
Flow force and torque on submerged bodies in lattice-Boltzmann via momentum

exchange

Juan P. Giovacchini1,3∗ and Omar E. Ortiz2,3†
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We review the momentum exchange method to compute the flow force and torque on a submerged
body in lattice Boltzmann methods by presenting a new derivation. Our derivation does not depend
on a particular implementation of the boundary conditions at the body surface and relies on general
principles. After the introduction of momentum exchange method in lattice Boltzmann some new
formulations were introduced to compute the fluid force on static and moving bodies. These formu-
lations were introduced in a rather intuitive, ad-hoc way. In our derivation we recover the proposals
most frequently used, in some cases with minor corrections, gaining some insight into the two most
used formulations. At the end we present some numerical tests to compare different approaches on
well know benchmark test that support the correctness of the formulas derived.
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I. INTRODUCTION

During the last twenty-five years the Lattice-
Boltzmann methods (LBM ) have been greatly developed
in many aspects. Today they can be used, to treat mul-
tiple problems involving both compressible and incom-
pressible flows on simple and complex geometrical set-
tings. For a complete modern review of this topic see
[1].
It is of crucial importance, in many applications that

involve moving bodies surrounded by a fluid flow, to have
a good method or algorithm to compute the flow force
and torque acting on the bodies. By good we mean a
method that is simple to apply, that is accurate and fast,
so as not to spoil the efficiency of the flow computing
method. For a review of LBM methods that involve flow
force evaluation on suspended particles we refer to Sec-
tion 6 of [1] and references therein. We mention below
some particular aspects of this subject that are of interest
for the present article.
The classical way to compute forces, and so torque, on

submerged bodies is via the computation and integration
of the stress tensor on the surface of the body. In LBM
the stress tensor is a local variable, its computation and
extrapolation from the lattice to the surface is computa-
tionally expensive, which ruins the efficiency of the LBM.
However, this method is widely used in LBM [2–4].
In 1994 Ladd introduced the momentum exchange

(ME ) in LBM to compute the flow force on a submerged
body [5, 6]. Ladd’s idea was rather heuristic and very
successful, where the force is obtained by accounting the
exchange of momentum between the surface of the body
and the fluid, the latter being represented by “fluid par-
ticles” whose momentum is easily written in terms of the
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LBM variables that describe the fluid at the mesoscopic
scale. Aidun et. al. [7, 8] introduce some improvements
to Ladd proposal, obtaining a robust method to analyze
suspended solid particles, and excluding the simulation
of the interior fluid with a modified midway bounce-back
boundary condition. Then, using boundary condition
method to arbitrary geometries, Mei et. al. [9] proposed
a method to evaluate the fluid forces from the idea of
ME.
The ME algorithm is specifically designed and adapted

to LBM; it is therefore more efficient than stress integra-
tion from the computational point of view.
The ME algorithm has been tested and applied success-

fully to a variety of problems [6, 9, 10]. For the mentioned
ME methods, except the presented in [8], some accuracy
problems have been detected though, when applied to
moving bodies [4, 11].
Some approaches to improve the methods in problems

with moving bodies were made. Wen et. al. [11], based
in the proposal of [8] gives corrections terms to the forces
given from [9]. Others alternative improved ME meth-
ods, based in the evaluation of force respect to a moving
frame of reference, were proposed in [12].
The main goal of this paper is to provide a formal

derivation of the momentum exchange algorithm. This
new derivation provides insight and small corrections to
some ad-hoc modifications proposed by Mei et. al. [9]
and also to some newer, improved versions of momentum
exchange algorithm presented in [11, 12].
The rest of the paper is organized as follows. In section

II we briefly discuss the lattice-Boltzmann method with
the main purpose of introducing notation; the method
used to treat boundary conditions is also explained in
this section. In Section III, the core of the paper, we
present a derivation of the momentum exchange method
to determine both, the flow force and torque on static or
moving bodies. In section IV we present two numerical
tests where we implement the methods derived in section
III. In section V we make some comments.
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II. THE LATTICE-BOLTZMANN METHOD

In this section we present the basic equations of the
lattice Boltzmann methods with the main purpose of in-
troducing the notation used along the paper. For a thor-
ough description of the Boltzmann equation we refer to
[13, 14]. For a more complete presentation of LBM we
refer to [15–17].
The Boltzmann equation (BE ) governs the time evolu-

tion of the single-particle distribution function f(x, ξ, t),
where x and ξ are the position and velocity in phase
space. The lattice Boltzmann equation (LBE ) is a dis-
cretized version of the Boltzmann equation, where x

takes values on a uniform grid (the lattice), and ξ is
not only discretized, but also restricted small number of
values [18]. By far the models used most frequently are
the ones with collision integral simplified according to the
Bhatnagar, Gross, and Krook (BGK ) approximation [19]
with relaxation time τ . In an isothermal situation and
in the absence of external forces, like gravity, the LBE of
this models read

fi(xA + ciδt, t+ δt) = fi(xA, t)−
1

τ

(

fi(xA, t)

− feq
i (xA, ρ,u, t)

)

,

i = 0, 1, . . . , Q− 1. (1)

Here fi = ωif(xA, ci, t) is the i-th component of the
discretized distribution function at the lattice site xA,
time t, and corresponding to the discrete velocity ci.
ωi is the i-th quadrature weight (explained below), and
Q the number of discrete velocities in the model. In
compressible-flow models the lattice constant δx, that
separate two nearest neighbor nodes, and the time step
δt are related with the speed of sound c/

√
3 by δx = cδt

[30]. The coordinates of a lattice node are xA, where the
integer multi index A = (j, k, l) (or, A = (j, k) in the two-
dimensional case) denotes a particular site in the lattice.
The equilibrium distribution function feq is a truncated
Taylor expansion of the Maxwell-Boltzmann distribution.
The macroscopic quantities such as the fluid mass den-

sity ρ(x, t), and velocity u(x, t), are obtained, in Boltz-
mann theory, as marginal distributions of f and ξf when
integrating over ξ. In LBM this integrals are approxi-
mated by proper quadratures. Specific values of ci’s and
ωi’s, i = 0, 1, . . . , Q − 1, are made so that these quadra-
tures give exact results for the ξ-moments of order 0, 1
and 2 [17, 18]. We have

ρ(xA, t) =

Q−1
∑

i=0

fi(xA, t), (2)

and

ρu(xA, t) =

Q−1
∑

i=0

cifi(xA, t). (3)

In the simulations we present in this paper, we are inter-
ested in incompressible flow problems, where we modify
Eq. 3 according to the quasi-incompressible approxima-
tion presented in [20]. In this approximation ρ is replaced
by ρ0, a constant fluid mass density.
A single time step of the discrete evolution equation

(1) is frequently written as a two-stage process

f̂i(xA, t) = fi(xA, t)−
1

τ

(

fi(xA, t)

− feq
i (xA, ρ,u, t)

)

, (4)

and

fi(xA + ciδt, t+ δt) = f̂i(xA, t). (5)

The computation of f̂i on the whole lattice, Eq. (4), is
called the collision step, while the computation of fi at
t + δt, Eq. (5), on the whole lattice is called streaming

step.

A. Treatment of boundary conditions

Many methods have been proposed in the literature to
implement boundary conditions on moving boundaries
with complex geometries in LBM. The method intro-
duced in [21], later improved in [22, 23], has been exten-
sively tested and is the one we use in the simulations pre-
sented in this paper[31]. We explain this method briefly
in what follows. We emphasize that our derivation of
momentum exchange is completely independent of the
boundary condition method selected to perform the nu-
merical tests.
We consider a body that fills a region Ω with closed

boundary ∂Ω immersed in a fluid flow, and concentrate in
a small portion of the boundary and its surrounding fluid
as shown in Figure 1. The lattice nodes and links are also
shown in the figure. Empty circles represent nodes lying
inside the body region (solid nodes), while filled circles
and squares represent nodes lying in the fluid region at
the time shown. At time t a piece of boundary lie, in gen-
eral, between lattice nodes. Consider a node F on the
fluid with a neighbor node A inside the body. To deter-
mine the values of fi(xF = xA+ciδt, t+ δt), the stream-
ing step needs “non-existent” information coming from
node A. It is the LBM implementation of the bound-
ary conditions what provides this information with the
desired accuracy.
The implementation of boundary conditions in LBM

can be thought, at mesoscopic scale, as the introduction
of a fluid flow inside Ω. It is this artificial flow what pro-
vides the needed information to evolve the outer flow so
that it satisfies the right macroscopic boundary condi-
tions at ∂Ω. Even when the boundary ∂Ω is a physical
boundary for the fluid, the mesoscopic LBM description
of the fluid allow the fluid “particles” to stream across
the surface ∂Ω, both from inside out and viceversa.
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We present here some particular proposals that will be
used in section IV. From now on we refer as “boundary
nodes” those lattice nodes on the fluid side, like F, that
are involved in the imposition of boundary conditions.
The method presented in [21] proposes to determine

f̂i(xA, t) so that the linearly interpolated velocity at the
boundary point B is the correct boundary velocity at
that point. This is

f̂i(xA, t) = (1− χ)f̂ī(xA + ciδt)+

χgī(xA, t) + 2ωīρ
3

c2
cī · uB (6)

where ī denotes the index for the opposite direction to ci

(i.e., cī = −ci), and

gī(xA, t) = ωīρ(xA + ciδt)
(

1 +
3

c2
cī · ubf+

9

2c4
(cī · uF )

2 − 3

2c2
uF · uF

)

(7)

is a fictitious equilibrium distribution function at the
fluid node A. ωi, i = 0, 1, . . . , Q−1, are the weight factors
of the LBM method. uB = u(xB , t) and uF = u(xF , t)
are the boundary and fluid velocities respectively, with
xB the intersection point between the boundary and the
link joining A with F. Different choices of ubf , a velocity
between uB and uF , give alternative values of the param-
eter χ, the weighting factor that controls the interpola-
tion (or extrapolation). To improve numerical stability
[22, 23] propose

ubf = uG = u(xF + ciδt, t), χ =
2∆− 1

τ − 2
, if ∆ <

1

2
,

and

ubf = uF +
3

2∆
(uB − uF ), χ =

2∆− 1

τ + 1
2

, if ∆ ≥ 1

2
,

where 0 ≤ ∆ ≤ 1 is the fractional distance

∆ =
‖xF − xB‖
‖xF − xA‖

. (8)

When the body moves with respect to the lattice, there
may be nodes in the body region at time t that become
fluid nodes at time t+ δt. It is then necessary to assign
initial values to the variables at the new fluid nodes to
evolve them. A practical way to do this is to evolve the
nodes in the body region (solid nodes) so that they have
values assigned when they become fluid nodes. There
are more precise initializations for the variables at these
nodes that change domain, like the one proposed in [10].

B. Forces evaluation in lattice Boltzmann method

It is of great interest to have a robust and accurate
method to compute flow forces in fluid mechanics. Sev-
eral algorithms have been proposed to carry out this in

solid node boundary wall

fluid node

boundary point

boundary node

FIG. 1: Detail of boundary region, surrounding fluid and lat-
tice.

the context of LBM. Many of these procedures fall in one
of the categories: stress integration (SI ) or momentum
exchange (ME ). Stress integration is based on the classi-
cal hydrodynamic approach (see e.g., [2]). In the context
of LBM, the computational performance of ME is higher
than that of SI. In SI one needs to compute the stress ten-
sor in all lattice nodes which are near neighbors of the
body surface. One then needs to extrapolate the stress
tensor to the surface, and finally obtain the total flow
forces on the body as an integral over the whole body
surface. In ME the procedure is simpler. The total force
on the body is the sum of all contributions due to mo-
mentum change, in the directions pointing towards the
body surface, over all boundary nodes. For a review of
LBM applied flow force evaluation on suspended particles
we refer to [1], section 6.
In this section we write forces in general when we mean

either force or torque. The idea of forces evaluation via
momentum exchange in LBM was introduced by Ladd
[5, 6] as a heuristic algorithm by thinking the flow as
composed by “fluid particles” and using particle dynam-
ics to describe their interaction with the boundaries. In
this method, a particle suspension is defined as a shell
where the same boundary condition procedure is applied
for both interior and exterior fluid, using in all cases
a midway bounce-back boundary condition. The forces
evaluations are carried out considering the interior and
exterior fluid.
Based in the works of Ladd, Aidun et. al. [7, 8] in-

troduce some improvements to Ladd proposal, obtain-
ing a robust method to analyze suspended solid particles
with any solid-to-fluid density ratio. They also proposed
a modified midway bounce-back as boundary condition,
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and exclude the simulation of the interior fluid. The
forces are evaluated considering the exterior fluid plus
an impulsive contribution due to the nodes that are cov-
ered or uncovered when the body of interest move inside
the fluid. In the case when the particles interact, as when
they get close to contact, a particular model needs to be
used as the one presented in [24].
Then, from the idea of momentum exchange, Mei et.

al. [9] proposed a method to evaluate the fluid forces
acting on a submerged body using a boundary condition
method applied to arbitrary geometries. They exclude
the simulation of the interior fluid as done in [8]. The di-
rect application of this method to problems with moving
bodies fails to obtain accurate forces evaluation as was
shown in [4, 11]. Some proposals to improve the method
presented in [9] for problems with moving bodies were
made. Wen et. al. [11] presented one of this proposals.
Their correction is based in the introduction of terms
representing impulsive forces. Aidun et. al. [8] give an
improved an accurate method in moving geometry prob-
lems.
The impulsive force terms introduced in [8] and [11],

come from the nodes that are covered or uncovered when
the body moves with respect to the lattice. This cor-
rection provoked some controversies, the main discussion
being about some “noise” that appear in the evaluation
of forces.
Based on the work of Mei et. al. [9], other approaches

to evaluate forces in moving geometries, without the in-
troduction of impulsive terms, were made. No rigorous
proof was presented for these methods. Both [12] and [25]
present a similar methods that are based in computing
the momentum exchange in a reference frame comoving
with the wall.
All the ME based methods cited here were specifically

designed for LBM and have been implemented and tested
in many fluid-mechanical problems. To the knowledge of
the authors there is no formal derivation of them in the
literature. The work of Caiazzo and Junk present an
analysis of ME that uses an asymptotic expansion [26].
In this work we give a demonstration of ME, from a

fluid mechanics perspective, in which some terms previ-
ously introduced as ad-hoc corrections appear naturally.
In particular, we find that the corrections proposed in
[11] and [8] are adequate when evaluating the force in a
reference frame fixed to the lattice. In the spirit of our
deduction of ME, we also deduce the alternative descrip-
tion presented in [12, 25], which is based on a reference
frame comoving with the body.

III. MOMENTUM EXCHANGE METHOD

We want to simulate a fluid flow around a submerged
body, within a region of space that we denote by V. We
consider V to be a fixed region of space as seen on an in-
ertial reference frame. We have covered V with a uniform
constant lattice to solve the fluid motion by applying the

lattice-Boltzmann method as described in section II.
The submerged body occupies a sub-region Ω(t) ⊂ V

that we consider, along the whole simulation, strictly con-
tained in V . As the time dependence indicates, Ω(t)
doesn’t need to be fixed. Ω(t) can move and could even
change shape.
In this section we derive the force and torque that the

flow applies on the body. The movement of the body is
assumed to be prescribed along this derivation, i.e., Ω is
a given function of t. During an actual computation the
body movement is determined by integrating the equa-
tions of motion of the body simultaneously with the flow
equations. The equations of motion of the body take into
account the fluid force on the body, the bulk forces like
weight, etc.

A. Reynolds transport theorem

For future reference we briefly remind here the
Reynolds transport theorem. We consider first the case
of a fluid system. Let ΩS(t) denote a region that encloses
a fluid system, that is a fixed material portion of the flow.
In this case the velocity of the surface ∂ΩS(t) at any point
is precisely the fluid velocity at that point. Let η(x, t)
denote a (volume) density describing some property of
the fluid (like mass density, momentum density, angular
momentum density, etc.). The corresponding extensive
property for the system is then

NS(t) =

∫

ΩS(t)

η(x, t) dx.

The transport theorem states that

dNS

dt
=

∫

ΩS(t)

∂η

∂t
dx+

∮

∂ΩS(t)

ηu · n̂ dS. (9)

Here u denotes the fluid velocity, and n̂ is the outward
directed normal to the boundary ∂ΩS .
Now, let ΩC(t) be a control volume (a region of fluid

defined for convenience that does not necesarily move
with the flow) with arbitrary movement, and let v(x, t)
denote the velocity of a point at the surface ∂ΩC(t). In
this case we have

d

dt

∫

ΩC(t)

η dx =

∫

ΩC(t)

∂η

∂t
dx+

∮

∂ΩC(t)

ηv · n̂ dS. (10)

Now, at a particular time of interest we choose a con-
trol volume ΩC(t) which is coincident with a system vol-
ume ΩS(t), but not in general at future times. That is
ΩC(t) = ΩS(t), but ΩC(t

′) 6= ΩS(t
′), if t′ 6= t. Then we

can eliminate the first term on the right hand side in (9)
by using (10) which gives,

dNS

dt
=

d

dt

∫

ΩC(t)

η dx+

∮

∂ΩC(t)

η(u− v) · n̂ dS. (11)

Notice that u−v measures the fluid velocity at a bound-
ary point with respect to that boundary point.
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We are interested in two particular cases. One of them
is when N = P is the total momentum contained in
ΩS(t), so that η = ρ(x, t)u(x, t). The second case is when
N = H is the total angular momentum, with respect to a
reference point x0, so that η = r(x)×ρ(x, t)u(x, t), with
r(x) = x − x0. The evaluation of equation (9) or (11)
for the momentum and angular momentum cases give us
the total force and torque applied over the fluid system
contained in ΩS(t) = ΩC(t).
The first term on the right hand side in (11) represents

the total variation of η contained in the control volume
ΩC(t), while the second term in the right hand side is
a surface integral that amounts the η flowing out of the
volume ΩC(t).

B. Derivation of momentum exchange

As explained in Section IIA, the boundary conditions
can be thought as an artificial flow inside Ω. This arti-
ficial flow is in turn decomposed into Q artificial flows,
one for each fundamental velocity ci in the method. To
explain the effect of these flows we refer back to the fig-
ure 1. Consider the boundary node F and the direction
ci pointing from A to F . At every time step, the role of

the boundary condition is to replace the value of f̂i(xA, t)
that would otherwise be provided by a collision step, by
a new value. Altogether, these replacements carried out
by the boundary condition are a way of introducing a
certain amount of momentum in the i direction, at every
time step. We derive ME by computing the amount of
momentum that the boundary condition introduces per
unit time. In this way we compute the force that each of
these artificial flows apply to the external flow. The addi-
tion over all elementary directions i accounts for the total
force the submerged body applies over the surrounding
flow. By action-reaction principle, the force that the sur-
rounding flow applies over the the submerged body is
exactly the opposite.
We consider the system of particles associated to a lat-

tice velocity ci that at time t is exactly inside Ω(t). At
t + δt this system moved by an amount ciδt. We call
Pi,t(t

′) the set of nodes associated to this system of par-
ticles at time t′ and Pi,t(t

′) denotes its momentum at
time t′. Finally we denote At the set of lattice nodes A
inside Ω(t).
In the following subsections we derive the force and

torque that the flow applies to the body through its sur-
face. The cases of static and moving bodies are treated.

1. Force

The amount of momentum the boundary conditions
add per unit time to the i-th system of particles is

dPi,t

dt
=

Pi,t(t+ δt)−Pi,t(t)

δt
+O(δt) (12)

where

Pi,t(t
′) = δxD

∑

A∈Pi,t(t′)

cifi(xA, t
′). (13)

Neglecting O(δt) terms we have

dPi,t

dt
≃ δxD

δt

(

∑

A∈Pi,t(t+δt)

cifi(xA, t+ δt)

−
∑

A∈Pi,t(t)

cifi(xA, t)
)

. (14)

2. Force on a static body

We assume first the case of a static body, so that Ω and
the set A are constant in time. The first term in (14) can
be rewritten in terms of the sets Gi of gained and Li of
lost nodes as a consequence of the displacement of the
system of particles from t to t + δt. This displacement
is exemplified in Figure 2 for the D2Q9 model and the
directions i = 1 and i = 5.

To simplify notation we define gi = cifi(xA, t + δt).
The first term in (14) becomes

∑

A∈Pi,t(t+δt)

gi =
∑

A∈Gi

gi −
∑

A∈Li

gi +
∑

A∈Pi,t(t)

gi (15)

FIG. 2: Schematic diagram of the areas occupied by Pi,t(t)
and Pi,t(t + δt) for i = 1, 5. The figure shows shaded areas
proportional to the size of the sets Gi gained and Li lost nodes
when Pi,t(t) is displaced one lattice site in the c5 (scheme a)
and c1 (scheme b) directions in the D2Q9 model.

Inserting this into (14) and adding over the Q systems
we get the LBM approximation to the force introduced



6

by the boundary conditions.

Fc(t) ≃ δxD

Q−1
∑

i=0

∑

A∈Pi,t(t)

ci
fi(xA, t+ δt)− fi(xA, t)

δt

+
δxD

δt

Q−1
∑

i=0

(

∑

A∈Gi

gi −
∑

A∈Li

gi

)

(16)

We want to compare this expression with the Reynolds
transport theorem (11) applied to the artificial flow inside
Ω(t). The force introduced by the boundary conditions
is the constraint force acting on the body to keep it at
a fixed position. The first term in the right hand side of
(16) is an LBM approximation of the volume term in (11).
The second term in (16) is composed of sums on sets of
nodes which are near neighbors of the boundary ∂Ω. This
second term is precisely the LBM approximation to the
surface integral term in (11). As the interaction between
the body and the surrounding fluid occurs only through
the body’s surface, this second term in (16) is the term
we are interested in. By action-reaction principle the flow
force on the body is,

Ff (t) ≃
δxD

δt

Q−1
∑

i=0

(

−
∑

A∈Gi

gi +
∑

A∈Li

gi

)

(17)

Notice that A ∈ Li if and only if there is a node B ∈ Gī

such that xA = xB + ciδt. Therefore

Ff (t) ≃
δxD

δt

Q−1
∑

i=0

(

−
∑

A∈Gi

cifi(xA, t+ δt)

+
∑

A∈Gī

cifi(xA + ciδt, t+ δt)
)

Now, a sum over all sets Gī can be written as a sum
over all sets Gi, we obtain

Ff (t) ≃ −δxD

δt

Q−1
∑

i=0

∑

A∈Gi

ci

(

fi(xA, t+ δt)

+ fī(xA + cīδt, t+ δt)
)

. (18)

We notice that

fī(xA + cīδt, t+ δt) = f̂ī(xA, t),

fi(xA, t+ δt) = f̂i(xA − ciδt, t).
(19)

The first identity is the streaming step from the outer
nodes in a direction that points into Ω (across the bound-

ary). This values of f̂i are provided by the collision step.
The second identity is a streaming step from inner nodes
in a direction pointing outwards (across the boundary);

these value of f̂i are provided by the boundary condi-
tion. The flow force on the submerged body can then be
written as

Ff (t) ≃ −δxD

δt

Q−1
∑

i=0

∑

A∈Gi

ci

(

f̂i(xA − ciδt, t) + f̂ī(xA, t)
)

.

(20)
To compare the equation (20) with the equivalent ones
in the literature, care has to be taken as regards different
definitions of the sets Gi. Equation (20) is precisely the
expression that appears extensively in the literature [4,
8, 9, 11] as the momentum exchange method to evaluate
forces in static bodies.

3. Force on a moving body

For the case of a moving body we derive two alterna-
tive methods for evaluating the flow force. In this way
we recover the two main proposals that appear in the
literature.

The first derivation shows that the proposals presented
in [8, 11] are adequate formulations to get flow force on
moving bodies. To the knowledge of the authors, the
correctness and accuracy of these proposals were studied
before only via benchmark numerical tests. The second
derivation shows that the method presented in [12, 25]
is also adequate to evaluate forces in moving submerged
bodies.

When the submerged body is moving, the region Ω(t)
and the set of lattice nodes At are no longer constant.
For some time steps, one can even expect the set of nodes
At+δt to be the same as the set of nodes At. In any case
it is useful define the sets of nodes A+

t and A−
t as

A ∈ A+
t , if A ∈ At+δt and A /∈ At,

A ∈ A−
t , if A ∈ At and A /∈ At+δt.

Figure 3 shows a scheme of a typical situation when the
body moves.

The expression (15) is still valid in this case. However,
at time t+δt we want to make reference to the body’s new
position, so we rewrite the term that sums over Pi,t(t) as

∑

A∈Pi,t(t)

gi =
∑

A∈At+δt

gi +
∑

A∈A−

t

gi −
∑

A∈A+

t

gi (21)

a. Force on a moving body: method 1. We insert
(21) into (15) and use the result into (14). Then we add
over i to get an approximation of the flow force acting on
the body Ω
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FIG. 3: Schematic diagram of the area occupied by the nodes
P1,t(t) and P1,t(t + δt). The figure shows shaded areas pro-
portional to the size of the lattice nodes A+

t and A
−
t (scheme

a), and G1 and L1 (scheme b) as defined in the text.

Ff (t) ≃
δxD

δt

Q−1
∑

i=0

(

−
∑

A∈Gi

ci

(

f̂i(xA−ciδt, t)+f̂ī(xA, t)
)

−
∑

A∈A−

t

cifi(xA, t+ δt) +
∑

A∈A+

t

cifi(xA, t+ δt)
)

. (22)

Where again, as we are looking for the surface contribu-
tions to the force, we dropped the volume contribution.
Equation (22) shows a main term, which is the same as in
the case of a static body, representing the particle’s ex-
change of momentum across the boundary, but now this
term is corrected by the last two terms which accounts
for the momentum associated to the nodes that enter or
leave Ω(t) as a consequence of the body movement. In
this way we obtain terms similar to that proposed by
Aidun et. al. [8] to evaluate the force on a moving body.
We show that these terms are correct and necessary to
obtain the complete superficial contribution to the force
when the body moves. Equation (22) is then similar to
that introduced in [8] and by Wen et. al. [11], exten-
sively used in the literature to evaluate the fluid force on
moving bodies.
There is a minor difference between the expression (22)

and those introduced in [8] and [11]. In their cases, the
force at time t considers the lattice nodes that enter and
leave Ω(t) between t − δt and t (i.e., backward in time).
In our case, (22) requires to know the sets A+ and A−,
that is the sets of nodes that enter and leave Ω between
t and t + δt (i.e., forward in time). The determination
of the sets A+ and A− is direct if the movement of the
body is given (predetermined) at all times, in this case
(22) is an explicit expression. If, however, the motion of
the body is to be computed simultaneously with the flow,
the equation (22) becomes implicit. In this last case it
is convenient to use an approximation to determine A+

and A− so that the equation becomes explicit.

In the numerical tests in section IV, we implement two
different approximations to find the sets A+ and A−.
Both approximations work well, giving no appreciable
difference in the outcomes of the benchmark tests. The
first approximation is the procedure proposed in [8]. The
second approximation is more complicated. It computes
the setsA+ andA− by approximating the region Ω(t+δt)
as if it was moving with the speed computed at the pre-
vious time step. With this information the flow force can
be computed at time t and then the correct displacement
of Ω from t to t + δt recomputed. Though computa-
tionally more expensive, as two displacements of Ω are
computed at each time step, this second approximation
is more precise than the first one and may be worth using
it in some situations.
Notice that the variables associated to the lattice nodes

belonging to A− do not have values assigned at time t
since these nodes enter the fluid region between t and
t+ δt. These values are needed in order to compute the
time step from t to t + δt. As mentioned previously,
various rules to “initialize” these variables are proposed
in the literature. In our simulations we implement the
proposals given in [10] and [8]. Also we implement a
method that sets the mentioned variables by using the
equilibrium distribution function, where the macroscopic
variables are set as an average of the values at the nearest
neighbor fluid nodes. The evaluation of the force by (22)
we present in Section IV show a short time scale noise.
The use of the first two methods mentioned before to
initialize the nodes that enter the fluid region present
lower noise level.
The main sources of “noise” in the force evaluation us-

ing (22) are the impulsive nature of the additional terms
related to A+ and A−. This noise has been observed
before.
A last observation is that (22) is not Galilean invariant.

In [27] the authors present a correction to obtain Galilean
invariance of the force evaluation method proposed in [8]
which, as mentioned before, is similar to (22).

b. Force on a moving body: method 2. In [12, 25] the
authors show an alternative method to avoid the undesir-
able noise effect in the force evaluation. The derivation of
this method is based on the fact that the time derivative
of a particle’s momentum is independent of the inertial
frame used to compute it.
The momentum of a fluid element around x, when seen

on an inertial reference frame that moves with velocity v

with respect to the lattice is written in LBM as the su-
perposition of Q contributions of the form (ci−v)fi(x, t).
To evaluate (12) we choose for each node A ∈ Pi,t(t), a
convenient inertial reference frame whose velocity with
respect to the lattice is denoted by v(xA, t). For each
particle we need, of course, to keep the same reference
frame along the time lapse of the approximation (t, t+δt).
Therefore, the amount of momentum per unit time the
boundary conditions add to the i-th system of particles
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between t and t+ δt, can be written as

dP̂i,t

dt
≃ δxD

δt

(

∑

A∈Pi,t(t+δt)

(

ci−v(xA−ciδt, t)
)

fi(xA, t+δt)

−
∑

A∈Pi,t(t)

(

ci − v(xA, t)
)

fi(xA, t)
)

. (23)

It is convenient to emphasize here that the fluid flow
(i.e., the fi’s) is always computed in the inertial reference
frame in which the lattice is fixed.
Now, in analogy with (15), we can decompose the first

sum in (23) as

∑

A∈Pi,t(t+δt)

ĝi =
∑

A∈Pi,t(t)

ĝi +
∑

A∈Gi

ĝi −
∑

A∈Li

ĝi (24)

where ĝi =
(

ci − v(xA − ciδt, t)
)

fi(xA, t+ δt). The last
sum over Li can be expressed as sum over Gī, and the first
sum in (24) can be split as in (21). The velocities of the
reference frames for nodes in Li come from nodes outside
Pi,t(t). We chose v(xA − ciδt, t) = v(xA, t) for A ∈ Li.
Using all this in (23), summing over i and keeping only
the surface terms gives minus the flow force

Ff ≃ δxD

δt

Q−1
∑

i=0

[

∑

A∈A+
t

ĝi −
∑

A∈A−

t

ĝi −
∑

A∈Gi

(

(

ci − v(xA − ciδt, t)
)

fi(xA, t+ δt)

−
(

cī − v(xA − ciδt, t)
)

fī(xA − cīδt, t+ δt)
)]

. (25)

Now we make an specific choice for the frames used at
the nodes in Pi,t(t) close to the boundary. We set v(xA, t)
as the average velocity of the boundary points (see Figure
1) corresponding to xA. With this choice, the first two
terms in the right hand side of (25) are negligible since

both
∑Q−1

i=0 cifi and
∑Q−1

i=0 v(xA − ciδt, t)fi(xA, t + δt)
represent close approximations to ρu at the boundary.
Other nodes not close to the boundary contribute only
to the volume term which is dropped, and therefore the
choice of the reference frames is unimportant. The re-
sult obtained in this way is an LBM discretization of the
surface term in the right hand side of (11).

Ff = −δxD

δt

Q−1
∑

i=0

∑

A∈Gi
(

(

ci − v(xA − ciδt, t)
)

f̂i(xA − ciδt, t)

−
(

cī − v(xA − ciδt, t)
)

f̂ī(xA, t)
)

(26)

The method used in [12, 25], instead of choosing a
unique frame for each node xA ∈ Pi,t(t) close to the
boundary, choose a different frame for each direction i
pointing to the boundary. This constitutes an approxi-
mation to (26) given by

Ff = −δxD

δt

Q−1
∑

i=0

∑

A∈Gi

(

(

ci − vA,i(t)
)

f̂i(xA − ciδt, t)

−
(

cī − vA,i(t)
)

f̂ī(xA, t)
)

(27)

where vA,i(t) is the velocity of the boundary point of
xA in the direction i. In [12] the authors numerically
test this approximation and show that equation (27) is
Galilean invariant.
Either expressions (22) and (26) are correct expres-

sions, they constitute different approximations of the flow
force. The later has some advantages though. First, it is
computationally more efficient, since it is not necessary to
determine the sets A+

t and A−
t . As a result the method is

always explicit and it presents a notorious noise decrease
in force evaluation as shown in [12] for the approximation
(27).

4. Torque

The derivation of the torque acting on the submerged
body is analogous to that of the force. The angular mo-
mentum per unit time introduced by the i-th artificial
flow is

dHi,t

dt
=

Hi,t(t+ δt)−Hi,t(t)

δt
+O(δt) (28)

where

Hi,t(t
′) = δxD

∑

A∈Pi,t(t′)

r(xA)× cifi(xA, t
′), (29)

with r(xA) = xA−x0, Hi,t(t
′) is the angular momentum

of the particle system at time t′ with respect to a fixed
point x0. NeglectingO(δt) terms in equation (28) we have
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dHi,t

dt
≃ δxD

δt

(

∑

A∈Pi,t(t+δt)

r(xA)× cifi(xA, t+ δt)

−
∑

A∈Pi,t(t)

r(xA)× cifi(xA, t)
)

. (30)

As we have done in section III B 1, we treat the case of
a static body first and then extend the proposal to the
case of a moving body.

5. Torque on static body

Using the lattice node sets Gi and Li (shown in Figure
2) to rewrite the first term in (30), and denoting hi =
r(xA)× cifi(xA, t+ δt) for simplicity, we have

∑

A∈Pi,t(t+δt)

hi =
∑

A∈Pi,t(t)

hi +
∑

A∈Gi

hi −
∑

A∈Li

hi (31)

Inserting this into (30) and adding over the Q systems
we get an approximation to the constraint torque acting
on Ω,

Tc(t) ≃

δxD

Q−1
∑

i=0

∑

A∈Pi,t(t)

r(xA)× ci
fi(xA, t+ δt)− fi(xA, t)

δt

+
δxD

δt

Q−1
∑

i=0

(

∑

A∈Gi

hi −
∑

A∈Li

hi

)

(32)

As in the force case, we can compare this expression with
the Reynolds Transport theorem, then keeping just the
approximation of the surface term in (11), we get an ex-
pression for the torque that the flow applies on the body,

Tf (t) ≃
δxD

δt

Q−1
∑

i=0

(

−
∑

A∈Gi

hi +
∑

A∈Li

hi

)

(33)

Recalling the relation between xA ∈ Li and xB ∈ G ī

(xA = xB + ciδt), and using (19)

Tf ≃ −δxD

δt

Q−1
∑

i=0

∑

A∈Gi

(

r(xA)× ci

(

f̂i(xA − ciδt, t)

+ f̂ī(xA, t)
)

)

(34)

This equation is the expression that appears in the liter-
ature [4, 8, 9, 11] extensively as the momentum exchange
method to evaluate torque on static bodies.

6. Torque on a moving body

In this section we follow a procedure and reasoning
analogous to that of section III B 3. As with the force on
a moving body we present two derivations that provide
alternative methods to compute the torque.

We rewrite the first term on the right hand side of (31)
to get the correct surface contribution when the surface
moves,

∑

A∈Pi,t(t)

hi =
∑

A∈At+δt

hi +
∑

A∈A−

t

hi −
∑

A∈A+

t

hi (35)

a. Torque on a moving body: method 1. We replace
(35) in (31), then from equation (30) and adding over the
Q systems we obtain an approximation of the constraint
torque acting on the body at time t. Thus the flow torque
on a moving body turns out to be

Tf (t) ≃ −δxD

δt

Q−1
∑

i=0

(

∑

A∈A−

t

hi −
∑

A∈A+

t

hi+

∑

A∈Gi

r(xA)× ci

(

f̂i(xA − ciδt, t) + f̂ī(xA, t)
)

)

. (36)

Where we have used the relation of sets Gi and Li, and
the equalities (19).

The equation (36) has two distinct contribution to the
flow torque on Ω(t). The first one, is the contribution to
the torque by the lattice nodes that enter and leave Ω(t)
as a consequence of its displacement to Ω(t + δt). This
contribution is composed by impulsive terms as we have
noted in section III B 3. The second is the contribution
due to the exchange of momentum across the boundary as
a consequence of the displacement of the particle system
from t to t+ δt.

Expression (36) is similar to the one presented in the
literature to evaluate the flow torque on moving bodies.
This expression naturally introduces the ad-hoc correc-
tion terms first presented in [8] and used in [11].

As with the force, a difference between our proposal
and those in the literature is the time at which the sets of
lattice nodesA+

t and A−
t are evaluated. To avoid implicit

expressions when the body movement is not predefined,
we use some approximation methods, presented in section
III B 3, to approach A+

t and A−
t .

As one could expect, some short time scale noise in
the torque computation appears as a consequence of the
lattice nodes that enter and leave the fluid domain as the
body moves.
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b. Torque on a moving body: method 2. As with the
force derivation, we also obtain an alternative derivation
for the torque by considering the time derivatives of the
angular momentum in different reference frames for each
particle. The reference frames to compute the torque
on the boundary nodes are chosen with a common origin

x0(t) and different velocities chosen as in the derivation of
(26). We now define r(xA, t) = xA − x0(t), where x0(t)
is the origin of the moving inertial reference frames at
time t. The amount of angular momentum the boundary
conditions add per unit time to the i-th particle system
is

dĤi,t

dt
≃ δxD

δt

(

∑

A∈Pi,t(t+δt)

(r(xA, t+ δt)×
(

ci − v(xA − ciδt, t)
)

fi(xA, t+ δt)

−
∑

A∈Pi,t(t)

r(xA, t)×
(

ci − v(xA, t)
)

fi(xA, t)
)

. (37)

With

r(xA, t+ δt) =xA − x0(t)− v(xA − ciδt, t)δt

=r(xA, t)− ciδt+
(

ci − v(xA − ciδt, t)
)

δt,

where the last term does not contribute to (37) because
of the vector product.
From equation (37), using (31) and (35), with hi

replaced by ĥi =
(

r(xA, t) − ciδt
)

×
(

ci − v(xA −
ciδt, t)

)

fi(xA, t+δt) give, adding over the Q systems and
considering only the surface terms, an approximation of
the flow torque acting on the body at time t.

Tf (t) ≃ −δxD

δt

Q−1
∑

i=0

(

∑

A∈A−

t

ĥi −
∑

A∈A+

t

ĥi+

∑

A∈Gi

[(

r(xA, t)−ciδt
)

×
(

ci−v(xA−ciδt, t)
)

f̂i(xA−ciδt, t)

− r(xA, t)×
(

cī − v(xA − ciδt, t)
)

f̂ī(xA, t)
]

)

. (38)

As with the force, the first two terms are negligible.
Dropping these terms, the expression becomes explicit.
As in the method 2 of force evaluation, instead of taking
a unique frame for each node xA ∈ Pi,t(t) close to the
boundary one can take different frames for each direction
i pointing to the boundary. The resulting approximation
is

Tf (t) ≃ −δxD

δt

Q−1
∑

i=0

(

∑

A∈Gi

[(

r(xA, t)− ciδt
)

×
(

ci − vA,i(t)
)

f̂i(xA − ciδt, t)

− r(xA, t)×
(

cī − vA,i(t)
)

f̂ī(xA, t)
]

)

. (39)

where vA,i(t) is the velocity of the boundary point of
xA in the direction i. Notice that the expression pre-
sented in [12, 25] can be obtained from (39) if the factor
(

r(xA, t)−ciδt
)

in the first cross product is approximated
by r(xA, t).

IV. NUMERICAL TESTS

In this section we compare the results obtained with
the expressions derived in section III to compute the force
and torque acting on a submerged body. To this end we
perform two benchmark tests on well known problems
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that have been tested and benchmarked widely with oth-
ers computational fluid dynamics methods, such as finite
element method and finite difference methods.
We are interested in analyzing the dynamics of single

bodies sedimenting along a vertical channel filled with
a Newtonian fluid. The bodies are either circular or el-
liptic discs. The accuracy in the determination of the
force and torque acting on the falling body directly af-
fects the body’s movement. If the force and torque are
computed correctly, the displacement and rotation of the
bodies along the domain should be in agreement with
data presented in the literature [3, 4, 11, 28].
To solve the flow we use a D2Q9 lattice scheme and

SRT with τ = 0.6. We use in our simulations the
quasi-incompressible model. To check that the quasi in-
compressibility does not introduce artifacts in our sim-
ulation we repeated some of them with a compress-
ible model and observed no discrepancies in the results.
The fluid density and the kinematic viscosity are set to
ρf = 1000 kg/m3 and ν = 1 × 10−6m2/s respectively.
The fluid is initially at rest and has zero velocity at the
horizontal and vertical boundaries at all times. We im-
plement these boundary conditions with the method pre-
sented in [29]. The acceleration of gravity acting on the
body is g = 9.81m/s2 downwards.
The motion of each body is determined by integrating

Newton’s equation of motion, where the force is given by
the fluid flow force, weight and buoyancy force and the
torque is given by the flow torque. To integrate in time
we use Euler Forward numerical scheme, which is first
order accurate as the LBM method itself. We have also
implemented two step (Adams-Bashforth) integration in
time and noticed no appreciable difference in the results.

A. Sedimentation of a circular disc

In this benchmark test we analyze the dynamics of a
single two-dimensional disc sedimenting along a vertical
channel, shown schematically in Figure 4. We test the
dynamics of the disc for two density relations rρ = ρb/ρf ,
with ρb and ρf the densities of the body (disc) and the
fluid respectively.

The dimensions of the vertical channel are W = 4d and
H = 8W ; the disc diameter is d = 1× 10−3m. The disc
center is initially placed at (x, y) = (7.6×10−4, 0)m with
the coordinate origin at 2.5 × 10−2m from the bottom
of the channel and placed as shown in Figure 4. We
discretized the computational domain with nx × ny =
135× 1073 lattice points.
We test the performance of the method for two density

ratios rρ = 1.01, and 1.03. In Figures 6 and 7 we show
the horizontal and vertical velocities and the trajectory
of the center of the disc and the rotation angle of the disc
as functions of time, for rρ = 1.01 and rρ = 1.03.

FIG. 4: An schematic diagram of the sedimentation disc prob-
lem.

When the disc is released from the initial position at
t = 0, it starts moving and rotating along the channel.
As one can see in the figures 6 and 7, the movement of
the disc can be divided into two regimes: A transient and
a stationary regime.
We compare results we obtained using a classical ME

(20),(34) and the corrected methods given by (22), (36)
and (27), (39). These results, particularly those obtained
with the corrected methods are in good agreement with
tests presented in [4] (obtained using LBM with SI),
[11] (obtained using LBM with an expression similar to
(22), (36)) and [28] (obtained using FEM). We observe
visible discrepancies between the classical and the cor-
rected methods for the horizontal velocity and position.
The major discrepancy shows in the transient regime;
no significant discrepancies can be seen in the stationary
regime. Similar observations have been made by Wen et.
al. [11] and Li et. al [4].

B. Sedimentation of an elliptic disc

In this section we present a benchmark test, similar to
the previous one, where the circular disc is replaced with
an elliptical disc, also sedimenting in a vertical channel
filled with Newtonian fluid. This test is also widely an-
alyzed in the literature. We study a problem as the one
presented by Xia et. al. [3], where the authors use LBM
and SI to obtain the forces on the body.
We show in Figure 5 a schematic diagram of the prob-

lem. We define three dimensionless parameters that char-
acterize the problem. These parameters are the aspect
ratio α = a/b, with a and b the major and minor axes
of the ellipse respectively, the blockage ratio β = W/a,
with W the width of the vertical channel, and the density
ratio rρ as defined in Section IVA.
An exhaustive analysis of this sedimentation problem

was carried out by Xia et. al. [3]. They studied the in-
fluence on the dynamics of the density ratio, the aspect
ratio, and the channel blockage ratio. For simplicity we
analyze this problem with a fix blockage ratio, chosen so
that we don’t need to consider the wall-particle interac-
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FIG. 5: An schematic diagram of the two-dimensional ellip-
tical particle sedimenting in a vertical channel.

tion. Our interest is to test the method proposed in the
present work, not to give a complete description of the
sedimentation problem. We carry out simulations with a
fixed geometrical configuration.

In our tests we use major axis a = 10−3m, aspect
ratio α = 2 and blockage ratio β = 4.0. The prop-
erties of the fluid are the same used in Section IVA.
Initially, the fluid is at rest, the center of the ellipse is
placed at (x, y) = (0.5W, 0)m. The coordinate origin at
4.8× 10−2m from the bottom of the vertical channel. To
break the symmetry of the problem, we choose an initial
angular position θ0 = π

4 . We set, following [3], a height
H = 50a and a width W = 4a. The domain is discretized
in a lattice with nx×ny = 135× 1676 points and density
ratio is rρ = 1.10.

In the Figure 8 we show the dynamical variables given
as a function of time and the complete trajectory of the
ellipse computed using a classical ME (20),(34) and the
corrected methods given by (22), (36) and (27), (39). Our
results using the corrected methods are in good agree-
ment with the results of Xia et. al. [3]. It is clear from
Figure 8, that there exists an important difference, in the
transient regime, and a minor difference in the final hor-
izontal position between the corrected and uncorrected
methods.
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FIG. 6: Results obtained for the sedimenting disc of Figure 4 for rρ = 1.01. Time is expressed in seconds, space in millimeters,
velocities in millimeters per second and angle in radians.

V. CONCLUSION AND DISCUSSION

In this work we have reviewed the momentum exchange
method to compute the flow force and torque acting on

a submerged body by presenting a new derivation. The
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FIG. 7: Results obtained for the sedimenting disc of Figure 4 for rρ = 1.03. Time is expressed in seconds, space in millimeters,
velocities in millimeters per second and angle in radians.

expressions we obtain, for the case of static bodies, are
coincident with those presented in [9]. From our deriva-
tion we see that the expressions derived for the flow force
and torque on static bodies are not appropriate to treat
moving bodies. Moreover, we derive two of the propos-
als appearing in the literature to compute flow force and
torque on moving bodies as particular cases. These last
two alternatives to compute the force and torque are cor-
rect but different approximations to the same problem.
The one consisting in (27) and (39) results in less noisy
force and torque computations and is also more efficient
from the computational point of view.
Our method of deriving momentum exchange does not

use a particular treatment of the boundary conditions on
the body surface and can be applied with several of the
various methods proposed in the literature.
In the last part of the paper we have tested the cor-

rected momentum exchange expressions we obtained by
simulating two problems which are well know in the liter-
ature, a sedimenting circular disc and a sedimenting ellip-

tic. Our results clearly show the difference, for the case of
moving bodies, between the results of the corrected mo-
mentum exchange methods as compared to those given
by equations (20) and (34). These results are in good
agreement with those obtained by other authors using
similar and different computational fluid dynamic meth-
ods such as finite element methods.
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