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We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under
a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated
Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons
in polycrystalline adamantane evolves through two steps of evolution characterized by the secular
part of the dipolar Hamiltonian, scaled down with a factor |k | and opposite signs. The scaling factor
can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The
experimental results for the Loschmidt echoes showed a spreading of the decay rates that correlate
directly to the scaling factors |k |, giving evidence that the decoherence is partially governed by
the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the
spin dynamics during the pulse sequence. The calculations were performed for every single radio
frequency block in contrast to the most widely used form. The first order of the average Hamiltonian
numerically computed for an 8-spin system showed decay rates that progressively decrease as the
secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected
by conventional calculations yielded an explanation for the ordering of the experimental decoher-
ence rates. However, there is a strong overall decoherence observed in the experiments which is
not reflected by the theoretical results. The fact that the non-inverted terms do not account for
this effect is a challenging topic. A number of experiments to further explore the relation of the
complete Hamiltonian with this dominant decoherence rate are proposed. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934221]

I. INTRODUCTION
Nuclear Magnetic Resonance (NMR) has an incompa-

rable capacity to manipulate natural couplings that originate
multiple spin dynamics, presenting a unique scenario for
practical and theoretical studies. The observation of non-
equilibrium many-body dynamics and the achievement of
quantum time-reversal experiments along with the study of
decoherence have attracted much attention in connection with
fundamental problems, as the arrow of time and the quantum-
classical limit.1,2 Decoherence can be roughly defined as the
degradation of the information contained in the quantum state
used to describe a system. This could be the result of exper-
imental imperfections, the interaction with an uncontrolled
environment, or an oversimplified description of the system.
In the last decades, these studies spanned from mesoscopic
phenomena, thermalization, and the evaluation of decoherence
to practical applications, such as testing quantum computation
algorithms and developing strategies to extend the lifetime of
quantum information.3–12

Time-reversal procedures and the generation of echoes
in NMR1 are ubiquitous since Hahn’s pioneer work in the

a)Deceased.
b)Author to whom correspondence should be addressed. Electronic mail:

chattah@famaf.unc.edu.ar.

1950s.13 A Hahn echo is obtained when the lost transverse
magnetization is recovered by the application of a short radio-
frequency (r.f.) pulse. This pulse has the effect of reversing
perturbations linear in spin operators, such the magnetic field
inhomogeneities and the chemical shifts, that affect the preces-
sion of individual spins. Here, many-spin interactions consti-
tute non-controlled terms that attenuate the echo amplitude.
In the context of solid state NMR, the so-called magic echo
(ME) was the first r.f. pulse sequence designed to reverse the
homonuclear dipolar Hamiltonian, which is bilinear in the spin
operators and provides a real many-body dynamics.14 As in
the Free Induction Decay (FID), the information stored in the
global polarization rotating around the external magnetic field
spreads out among multiple spin correlations named multiple
quantum coherences (MQC).15 Although the original ME was
successful in recovering polarization, the results were recently
improved by refining the experimental procedure.16,17

More subtle, the Polarization Echo (PE) defines a fam-
ily of experiments where the locally injected initial condi-
tion diffuses under the dipolar Hamiltonian that conserves
polarization.18–20 In this process, the growth of correlations is
produced among states with the same spin projection (zeroth-
order coherences). In none of the ME, MQC, or PE experi-
ments, the origin of the echo attenuation is fully clear. It has
been suggested21 that non-controlled interactions can act with

0021-9606/2015/143(16)/164308/11/$30.00 143, 164308-1 © 2015 AIP Publishing LLC
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a decay estimated by the Fermi’s Golden Rule,22 or hidden
beyond the complexity of the many-body dynamics in a pertur-
bation independent regime.23 In any case, Hahn echoes and
magic echoes are nowadays essential components of numerous
techniques in solid-state NMR, liquid state NMR, and NMR
imaging among others applications. In particular, the magic
echo pulse sequence is a standard tool to observe the dynamics
in open quantum systems.15,20,24,25

All the mentioned experiments lead to the more general
concept of the Loschmidt echo (LE).26–29 A LE can be defined
as the retrieval of an excitation after decaying due to a quantum
evolution, through a time-reversal procedure that involves the
sign change of the Hamiltonian. Then, LE arises as a good
quantifier of decoherence, since the signal revival is limited
by uncontrolled and non-inverted Hamiltonian terms, environ-
mental interactions, or experimental imperfections. A notable
result for the LE occurs when the dynamics is complex, i.e., in
a system with a chaotic classical version. The time scale of the
decay can be identified with a Lyapunov exponent associated
to the controlled part of the dynamics, leading to an intrinsic
decoherence or perturbation-independent regime.2,26

The concept of LE has been implemented in a wealth
of experimental and theoretical techniques.11,28,30 For many-
body spin systems, it results an essential tool harnessing the
elusive localization phenomenon.29,31–33 In the NMR context,
LE procedures have been studied for a variety of systems and
evolutions.19,32,34–37 Generally, it has been observed that the
decoherence rate increased with the number of dynamically
coupled spins.38–40 This trend is consistent with the hypoth-
esis that guides our work in the field, i.e., the fact that natu-
ral instabilities associated with the intrinsic chaos of a many
spin system could make the uncontrolled parameters to be
able to produce an intrinsic decoherence rate, which scales
proportionally with the Hamiltonian that generates the spin
dynamics.20,24,41

At this point, two experiments are worth mentioning
related to the possibility of achieving a fine tuning of the
dynamics through on-resonance and off-resonance irradiation.
In a cross-polarization experiment, thermalization of the rare
(13C) spins is produced by the abundant (1H) proton system.
On-resonance irradiation during acquisition produces optimal
results, i.e., more dynamics in the proton system produces
faster thermalization.19,42,43 Conversely, a carbon-proton sys-
tem can be isolated by irradiating protons in the Lee-Goldburg
(LG) (off-resonance) condition to cancel out the homonuclear
dynamics. In that case, although the polarization does not
spread into the proton system, i.e., the system does not fully
thermalize, the decoherence remains in the same time scale.
These experiments opened the question whether decoherence
is dominated by the original dipolar Hamiltonian.20

A somewhat inconvenient feature of the ME and PE exper-
iments implemented to study decoherence is the lack of sym-
metry in the pulse sequences and their underlying physical
implications: the backward evolution lasts twice as long as
the forward evolution. This asymmetry also correlates with
the different relative importance of the truncated terms, which
are the candidates to account for decoherence. Thus, we seek
for an implementation of time reversal that could equally
scale down the secular components of the Hamiltonian as

well as the non-secular ones, making physically equivalent
the forward and backward evolutions. In this paper, contin-
uous r.f. irradiation periods with different off-resonance
frequencies are used to produce dipolar Hamiltonians scaled
down by factors that can be varied from −1/2 to 1. We
implement this procedure in polycrystalline adamantane. Our
experiments belong to the ME family, since the effective r.f.
field is always at 90◦ with respect to the polarization.

The rest of the paper is organized as follows: in Sec-
tion II, a short revision of the effect of continuous off-resonance
r.f. irradiation on the coupled many-spin system is presented
(Sec. II A), followed by the introduction of the new pulse
sequence and a theoretical survey of the mechanisms to achieve
time reversion (Sec. II B). Section III A includes a brief descri-
ption of the sample used in the experiments, a number of tests
performed to quantify the effects of r.f. inhomogeneities, and
a list of the most relevant experimental details. Section III B
is the central part of the paper. Here, the experimental results
acquired with different scaling factors are presented and dis-
cussed. While decoherence rates spread correlating directly
to the scaling factors, there is a strong overall decoherence
not accounted by the non-inverted terms. In Section III C,
we explore the effect of many spin dynamics by analysing
the pulse sequence with the help of the average Hamiltonian
theory. Finally, in Sec. IV, the conclusions of our work are
listed along with suggested experiments that might help in
understanding the relatively weak dependence of decoherence
from the scaled Hamiltonian as well as the role of the whole
Hamiltonian.

II. TIME REVERSAL PULSE SEQUENCE

A. Scaling the dipolar Hamiltonian

Let us consider a system of N mutually interacting spins-
1/2 in the presence of a strong external magnetic field B0
= B0ẑ, under off-resonance r.f. irradiation with angular fre-
quency ω. The Hamiltonian (in frequency units) referred to a
frame rotating with ω0 = γB0 can be expressed as

H = −ΩIz − ω1I x +H z
d +H

z
d-NS, (1)

whereω1 = γB1 is the intensity of the r.f. field in rad/s,Ω = γb0
= ω0 − ω is the off-resonance (see Fig. 1(a)), and Iα =


i Iαi

(with α = x, y, z) are the total spin operators. The dipolar
HamiltonianH z

d is

H z
d =

i< j

di j(3Izi Izj − Ii · I j), (2)

where di j =
µ0
4π

γ2~

r3
i j

(1−3 cos2 ϑi j)
2 , ri j is the internuclear vector,

and ϑi j the angle between ri j and the external magnetic field
direction. The termH z

d-NS corresponds to non-secular interac-
tions (terms C to F in the alphabet notation44) which although
containing pre-factors of the same order asH z

d result truncated
by B0 and hence are disregarded as usual. Indeed, the 0-th
order wave function in the laboratory frame has a correction
from second order perturbation theory that results proportional
to the ratio between the dipolar local fields and the external
magnetic field, typically ∼10−4.44 If the effective frequency,
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FIG. 1. (a) The rotating and tilted frames with the relevant fields involved.
(b) Behaviour of the pre-factor λ’s as a function of θ, i.e., the angle between
z-axis and the Z -axis of the rotating and tilted frames, respectively.

ωe =


ω2

1 +Ω
2, is much larger than the local dipolar cou-

plings, i.e., ωe ≫ di j ∀i, j, it is convenient to define a new
quantization axis Z along the effective field, which forms an
angle θ with the direction of the external magnetic field, ẑ.
Then, the Hamiltonian of Eq. (1) can be rewritten, referred to
this tilted frame, as44

H = −ωeIZ +
+2

M=−2

λM(θ)H Z
M . (3)

The factors on the second term in the right-hand side of Eq. (3)
are listed in Table I. Retaining only the secular part with respect
to the tilted frame (X,Y, Z), we have

H = −ωeIZ +
1
2
(3 cos2 θ − 1)


i< j

di j(3IZi IZj − Ii · I j). (4)

Figure 1(b) shows the behaviour of λ factors as a function of
θ within the range [0, π/2]. The sign change of λ0 opens the

TABLE I. Functional form of H Z
M and λM .

M HZ
M λM(θ)

0


i< jdi j(3I Zi I Zj −Ii · I j) 1
2 (3 cos2 θ−1)

+1


i< j3di j(I+i I Zj + I Zi I+j ) − 1
2 sin θ cos θ

−1


i< j3di j(I−i I Zj + I Zi I−j ) − 1
2 sin θ cos θ

+2


i< j3di j(I+i I+j ) 1
4 sin2 θ

−2


i< j3di j(I−i I−j ) 1
4 sin2 θ

possibility of achieving the time reversion. This fact was first
pointed out by Pines and co-workers back in 1972. The authors
introduced a pulse sequence, known as the magic echo,14,45,46

consisting on a block of free evolution under H z
d , followed

by a block of on-resonance irradiation lasting twice as much
as the first block, which produces an effective evolution under
−H z

d /2.
We present here a new pulse sequence with time symmetry

to generate an echo with two blocks of off-resonance r.f. irra-
diation. Each block produces a scaling of the dipolar couplings
di j by factors λ0 with the same magnitude and opposite signs
(see Fig. 1(b)) leading to the time reversion of the evolution.
By controlling the r.f. power and frequency (i.e., the angle θ),
|λ0| can be continuously varied from 1/2 to 0. The lower value,
λ0 = 0, corresponds to the well-known LG condition, achieved
with off-resonance irradiation such that θ = 54.7◦, the magic
angle.

B. Time symmetrical pulse sequence

The proposed pulse sequence is shown in Fig. 2. To
describe the effect on the spin dynamics, we focus on the
propagators UF and UB corresponding to the forward and
backward blocks.

Let us consider first the forward block, consisting in off-
resonance irradiation during τ with an effective axis ±ZF

surrounded by hard pulses (βF)y and (βF)y, such that |βF |
= 90◦ − θ. Considering the Hamiltonian of Eq. (4), i.e., the
Hamiltonian including only secular terms during the off-
resonance irradiation period, the propagator can be written as

U sec.
F (τ) = exp (−i βF I y)

× exp

−i
(
−ωeIZF + λ0(θF)H ZF

0

) τ
2



× exp

−i
(
ωeIZF + λ0(θF)H ZF

0

) τ
2



× exp (i βF I y) . (5)

As [IZF,H ZF
0 ] = 0, the sign change of the phase and the off-

resonance frequency at the middle of the r.f. irradiation block
(see Fig. 2) eliminates the precession with ωe, leaving the
propagator as

U sec.
F (τ) = exp (−i βF I y) exp

(
−iλ0(θF)H ZF

0 τ
)

× exp (i βF I y) . (6)

The pulses ±βF produce a global rotation of the Hamiltonian
onto the x-axis of the rotating frame, yielding

U sec.
F (τ) = exp

�
−iλ0(θF)H x

0 τ
�
, (7)

where H x
0 represents the Hamiltonian H ZF

0 after such trans-
formation.

The backward block consists of off-resonance irradiation
during τ with effective axes ±ZB surrounded by pulses ±βB.
Repeating the reasoning of the previous lines, we find that the
backward block is characterized by the propagator,

U sec.
B (τ) = exp

�
−iλ0(θB)H x

0 τ
�
. (8)

The total evolution propagator at the end of the second block
is

U sec.(2τ) =U sec.
B (τ)U sec.

F (τ)
= exp

�
−i [λ0(θF) + λ0(θB)]H x

0 τ
	
. (9)
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FIG. 2. Time reversal pulse sequence, consisting in two blocks of forward and backward evolutions. Each block is composed by two periods of continuous r.f.
irradiation surrounded by hard pulses. The waiting period tW is included to allow any spurious transverse magnetization to dephase before the acquisition of the
FID.

If the r.f. intensity and the off-resonance frequency in each
block are adjusted to fulfil λ0(θF) = −λ0(θB), the initial condi-
tion is recovered at 2τ, obtaining an echo. In other words,
U sec.(2τ) = U sec.

B (τ)U sec.
F (τ) = I.

The initial condition is the high temperature thermal
equilibrium density operator, ρ(0) ∝ Iz. The waiting period
labelled as tW in Fig. 2 is included to let spurious coher-
ences generated during the sequence to dephase prior to the
signal acquisition. Denoting the total propagator by U (2τ)
= UB(τ)UF(τ), the signal obtained after the last 90◦ pulse
results in

SLE(2τ) = Tr
�
I xUπ/2U (2τ)IzU−1(2τ)(Uπ/2)−1�

= Tr
�
IzU (2τ)IzU−1(2τ)� . (10)

If the dynamics is restricted to only secular terms, i.e.,
U ≡ U sec., Eq. (10) yields SLE(2τ) = 1. However, perturba-
tions to the secular evolution during off-resonance irradiation
are introduced by the non-secular terms of the Hamiltonian
of Eq. (3), along with experimental imperfections and inho-
mogeneity in the magnetic fields (either static or r.f. fields).
As a result, the perfect reversion is never achieved. Defining
the scaling factor k = λ0, the complete evolution is more
realistically characterized by a total propagator,

U (2τ) = exp
�
−iτ

�
−|k |H x

0 + ΣB
��

× exp
�
−iτ

�|k |H x
0 + ΣF

��
. (11)

Although the Σ’s have an explicit relationship with k (see
Fig. 1), they do not change the sign within the whole range of
variation of k. Thus, they are collected as uncontrollable terms
in the above equation.

We will refer to the pulse sequence shown in Fig. 2 as PRL
echo, where the acronym stands for Proportionally Refocused
Loschmidt echo.

III. RESULTS AND DISCUSSION

A. Experimental details

1. The sample

The experiments were performed on polycrystalline
adamantane, a plastic crystal in which the 1H spins form a
dipole-coupled many-spin system. The rapid and isotropic
tumbling of the molecules in adamantane at room temperature
average out intramolecular dipole-dipole interactions as well
as chemical shift anisotropy.48 The isotropic chemical shift is
.100 Hz, too small to be detected in solid state NMR.35 There-
fore, adamantane can be considered as a spherical molecule

with its 16 protons placed, on average, at the center of the
molecule, with only intermolecular dipole-dipole interactions.
The molecules are located in a face-centred cubic lattice, so
that each 1H is coupled to 16 1H’s placed at the positions of
the 12 nearest molecules, resulting in 192 nearest-neighbours
(separated 0.67 nm).49 Further neighbours are at 0.93 nm,
1.14 nm, etc.50 The static 1H NMR spectrum of adamantane
is close to a Gaussian shape with a linewidth of ∼12 kHz,
which corresponds to a effective dipolar coupling strength of
de ∼ 5.7 kHz.49

2. Testing the scaling Hamiltonian blocks

All the experiments were carried out in a Bruker Avance II
spectrometer operating at 300 MHz Larmor frequency. Given a
scaling factor |k | in the pulse sequence of Fig. 2, two angles are
determined for+k and−k, except for k = 0. To obtain the same
effective field (Be = γωe) in the forward and backward blocks,
the r.f. intensity and the off-resonance need to be carefully
adjusted. Therefore, the knowledge of the r.f. coil performance
and an estimation of the effect of r.f. inhomogeneities in the
results becomes highly relevant. A series of test were carried
out to explore the performance of different parts of the PRL
echo sequence. Figure 3(a) shows the pulse sequence used
for an off-resonance nutation. A block of continuous r.f. of
intensity ω1 out-of-resonance by a quantity Ω is surrounded
by two β pulses to produce a net rotation around the x-axis of
the rotating frame, with a frequency ωe. The signal intensity
as a function of τ is a damped oscillatory function. During the
FID, the magnetization evolving with magnetic field inhomo-
geneities and dipolar couplings decays exhibiting a Gaussian
shape for this sample.49 Thus, it is natural to assume that
the decay during the nutation, which is a measure of the r.f.
inhomogeneity and the dipolar interaction, follows the same
shape. The experimental data were fitted with the following
expression:

S(τ) = A + B sin(ωeτ + φ0) e−(τ/τ0)2, (12)

which reproduced the experimental results with high ac-
curacy.

By varying Ω for constant ω1 (i.e., θ is modified), it is
possible to perform nutations with different dipolar scaling fac-
tors k. The plot in Fig. 3(a) presents four group of experiments,
where the r.f. power was varied to cover the range which will be
used in the experiment of Sec. III A 3. Additionally,Ω was set
to obtain k = 0, ±1/2, ±1/3, ±1/4, ±1/5, ±1/6, ±1/7, ±1/8.
The effective decay times obtained from the fittings, τ0’s, are
plotted against the scaling factor. The effect of r.f. inhomogene-
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FIG. 3. Tests to quantify the effects of r.f. inhomogeneities in the signal
decay. Pulse sequences and experimental results for (a) the off-resonance
nutations with different r.f. powers and (b) the off-resonance nutations with
phase inversion of the r.f. in the middle of the evolution.

ities becomes evident by the fact that for weaker power, larger
values of τ0’s are obtained at fixed k. On the other hand, at fixed
r.f. power, smaller k values will result in larger τ0’s too, because
the dipolar evolution is proportionally smaller. However, there
should be no difference if the evolution is driven with +k or
−k. The lack of symmetry of these curves is another symptom
of the presence of r.f. inhomogeneities.

The blocks of r.f. with opposite phases in each part of
PRL echo serve two purposes: in the first place, the partic-
ular arrangement is included to refocus evolutions with the
Zeeman Hamiltonian in the tilted frame (i.e., ∝ ωeIZ). As a
side effect, it also attenuates the effects of the r.f. inhomoge-
neity. To quantify the performance of the phase inversion with
our probe and sample, and more important, in the range of
intensities we are dealing with, experiment with the sequence
shown in Fig. 3(b) was carried out. The experimental results
(Fig. 3(b)) display the behaviour of the corresponding decay
times. Notice that, due to the reversion of the Zeeman evolu-
tion, after the (β)y-pulse, the magnetization should lay along
the z-axis of the rotating frame. Then, a waiting time and a
read-out 90◦ pulse were added, similarly to the case of PRL
echo.

FIG. 4. The angles of the effective field for different k schematically repre-
sented. The dashed line shows that all vectors have the same length.

The decay times τ0 with this pulse sequence show curves
which are symmetric in k as expected, with minor differences
as the r.f. power varies, confirming that any r.f. inhomogene-
ities are essentially removed. Consistently, the τ0 values are
more than three times larger than in the previous case. At
constant k, the dispersion of τ0’s by varying the power is ∼2%
for k = 0 and .1%∀k , 0. The discrepancy between values
corresponding to ±k is always <2% independently of the r.f.
intensity.

This analysis shows that the PRL echo sequence of Fig. 2
can be reliably implemented to generate time-reversal Hamil-
tonians with scaled dipolar dynamics, as the blocks with
different r.f. power do not introduce any extra decay rate via
r.f. inhomogeneities. It is worthy to remark, once again, that
this conclusion is true for the probe, the sample geometry, and
the range of power used in our experiments.

3. Experiments with PRL echo for different k

Figure 4 shows the inclination of the tilted frame with
respect to the rotating frame for the k values covered in the
experiments of Sec. III B. The effective field strength, Be, was
maintained constant independently of k, as indicated by the
dotted line. The range of values of the relevant quantities used
in the experiments are summarized in Table II. The result-
ing effective field was Be/2π = 73.277 kHz with a maximum
discrepancy with respect to the theoretical value .1%. In all
cases, the waiting time before the reading pulse, in order to
allow unwanted transverse magnetization to decay, was set to
tw = 3 ms, whereas τ ≤ 1 ms was varied in steps of 13.6 µs,
i.e., such that ωeτ = 2nπ, to be consistent with the average
Hamiltonian theory.45,51 All the hard r.f. pulses were shorter
than 4.5 µs, much shorter than the minimum step of the forward
and backward blocks. The experiments were acquired with 144
scans to improve the signal-to-noise ratio.

TABLE II. Range of variation of the parameters during the experiments.

Parameter Minimum Maximum

ω1/2π (kHz) (42.306±0.005) (73.277±0.005)
Ω/2π (kHz) 0 (60.137±0.001)
β (µs) (0.97±0.01) (2.65±0.01)
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B. Loschmidt echoes with different dipolar
scaling factors

The PRL echo pulse sequence (Fig. 2) produces a scaling
of the secular part of the dipolar Hamiltonian with respect to
the tilted frame, i.e., λ0H Z

0 . Therefore, for every scaling factor
|k |, it is expected a similar dynamics with a modified time
scale. By varying the offset frequency and the r.f. power, a set
of echoes as a function of τ were acquired with different |k |
values. The experimental results are summarized in Fig. 5. In
all cases, there is a forward evolution with a factor k = +1/n
followed by a backward evolution with k = −1/n for n = 2, 3,
4, 8. In the particular case of the Lee-Goldburg condition,44

where k = 0, there is no need for a backward block to obtain
zero secular Hamiltonian evolution. Two blocks with exactly
the same parameters were used, however, to keep the same
timing in the pulse sequence for all the experiments, for the
sake of comparison.

In Fig. 5(a), SLE(2τ) is plotted against τ, the duration of
the forward evolution. The curves show the same decay for 0
< τ . 400 µs, whereas for further evolution times, the echoes
behave appreciably different. The smaller the |k | value, the
weaker the rate of decay, and all curves lay below the limiting
case |k | = 0. Thus, the curve corresponding to LG can be taken
as a reference for the decays with |k | , 0. In Fig. 5(b) the data
are presented renormalized to the LG curve. The dissimilarity

between the echoes, directly related to the strength of the
secular evolutions, becomes clearer in this plot. This trend is
remarkable as the decay that is in principle associated with the
non-secular terms of the scaled dipolar evolution (i.e.,H x

M with
M = ±1, ±2) and uncontrolled experimental instabilities.

In other words, the decoherent behaviour of the system
observed in the decay of the SLE for τ & 400 µs is intrinsically
related to the coherent dynamics dictated by the scaled secular
Hamiltonian. This can be, however, understood as follows:
given a time value, τ, forward evolutions driven by stronger
secular Hamiltonians take the spin system to a more complex
final state, making the reversion more imperfect. The behav-
iour of the SLE is a manifestation of such effect, and can be
observed because the experimental errors (e.g., r.f. inhomoge-
neities) are reduced to the minimum.

As the smaller the scaling factor the slower the spin dy-
namics under the secular Hamiltonian, it is convenient to define
a quantity φ = kτ to account for this difference. Figure 5(c)
displays the behaviour of the echoes against φ. Notice that
the curve corresponding to the Lee-Goldburg condition is
excluded, because the definition of the time scale yields φ ≡ 0.
The curves with smaller |k | decay faster in this case.

Figure 5(d) displays the results shown in (b) against φ,
to emphasize that, for a short forward evolution durations,
the curves are superimposed meaning that the states of the
system for different k are similar. For longer evolutions (e.g., φ

FIG. 5. (a) Loschmidt echoes with different scaling factors, |k |. (b) The curves shown in (a) normalized with the curve corresponding to k = 0. (c) Echoes
plotted against φ = kτ (the curve with k = 0 is excluded). (d) Curves displayed in (b) plotted against the new time scale φ.
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> 70 µs), the discrepancies due to non-secular dynamics
become more relevant, accentuating the imperfections in the
inversion.

C. Analysis based on the average Hamiltonian theory

1. Theory

We will explore here the effect of the non-secular terms in
Eq. (3) during the r.f. irradiation. The problem lends itself to
be treated in the context of the average Hamiltonian theory.53

Let us consider a single blocks of arbitrary off-resonance
r.f. with the effective field aligned with the Z-axis of the tilted
frame, as shown in Fig. 6(a). The spins evolve under the Hamil-
tonian of Eq. (3), which has the general form,

H = H e(t) +H Z
d , (13)

where the explicit time dependency is on the r.f. Hamiltonian.
The propagator associated withH e(t) is expressed as

U e(t) = T exp

−i

 t

0
H e(t ′)dt ′


, (14)

T being the Dyson time-ordering operator. The density oper-
ator ρ(t) evolves with the total propagator,

U (t) = U e(t)U Z
d (t), (15)

where

U Z
d (t) = T exp


−i

 t

0

H Z
d (t ′)dt ′


. (16)

The Hamiltonian H Z
d (t) is the toggling frame Hamiltonian,H Z

d (t) = U−1
e (t)H Z

dU e(t). As the r.f. Hamiltonian is cyclic,
with cycle time τc = 2π/ωe (see Fig. 6(a)), the total propagator
fulfils44,52,53

U (nτc) = U Z
d (nτc). (17)

FIG. 6. (a) Scheme used to compute the first two orders of the average
Hamiltonian. (b) The way in which the calculations are customarily per-
formed in several publications. A single time propagator is calculated con-
sidering the pair of r.f. blocks with opposite phases. (c) The alternative way
proposed here: the total propagator is rendered from propagators calculated
on each single r.f. block.

Then, in n cycles, the result can be written in a form of a single
exponential by means of the Magnus expansion,

U Z
d = exp



−i nτc

∞
i=0

H
(i)

, (18)

where the first terms of the series are44,52,53

H
(0)
=

1
τc

 τc

0
dt ′H Z

d (t ′),

H
(1)
=
−i
2τc

 τc

0
dt ′′

 t′′

0
dt ′

H Z
d (t ′′),H Z

d (t ′)

.

2. Computing the first orders

We have computed the first two orders with the Hamilto-
nians shown in Eq. (3) (and Table I), for a general inclination θ
of the tilted frame with respect to the rotating frame (i.e., for a
generic pair of valuesω1 andΩ). The first term in the expansion
results

H
(0)
= λ0H Z

0 , (19)

i.e., the part of the dipolar Hamiltonian commuting with the
Zeeman Hamiltonian ∝ IZ, as expected (in other words, the
secular part). The next order,H

(1)
, can be split into two expres-

sions. In Eq. (20), all the terms includingH Z
0 are collected,

H
(1)
0,M = −

λ0λ1

ωe

��
H Z

0 ,H Z
+1

�
−
�
H Z

0 ,H Z
−1

��

− λ0λ2

2ωe

��
H Z

0 ,H Z
+2

�
−
�
H Z

0 ,H Z
−2

��
, (20)

whereas H
(1)
M2 involves commutation between the remaining

non-secular terms, as seen in the following:

H
(1)
M2 = −

(λ1)2
ωe

�
H Z
+1,H

Z
−1

�
− (λ2)2

2ωe

�
H Z
+2,H

Z
−2

�
. (21)

Full expressions in terms of product operators are presented
in Table III of the Appendix, where the commutators have
been calculated for a system of N-interacting spins. The sepa-
ration into two first order Hamiltonians is not arbitrary. In
fact, H

(1)
0,M is constructed with single- and double-quantum

operators, which mix states from subspaces with different total
angular momentum number, separated by an energy of the or-
der of ωe. In contrast,H

(1)
M2 presents only zero- quantum oper-

ators, which mix states with nearly the same energy. Therefore,
the effect ofH

(1)
0,M will be negligible as the frequency values are

as large as experimentally possible on behalf of secularization.
In what follows, we will drop this term and keep only H

(1)
M2

as the first order of the average Hamiltonian. The pulses ±β
surrounding the r.f. blocks in Fig. 6(a) switch the Hamiltonians
from the tilted to the rotating frame. The zeroth- and first-order
of the average Hamiltonian results, therefore, in

H̃ (0) = λ0H x
0 ,

H̃ (1) = − (λ1)2
ωe

�
H x
+1,H

x
−1

�
− (λ2)2

2ωe

�
H x
+2,H

x
−2

�
,

(22)

where H̃ (n) are referred to the rotating frame, in contrast to
H

(n)
which are referred to the tilted frame of reference. This
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result is related to the decay rates obtained with the Fermi’s
Golden Rule approach.47 In that context, the resulting decay
rates are second order in the perturbation terms ΣF,B (see
Eq. (11)), i.e., ∝ λ2

j/ωe.

3. Dynamics during the PRL echo sequence

To the best of our knowledge, since the publication of
Rhim, Pines, and Waugh,45 it is customary to compute the
average Hamiltonians considering both r.f. blocks with oppo-
site phases as the cycle, as shown in Fig. 6(b). Proceeding in
that manner, the first-order is nullified by the change of the r.f.
phase at the middle of the cycle,

H̃ (1) = 0. (23)

In contrast, we compute here the propagator for the PRL echo
pulse sequence in terms of average Hamiltonians (see Fig. 2)
in an alternative way. The strategy is depicted in Fig. 6(c):
we calculate the average Hamiltonian terms for any block of
r.f. with a specific phase by means of Eqs. (22). Two extra
β pulses are introduced in the calculations to ensure that the
result for all the blocks are referred to the x-axis of the rotating
frame and fulfil the condition of Eq. (17) (in dashed lines
in Fig. 6(c) to emphasize that they are included only for a
mathematical purpose). The PRL echo propagator at times τ
= 2nτc is rendered from the blocks propagators as

U (2nτc) =U (−)
B (nτc/2) × U (+)

B (nτc/2)
×U (−)

F (nτc/2) × U (+)
F (nτc/2), (24)

where (±) denotes the r.f. phase. Introducing the explicit form
of the blocks propagators, one obtains

U (2nτc) = exp

−i(H̃ (0)

B − H̃
(1)
B )nτc

2


× exp


−i(H̃ (0)

B + H̃
(1)
B )nτc

2


× exp


−i(H̃ (0)

F − H̃
(1)
F )nτc

2


× exp


−i(H̃ (0)

F + H̃
(1)
F )nτc

2


, (25)

where the fact that H̃ (1) change the sign when the r.f. phase
is inverted was used. Additionally, as the pulse sequence was
designed to fulfil the condition H̃ (0)

B = −H̃
(0)
F , we can write

U (2nτc) = exp

−i(−H̃ (0)

F − H̃
(1)
B )nτc

2


× exp


−i(−H̃ (0)

F + H̃
(1)
B )nτc

2


× exp


−i(H̃ (0)

F − H̃
(1)
F )nτc

2


× exp


−i(H̃ (0)

F + H̃
(1)
F )nτc

2


. (26)

It is straightforward to see from Eq. (26) that if H̃ (1)
B = H̃

(1)
F ,

the following equalities hold:

U (+)
B =

(
U (−)

F

)−1
, U (−)

B =
(
U (+)

F

)−1
, (27)

resulting in the absence of evolution (U (2nτc) = I). There-
fore, the evolution during the pulse sequence is directly related
with the fact that the first order average Hamiltonians are

FIG. 7. Pre-factors of the commutators in Eq. (22), h1, h2 vs. k . The asym-
metry of the curves with respect to k = 0 results in the difference between
forward and backward evolutions during PRL echo.

unequal during the forward and backward evolutions. In Fig. 7,
the factors h j multiplying the commutators in Eq. (22) are
plotted against the scaling factor k. The data points were calcu-
lated with values of k = 0, ±1/n for n = 2–8 and the effec-
tive frequency used in the experiments. From the curves, it is
evident that H̃ (1)

B , H̃
(1)
F .

4. Numerical simulations

In this part, we present numerical simulations in order to
investigate the effects of the first order average Hamiltonian
in the PRL echo pulse sequence. The calculations were per-
formed in a system consisting in 8 spins-1/2, each occupying
a vertex on a cube of side a = 0.35 nm with. The resulting
distribution of dipolar coupling strengths is such that max |di j |
= 2.78 kHz. Figures 8(a)–8(c) display Loschmidt echoes with
different k and effective field intensities (or equivalently ωe).
The curves were calculated by means of the propagators of
Eq. (26), where the first order Hamiltonian norm (i.e., h j’s)
corresponds to the values shown in Fig. 7. For all effective
frequencies, the overall behaviour observed in the experiments
are reproduced (see Fig. 5), despite the time scale, due to
the reduced size of the system used in the simulations. It is
worthy to remark that the echo decay is more pronounced asωe

decreases, because the values ∥ H̃ (1) ∥∝ 1/ωe become larger.

5. The limiting case k = 0

The curves corresponding to k = 0, i.e., the Lee-Goldburg
condition, show no evolution independently of the effective
field (see Figs. 8(a)–8(c)). This is consistent with the fact that
H̃ (1)

B = H̃
(1)
F in this case. However, the experimental results

have shown that the k = 0 case presents a decay rate with a
time-scale comparable to the k , 0 curves, as seen in Fig. 5(a).
To find out the origin of this decay, it is useful to compare the
exact dynamics with its first order average Hamiltonian.

The propagator of the forward block in terms of the
average Hamiltonian expansion in the tilted frame (i.e., ne-
glecting β pulses) results in the Identity operator,

U (nτc) = exp

iH

(1)
F

nτc
2


× exp


−iH

(1)
F

nτc
2


= I, (28)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.16.16.13 On: Mon, 26 Oct 2015 14:04:29



164308-9 Buljubasich et al. J. Chem. Phys. 143, 164308 (2015)

FIG. 8. Numerical simulations for a
system of eight spins. Normalized echo
intensities are plotted against τ for dif-
ferent scaling dipolar factors. From (a)-
(c), the system evolves according to
Eq. (26) for different values of the effec-
tive field strength. (d) Two curves with
k = 0 calculated either with the first or-
der Average Hamiltonian or with the
full Hamiltonian in the toggling frame.
Curves calculated with the full Hamilto-
nian for two representative values of k
are included to show that the echo in the
LG condition decays in the same time
scale.

since, as above mentioned, the first order changes its sign when
the r.f. changes the phase. On the other hand, the propagator in
terms of the full Hamiltonian of Eq. (3) and Table I is

U (nτc) = exp


−i *.

,
−He +


j,0

λ jH j
+/
-

nτc
2




× exp


−i *.

,
He +


j,0

λ jH j
+/
-

nτc
2



. (29)

Notice that the factors λ j are non-zero when k = 0 (see
Fig. 1(b)), and are independent of the r.f. phase. Thus, both
non-commuting arguments in the exponentials of Eq. (29)
produce a global evolution which is independent of the phase
change of the effective field, being responsible for the LE
decay. Therefore, while Eq. (29) describes an overall decay,
Eq. (28) yields a fake identity. This is emphasized in Fig. 8(d),
where calculations with Eqs. (28) and (29) are presented
together for the maximum effective field intensity used in the
simulations. In contrast, when |k | , 0, the presence of the
dominant secular term, λ0H0 = H

(0)
, makes the differences

between Eqs. (28) and (29) irrelevant. This is observed in both
curves corresponding to |k | = 1/2, 1/4 calculated with the full
Hamiltonian in the same figure. In our small spin system, there
are oscillations associated withHe and the secular part of the
dipolar Hamiltonian that makes the quantification of the decays
less clear. These unavoidable finite size effects should smear
out if one could solve much bigger systems.6,47 In any case,
the ordering of the decays obtained with the first order average

Hamiltonian confirm the effectiveness of the scaling in the
dynamics.

IV. CONCLUSIONS

In this work, we have performed Loschmidt echo exper-
iments to study decoherence in a many-spin system under a
scaled dipolar Hamiltonian. With this purpose, a symmetrical
time-reversal pulse sequence denominated PRL echo has been
introduced. The time reversion was obtained through two steps
of evolution characterized by the secular part of the dipolar
Hamiltonian, scaled down with a factor |k | and opposite signs.
The variable |k | can be varied at the discretion of the experi-
menter, in the range 0 ≤ |k | ≤ 1/2.

The experimental results for the LE’s showed a spreading
of the decay rates that correlates directly to the scaling factors
|k |. In other words, the decoherence is partially governed by
the scaling factors of the coherent dynamics. Several tests on
the pulse sequence performance were used to demonstrate that,
in the range of our experimental values, the r.f. inhomoge-
neities can be safely disregarded and therefore the behaviour
observed reflects the quantum dynamical complexity of the
spin-system. Notice that this set of experiments were done
varying the rf power in order to maintain fixed the effective
field that determines the relative importance of the truncated
terms. This is particularly relevant when considering the small
|k | values. The results were complemented with a series of
tests using the magic echo pulse sequence (data not shown).
Although the r.f. field strength modifies the truncation errors
during the reversed dynamics, the observed decays did not
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show a marked dependence on this parameter. A full compar-
ison of the performance of both pulse sequences is out of
the scope of this article and will be presented in a future
publication.

The Average Hamiltonian Theory was applied to provide
an insight into the spin dynamics during the pulse sequence.
The calculations were performed for every single r.f. block,
in contrast to the most widely used form. The first order of
the average Hamiltonian numerically computed for a 8-spin
system showed decay rates that progressively decrease as the
secular Hamiltonian (see Eq. (3)) becomes weaker. The simu-
lated echoes, however, do not decay when k = 0. This marks
a deep contrast with the experiments where strong overall
decoherence rate is observed for the whole range of k values.
Thus, we proceed to include reasonable errors in the pulse
sequence to analyse their importance in the overall echoes
decay. Their influence is present but in no way could account
for the experimental observations. Notably, this term H̃ (1),
neglected by conventional calculations, yielded an explanation
for the ordering of the experimental decoherence rates. While
we were expecting that the effective Hamiltonian that provides
many spin complexity would also be controlling decoherence,
the experiments only partially follows this trend. Thus, the
mechanism responsible for the dominant decay, which is inde-
pendent of the rf strength or the scaling factor of the zeroth
order average Hamiltonian, remains unknown. At this point,
the only term that has not been analysed in detail so far is the
original non-secular terms in Eq. (1), and this opens an avenue
for theoretical analysis.

Among the list of experiments that could help under-
standing the influence of the complete Hamiltonian in this
dominant decoherence are time reversal experiments in single
crystals at different orientations, the study of the develop-
ing of multiple quantum coherences during the dynamics,
and the scaling of the dipolar dynamics through the reduced
evolution of the polarization echo procedure.21 All these pro-
posals can be directly combined with the PRL echo sequence
both for initial magnetization parallel or perpendicular to
the effective field to shed further light on dynamical insta-
bility and the origin of decoherence in many-body quantum
systems.
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APPENDIX: FIRST ORDER AVERAGE
HAMILTONIAN TERMS

In this appendix, we present the full description of the first
order average Hamiltonian in terms of the product operators.
Equations (20) and (21) show the relationship between the
first order and the secular and non-secular Hamiltonians, in the
tilted frame defined by the radiofrequency. The expression of
Eq. (20) can be recast as

TABLE III. Functional form of A’s and B’s.

Term Structure

A1 δil(2I Zk I+i I
Z
j +2I Z

k
I−i I

Z
j +

1
2 I
+
k
I+i I

−
j −

1
2 I
−
k
I+i I

−
j + I

Z
k
I Zi I−j

− 1
2 I
+
k
I−i I

+
j +

1
2 I
−
k
I−i I

+
j + I

Z
k
I Zi I+j )

A2 δ j l(2I Zi I Z
k
I+j +2I Zi I Z

k
I−j −

1
2 I
+
i I
+
k
I−j +

1
2 I
+
i I
−
k
I−j

+ 1
2 I
−
i I
+
k
I+j −

1
2 I
−
i I
−
k
I+j + I

+
i I

Z
k
I Zj + I

−
i I

Z
k
I Zj )

A3 δik(2I+i I Zl I Zj +2I−i I
Z
l
I Zj + I

Z
i I Z

l
I−j +

1
2 I
+
i I
+
l
I−j

− 1
2 I
+
i I
−
l
I−j + I

Z
i I Z

l
I+j +

1
2 I
−
i I
−
l
I+j +

1
2 I
−
i I
−
l
I+j )

A4 δ jk(2I Zi I+
k
I Z
l
+2I Zi I−

k
I Z
l
+ I+i I

Z
k
I Z
l
− 1

2 I
+
i I
−
k
I+
l

+ 1
2 I
+
i I
−
k
I−
l
+ I−i I

Z
k
I Z
l
+ 1

2 I
−
i I
+
k
I+
l
− 1

2 I
−
i I
+
k
I−
l
)

B1 δil


2I+

k
I+i I

Z
j +2I−

k
I−i I

Z
j + I

−
k
I Zi I−j + I

+
k
I Zi I+j



B2 δ j l


2I Zi I+

k
I+j +2I Zi I−

k
I−j + I

+
i I
+
k
I Zj + I

−
i I
−
k
I Zj



B3 δik


2I+i I

+
l
I Zj +2I−i I

−
l
I Zj + I

Z
i I+

l
I+j + I

Z
i I−

l
I−j


B4 δ jk


2I Zi I+j I

+
l
+2I Zi I−j I

−
l
+ I+i I

Z
j I+

l
+ I−i I

Z
j I−

l



C1 δil


2I Z

k
I Zi I Zj − I

−
k
I+i I

Z
j − I

Z
k
I−i I

+
j



C2 δ j l


2I Zi I Z

k
I Zj − I

+
i I

Z
k
I−j − I

Z
i I−

k
I+j



C3 δik


2I Zi I Z

l
I Zj − I

+
i I
−
l
I Zj − I

−
i I

Z
l
I+j



C4 δ jk


2I Zi I Zj I Z

l
− I+i I

−
j I

Z
l
− I Zi I+j I

−
l



D1 δil 2I−
k
I Zi I+j

D2 δ j l 2I+i I
−
k
I Zj

D3 δik 2I Zi I−
l
I+j

D4 δ jk 2I+i I
Z
j I−

l

H
(1)
0,M = −

3λ0λ1

ωe


i< j ;k<l

di jdkl (A1 +A2 +A3 +A4)

− 3λ0λ2

2ωe


i< j ;k<l

di jdkl (B1 + B2 + B3 + B4) . (A1)

On the other hand, Eq. (21) can be rearranged as

H
(1)
M2 = −

9(λ1)2
ωe


i< j ;k<l

di jdkl (C1 + C2 + C3 + C4)

− 9(λ2)2
2ωe


i< j ;k<l

di jdkl (D1 +D2 +D3 +D4) . (A2)

The terms A − D are summarized in Table III.
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