studies
correlate SARA expression levels only with pathological phenotypes. Moreover, the
modification in SARA levels seems to be an indirect readout instead of a direct cause
of these pathologies. Further studies are required to analyze the direct participation of
SARA in these or other pathologies.

FINAL COMMENTS

In this review, we have summarized evidence on the role of SARA in both endosomal
trafficking and cellular signaling processes (Table 2), with particular emphasis on the
participation of SARA during neuronal development in several models. We have also
mentioned the link between SARA and pathological processes. While it is true that both
cellular and physiological scenarios may condition the interactions and functions of
proteins, it is interesting that proteins like SARA, associated with endosomes, can
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participate in several signaling pathways, regulating processes from development to
adult homeostasis.

Although an active and critical role of SARA has been demonstrated during neuronal
development, we should highlight that nothing is known about the expression, loca-
tion, and function of SARA in the peripheral nervous system, which could have
significance not only in growth but also in regeneration processes. Further studies are
required to address this point.
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