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Abstract
Weaddress amolecular dissociationmechanism that is known to occurwhen aH2molecule
approaches a catalyst with itsmolecular axis parallel to the surface. It is found thatmolecular
dissociation is a formof quantumdynamical phase transition associated to an analytic discontinuity of
quite unusual nature: themolecule is destabilized by the transition fromnon-physical virtual states
into actual localized states. Current description complements our recent results for amolecule
approaching the catalyst with itsmolecular axis perpendicular to the surface (Ruderman et al 2015
J. Phys.: Condens.Matter 27 315501). Also, such a description can be seen as a further successful
implementation of a non-HermitianHamiltonian in awell definedmodel.

1. Introduction

Howdomolecules form?This has been recognized as one of the ten unsolvedmysteries of chemistry,
enumerated in 2013 for the year of chemistry celebration [2]. Indeed, when two identical atomsmeet a new
entity, the dimer,may emerge . The reciprocal is also true: as a dimer approaches a catalyst’s surface, itmay break
down. Butwhen and howdoes this break downprecisely happen?What distinguishes these two different
quantumobjects, i.e. themolecule and the two independent atoms? It is natural to think that as some control
parametermoves, e.g. an inter-atomic distance, a sort of discontinuity or phase transition should happen.While
a quantum calculation can be set up to simulate such a reaction, the calculations of an increasingly realistic
systemquickly begin to overwhelm even themost powerful computer. Indeed, DFT calculations hint a change in
chemical bonds as themolecule-catalyst interaction increases when themolecule approaches to the surface [3],
but this is confrontedwith the fact that in a finite systemno actual discontinuities can happen. A key for the
molecule formation/dissociationmystery could be found inAnderson’s inspiring paper ‘More isDifferent’ [4].
There, Anderson recalled that the inversion oscillations in ammonia-likemolecules suffer a sort of transition
into a non-oscillatingmode as themasses are increased.Much as in a classical oscillator transition to an over-
damped regime, the crucial ingredient that enables a dynamical phase transition is the infinite nature of the
environment which induces dissipative frictionwhile preventing the occurrence of Poincare’s recurrences.
These concepts were formalized in the context of the Rabi oscillations in a quantum system: a spin dimer
immersed in an environment of spins. This was solved in the thermodynamic limit of infinitelymany spins
which provide the crucial continuum spectrum [5, 6]. In this case, the finite Rabi frequency undergoes a
transition into a non-oscillatorymode as the interactionwith the environment increases [7–9]. This
mathematical analytic discontinuity was termed quantumdynamical phase transition (QDPT) [10].

While the application of these ideas tomolecular dissociation/formation is not completely straightforward,
in a previous paperwe succeeded in describingH2molecule formation/dissociation in the presence of a catalyst
as aQDPT [1]. This descriptionwas achieved using a variant of themodel introduced byNewns for hydrogen
adsorption in ametallic surface [11]. However, our analysis was restricted to the casewhen themolecular axis is
perpendicular to the catalyst surface. In [1] the infinitelymany catalyst orbitals provided for an environment
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whose influence had to be treated beyond linear response. Indeed, the interactions among the crystal states and
the dimer orbitals dramatically perturb each other and they have to be obtained through a self-consistentDyson
equation. In particular, the substrate induces imaginary corrections to themolecular energies, accounting for
theirfinite lifetime. These complex energies,much as those obtained from the FermiGoldenRule, are
eigenvalues of a non-Hermitian effectiveHamiltonian. They account for resonances in the electron’s scattering
probability as well as on the local density of states (LDoS) [12]. Ourmain result was that inside the d band two
resonances are formed and that their energy difference present an analytical discontinuity as a function of the
molecule–substrate interaction strength [13–15]. Thus, themolecular dissociation/formationwas identified as the
non-analyticcollapse/splitting of these resonances.

In this paper, we address another reactionmechanism, that known to occurwhen aH2molecule approaches
a catalyst with itsmolecular axis parallel to the surface. It is found thatmolecular dissociation is also a phase
transition associated to an analytic discontinuity, but nowof a different and unusual nature: themolecule is
destabilized by the transition of non-physical virtual states into actual localized states.While in the rest of the
article wewill be dealingwith a similarmodel and the same tools introduced in our previouswork [1], the
different geometry will provide a substantially new perspective into themolecular dissociation/formation
problem.

2. Themodel

Given a homonuclearmoleculeAB and ametal electrodewith a half filled d band, two independent geometries
arise to describe the interaction. The particular configuration of amolecule approaching with its axis
perpendicular to themetal surface, was previously investigated in [1]. A new problem arises when the axis along
themolecule lies parallel to the surface. In this configuration the distances between a given atombelonging to the
metal surface and both atoms forming themolecule remain equal, i.e. = =d d dA B (see figure 1). Therefore,
both atoms interact identically with themetal, resulting in a completely differentHamiltonian respect to the
perpendicular case, and hence yielding yet anothermechanism for the dissociation.

To set up themodelHamiltonian for the interaction between themolecule and themetal, wewrite the
molecule’sHamiltonian as:

= ñá + ñá - ñá + ñáH E A A E B B V A B B A .A B ABmolˆ ∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣)

The atomic energies EA andEB are identical and their degeneracy is broken by themixing element-VAB that
leads to the bonding and antibonding states, i.e. the highest occupiedmolecular orbital (HOMO) and lowest
unoccupiedmolecular orbital (LUMO), respectively. In this orientation, themolecule can only have substantial
overlapwith themetal dz2 and dxz orbitals of the underlyingmetallic atom. Therefore, z is considered to be
perpendicular to the surface and x is chosen parallel to themolecular axis. Both orbitals interact with the target
molecule in different ways [16], as depicted infigure 2.On one side, the overlap of the dz2 with the atomic
orbitalsA andB have the same the sign andmagnitude, resulting in aHamiltonian coupling element-V0. On
the other side, themolecule also interacts with the dxz orbital of themetal. In this case, while having equal
strengths a different sign appears for each atomic orbital. Taking these considerations into account, there are two

Figure 1.Homonuclearmolecule interactingwith ametallic surface. The principal axis of themolecule is parallel to the surface and
the distance of each atom to the substrate are the same.
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concurrentmechanisms formolecule-metal interaction:

l= ñá + ñá + - ñá + ñáV V A d B d V A d B d ,z z xz xzint 0 02 2ˆ (∣ ∣ ∣ ∣) ( ∣ ∣ ∣ ∣)

where ñdz2∣ and ñdxz∣ are themetallic orbitals that interact with themolecule. Furthermore, we have included aλ
factor to account for the difference among the interaction strengthswith the two d orbitals.

Infigure 2we represent explicitly two, assumed independent, sets ofmetallic d orbitals associatedwith each
symmetry of the surface orbitals (i.e. ñdz2∣ and ñdxz∣ ). Therefore, the relevant part of themetalHamiltonian can
be represented using a narrow bandmodel. This approximationwasfirst proposed byNewns [11], who stated
that the projection of the d band LDoS over the specific orbital (either dz2 or dxz) could be schematized as a
semielliptical energy band that strongly interacts with themolecule [17]. This picture is validated by appealing to
a Lanczos’s transformation [1, 18, 19] to obtain this simple electronic structure for the d band. The basic
procedure is visualized infigure 3 for a two dimensionalmetal represented as two distinct collections of
orthonormal d orbitals. By choosing one of the interactingmetallic orbitals as a reference, the intermetallic
interactions provide (through the Lanczos’s procedure) for combination of atomic d orbitals consistent with the
initial symmetry. Typically, these are progressively included according to their distance to the initial orbital.
These ‘collective’ substrate orbitals are naturally arranged in theHilbert space in order to evidence the
tridiagonal nature of theHamiltonian in the newbasis. Bymeans of this procedure, the general three-
dimensional geometry of a catalyst is reduced to a effective linear chain. The same reasoning applies for both
symmetries. Then, we canwrite themetal dz2 Hamiltonian as:

å å= ñá - ñá + + + ñá
=

¥

=

¥

+H E n n V n n n n1 1 , 1
z

n
n
z

n
n n
z

met
1 1

, 1

2 2 2ˆ ∣ ∣ (∣ ∣ ∣ ∣) ( )

where ñn∣ and En
z2

are the nth collectivemetal orbital obtained by the Lanczos’s transformation and the energy

corresponding to that orbital, respectively. For the sake of simplicity, all the hopping elements +Vn n
z
, 1

2

are
considered to be equal toV. This is consistent with the fast convergence of the hopping elements,first addressed
byHaydock et al [19]. A similarHamiltonian H

xz
met

ˆ is obtained for the xy symmetry. Thus

= +H H H .
z xz

met met met

2

ˆ ˆ ˆ

In order to obtain an optimal configuration for our discussion on the dissociation process [20, 21], wemake
the d band to be centered around the Fermi energy E bymaking = = =E E E EA B n . Then, the bonding and
antibondingmolecular states, i.e. HOMOandLUMO, fall outside the band as >V V2 4AB∣ ∣ ∣ ∣ [22]. This choice is
consistent with the standard knowledge of theMarcus–Hush theory for optimal conditions of electron transfer
andmolecular dissociation. In this work, we used =V V 2.5AB which is typical for H .2

Themain features of the system, i.e. energy spectrum and relevant eigenvalues properties, could be obtained
using a decimation procedure [23, 24].

This formulation deploys an infinite order perturbation theory for the interactionVint
ˆ to dress themolecular

Hamiltonian Hmol.
ˆ into an effectivemolecularHamiltonian that accounts for the presence of the catalyst, and

yields a complex correction,Σ, to themolecular bonding and antibonding energies. This is sketched in the
bottompanel offigure 3. This precisely defined procedure resorts to theGreen’s functionmatrix associatedwith
the totalHamiltonian = + +H H H Vmol met int

ˆ ˆ ˆ ˆ ,

  e e= - - . 21( ) ( ) ( )

Traditionally, e( ) has been used to evaluate the different LDOS and localization properties of electrons in
solids [25]. By now, it has become a standard tool inmolecular electronics, where it provides scattering
probabilities [24]needed to evaluate coherent and decoherent quantum conductances [24, 26]. Here, we are
going to profit from the fact that the poles of theGreen’s function are the eigenvalues of the system. At this point,

Figure 2.Different signs for the interaction between themolecule and themetallic atomic orbital, due to the lobe phase shift for the
atomic orbital functions dz2 and dxz. The l factor accounts for the different strength interaction between themolecule and the orbitals
dz2 and dxz.
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a brief introduction to the decimation technique is convenient for the sake of clarity. Let usfirst consider the
molecularHamiltonianwithout the presence of themetal:

⎡
⎣⎢

⎤
⎦⎥ =

-
-

E V
V E

. 3A AB

AB B
mol ( )

Then, theGreen’s functionmatrix adopts the form:

⎡
⎣⎢

⎤
⎦⎥

e e
e

e
=

- - -
-

-E E V

E V
V E

1
. 4

A B AB

B AB

AB A
mol 2( )( ) ∣ ∣

( )

TheGreen’s function for atomA, thefirst diagonal element ofmol, can bewritten as

e= - - S -G E .AA
A Amol

1( )

Therefore, the energy of atomA ismodified by the presence of the atomB through the self-energy

eS = -V E .A AB B
2∣ ∣ ( )

This decimation procedure can be extended to the full semi-infinite chain that describes the components of the d
band that couple with theHOMOandLUMOaccording to their symmetry. The procedure consists on ‘dressing’
the successive ‘Lanczos’s orbitals’with the corresponding self-energies to account for the interactionwith the
neighbor atomat the right. In afinite systemof +N 2 orbitals,SA is written in terms of +N 1 levels of a
continued fraction until one reaches the last level. To simplify the study of the spectral density, the energies of the
system can be renormalized by introducing an imaginary small quantity h-i , thus h -E E i . This energy
correction can be seen as aweak environmental interaction, a role that could be assigned to the sp band states
[26]. Thus, in the thermodynamic limit of a semi-infinite chain (  ¥N ), the self-energy correction due to the
metal becomes:

Figure 3.Effective non-HermitianHamiltonian due Lanczos’s transformation from amoleculeA–B (in blue), interactingwith a 2D
metal substrate composed of twodistinct collections of d orbitals. The transformation implies combining each layer of orbitals at the
same distance of the interacting atom. The decimation process results in a four-dimensionalHamiltonianwith themetal represented
as two effective self-energies.
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e
e h e

e eS =
- - - S

= D - G
V

E i
i , 5

2

( ) ∣ ∣
( ) ( )

( ) ( ) ( )

by setting E=0 in thewhole system (i.e. setting down the Fermi level as the energy reference) the analysis is
further simplified. Equation (5) has two solutionswith different signs. The solutionwith physicalmeaning
provides a retarded response and results:

⎛
⎝⎜

⎞
⎠⎟e

e h
eS =

+
- ´

+
+ ´ ´

-r x
y

r xi

2
sgn

2
i sgn

2
, 6( ) ( ) ( ) ( )

with
e h

=
-

-x V
2

2 2
2,

eh
=y

2
and = +r x y2 2 .

Then, the restriction to thefirst four orbitals of the totalHamiltonian can bewritten in a simple way:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥


e
h l

h l
l l e

=

S - -
- - - +
- - - -

+ - S

V V
V V V

V V V

V V

0
i

i

0

. 7

z

AB

AB
xz

0 0

0 0

0 0

0 0

2 ( )

( )

( )

Now, a basis change can bemade to amolecular bonding and antibonding representation. Equation (8) shows
theHamiltonian in the new basis. Notice that, the bonding state (second diagonal element) does not interact
with eSxz ( ) (fourth diagonal element) and the antibonding state (third diagonal element)does not interact with

eSz2 ( ) (first diagonal element):

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
  

e
h

h l
l e

¢ = Ä =

S -
- - -

-

S

~ ~ ~
+ -

V

V V

V V

V

2 0 0

2 i 0 0

0 0 i 2

0 0 2

. 8

z

AB

AB

xz

0

0

0

0

2 ( )

( )

( )

Therefore, the system is naturally detached in twoportions inwhich theGreen’s functionmatrices can be solved
independently. For the bonding subspace, i.e. the bondingmolecular orbital interactingwith eSz2 ( ), theGreen’s
function takes the form:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

e h e e

e h

e e
=

- + - S -

+ + -

- - S
+

V V

V V

V

1

i 2

i 2

2
, 9

AB
z

AB

z
0
2

0

0
2 2( )( ( )) ( )

( )

while, for the antibondingmolecular orbital interactingwith eSxz ( ), there is a subspacewhere
⎡
⎣⎢

⎤
⎦⎥

e h e e l
e e l

l e h
=

+ + - S -
- S

- +
-

V V

V

V V

1

i 2

2

2 i
. 10

AB
xz

xz

AB0
2

0

0( )( ( )) ( )
( ) ( )

For the rest of the articleλwill be set l ~ 1andS = Sxz z2
. The eigenenergies and resonances of the system

are obtained byfinding the poles of equations (9) and (10). This is achieved solving the equations:

e a e- - S =V 2 0, 11AB ( ) ( )

e a e+ - S =V 2 0, 12AB ( ) ( )

with a = V V0
2( ) . The roots of equation (11) accounts for the poles of theGreen’s function associated to the

bonding state interacting with the dz2 bandwhile equation (12) for the poles of the antibonding state interacting
with the dxz band.We should point that to evaluate the roots of equations (11) and (12) one hasfirst to get rid of
the square root by transforming them into quartic polynomial equations.

3.Molecular dissociation

Afirst hint formolecular dissociation arises from analyzing themolecular bonding orbital that interacts with the
d band through the dz2 orbital,figure 4. In this case, equation (11) provides two poles which are below the d band
at themolecular bonding energy e = -VAB. One is a physical localized pole (green on-line) bottom line in
figure 4which corresponds to the bonding state ñAB∣ . As the interaction increases, ñAB∣ evolves to a bonding
combination between the bonding state of themolecule and themetal, i.e. ñAB dz2∣( ) , becomingmore localized
and its energy lyingwell below the Fermi level. The other pole corresponds to a non-physical virtual state which,
as the interaction increases, escapes to negative energies and reappears at positive values (red on-line) dots in
figure 4. As the non-physical pole gets closer to the d band, itfinallymeets the band-edge and suffers a transition
into a physical localized state. This is an antibonding combination between themolecular bonding state and the
metal *ñAB dz2∣(( ) ) (blue line). In this scenario, boundweakening occurs because occupying the ñAB dz2∣( ) state
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implies a diminishing occupation of the bonding ñAB∣ from100% into afinal 50%. Indeed, themolecular
bonding state nowhas 50%participation in the unoccupied *ñAB dz2∣(( ) ) localized orbital that emerged from the
upper top of the d band.

The previous discussion has a precise equivalence in the analysis of the states that evolve from themolecular
antibonding state. However, the same formulation has now completely differentmeaning. Themolecular
antibonding state interacts with the d band through the dxz surface orbital. The poles resulting from
equation (12), are shown infigure 5. At the antibonding energy e = VAB, two poles appear. A physical localized
state, related to themolecular antibonding state *ñAB∣( ) (blue line infigure 5), whose energy increases asV0

increases and becomes an antibonding combination between themolecular antibonding state and themetal site
* *ñAB dxz∣(( ) ) . The other pole at e = VAB is a virtual state [27, 28] (red dots infigure 5)which diverges asV0

increases and appears again from-¥ until its energy touches the d band. At this critical value, the virtual state
suffers a transition and becomes a localized state (green line infigure 5)which is a bonding combination between
themolecular antibonding state and themetal band * ñAB dxz∣( ) . Therefore,molecular dissociation can be
interpreted as occurring at the precise valuewhen the virtual pole touches the d band and becomes the localized,
and occupied, state * ñAB dxz∣( ) . Thus,molecular dissociation occurs at a non-analytical point of the physical
observables, e.g. total energies. At this point themolecular electrons have a transition from an increasingly
occupied bonding state that participates of the delocalized band into a localized combination between the d

Figure 4.Poles of theGreen’s function for the parallel configurationwhen themolecule interacts with the dz2 orbital.

Figure 5.Poles of theGreen’s function for the parallel configurationwhen themolecule interacts with the dxz orbital. Themolecule
dissociation as aQDPT can be observedwhen the interaction is with the dxz band.
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states and antibondingmolecular orbital. This is a formofQDPTwhich, to the best of our knowledge, has not
been identified before in the context ofmolecular dissociation.

Fromour results it becomes evident that themost interesting situation is when the antibondingmolecular
orbital interacts with the dxz. From equation (10)we get the diagonal Green’s function at the dxzmetallic orbital:

e
e h e

l
e h

=
+ - S -

+ +

G
V

V

1

i
2

i

. 13d

AB

0
2xz ( )

( ) ( )
( )

The LDoS for the dxz band can be obtained from equation (13)

e
p

e= -
h +

N G
1

lim Im , 14d d
0

xz xz( ) [ ( )] ( )

which becomes of great help to reinforce and extend the previous discussion. This LDoS is shown infigure 6 for
lV V0 between 0 and 3.6 for l = 1.When ~V 00 the shape of the LDoS corresponds to a non interacting dxz
band. As lV0 increases the dxz band starts tomixwith the antibonding state of the dimer. The energy of this
antibonding combination * *ñAB dxz∣(( ) ) , progresses toward increasingly positive values as the interaction grows.
Meanwhile, the virtual state approaches the dxz band fromnegative energies while it produces an ‘attraction’ that
increases the LDoS near the band edge. As the virtual statemeets the band a localized state emerges from the band
edge and gains weight. A similar issuewas recently discussed in the context of engineered plasmonic excitations
inmetallic nanoparticle arrays [28]. There, it was shown analytically that the distorted band is the product
among the original semi-elliptic band and a Lorentzian centered in the virtual state. This concentrates a density
of states near band edge until it becomes a divergence and a localized state is expelled at a critical interaction
strength, shown as a dot in figure 5.

The previous conclusion is reinforced by the analysis of LDoS at the antibonding orbital. Figure 7 shows how
the unoccupied antibonding state *ñAB∣( ) looses its weight towards a participation on a linear combinationwith
the dxz bandwhich finally emerges as an occupied localized state. This is a crucial contribution tomolecular
destabilization. As in the first part of this work [1] the new transition can be seen as a successful implementation
of a non-HermitianHamiltonian [12] in awell definedmodel.

Notice that figures 6 and 7 also serve to discuss the interaction between the bondingmolecular state ñAB∣
and the dz2 band by exchanging the sign of the energy. Thus, in this case, the *ñAB dz2∣(( ) ) emerges as an
unoccupied localized state above the dz2 band, while ñAB∣ state loses occupation as the ñAB dz2∣( ) state formswith
increasing interaction.

4. Conclusions

As aH2molecule approaches a catalyst with its axis parallel to the surface, the interaction creates two
independent collective orbitals which are superpositionswith different surface d orbitals that are part of their
correspondingmetallic bands. Themolecular bonding state becomesmixedwith the dz2 bandwhile the
molecular antibonding state interacts with the dxz band. This gives rise to two processes described by the same
algebra, butwith different physicalmeanings as their energies are the reverse of each other.

Figure 6. LDoS of the d band. AsV0 increases a state is expelled from the band and, after the transition point, forms the localized state
* ñAB dxz∣( ) , h = 0.01 eV.
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Onone side, themixing of themolecular bonding state produces a decrease of its occupation.While this
occurs, the LDoS of the dz2 band is distorted at its upper edgemuch as if it were ‘attracted’upwards by the virtual
state. Finally, at a critical interaction strength the divergent peak is expelled as a localized state emerging from the
upper (i.e. unoccupied) part of the dz2 band. This new unoccupied state is an antibonding combination among
the surface dz2 orbital and the bonding state of the dimer.

On the other side, a fraction of themolecular antibonding state gets increasinglymixedwith the dxzmetallic
band. This produces a decrease of the dimer participation on its unoccupied antibonding combination.
Simultaneously, the dxz LDoS is ‘attracted’ towards its lower edge until itfinally emerges as an occupied localized
state build as a bonding combination among themolecular antibonding state and the dxz band.

These simultaneousmixing processes, i.e. the depopulation of themolecular bonding state and the
occupation of themolecular antibonding state, both schematized infigure 8, are responsible for the dimer
destabilization that leads to its breakdown.

Figure 7. LDoS of themolecular antibonding state *ñAB∣( ) , interactingwith themetallic orbital dxz, asV0 increases, h = 0.05 eV.

Figure 8.The interaction of the bondingmolecular orbital with the dz2 band shields an antibonding combination that depopulates
thismolecular orbital, while the occupied fraction losses weight towards the dz2 band. Simultaneously, the interaction of the
antibondingmolecular orbital with dxz band enforces thismolecular state to split among an antibonding combination and an
emergent bonding one that is interpreted as themolecular breakdown.
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While the essence of themolecule dissociationmechanisms are already hinted by the resolution of toy
models for the catalyst such as smallmetallic clusters or even a singlemetal atom, the criticality of the
dissociation transitionwould not be readily captured. Indeed, as in the first part of this work [1], the quasi-
continuumnature of ametallic substrate is crucial to describe dissociation as an analytical discontinuity. In this
case, we interpreted dissociation as the emergence of the localized state from the band edges as the interaction
strength increases. This is an actualQDPT. Remarkably, the elusive virtual states (i.e. states that are non-physical
poles of  e 2∣ ( )∣ [29, 30]) acquire a physicalmeaning as ‘attractors’ of a distortion of the continuumband
creating a LDoS divergence that finally expels a localized state. That is, a non-analytical transition that heralds
themolecule dissociation.
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