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We define the center of mass and spin of an isolated system in General Relativity. The resulting relationships
between these variables and the total linear and angular momentum of the gravitational system are remarkably
similar to their Newtonian counterparts, though only variables at the null boundary of an asymptotically flat
spacetime are used for their definition. We also derive equations of motion linking their time evolution to the
emitted gravitational radiation. The results are then compared to other approaches. In particular one obtains
unexpected similarities as well as some differences with results obtained in the Post Newtonian literature .

These equations of motion should be useful when describing the radiation emitted by compact sources such
as coalescing binaries capable of producing gravitationalkicks, supernovas, or scattering of compact objects.

I. INTRODUCTION

The main goal of this work is to define the notions of
center of mass and intrinsic angular momentum for isolated
systems and obtain their dynamical evolution when gravita-
tional radiation is emitted. The evolution of isolated systems
and its gravitational radiation is naturally described using the
notion of asymptotically flat spacetimes. Thus, our approach
will be based on this mathematical framework.

Both in Newtonian theory and special relativity one can find
a particular trajectory with the property that the mass dipole
moment vanishes at this trajectory. This special trajectory is
called the center of mass. If one would like to generalize this
concept to GR, then the goal would be to find a worldline in
spacetime with analogous properties to the one described in
Newtonian gravity or special relativity. The first step is there-
fore to provide an adequate definition of mass dipole moment
in GR.

One also expects that any suitable definition of center of
mass should be related to other global quantities like the
Bondi massM or momentumP i by the relationP i =MV i+
radiation terms. However, in contrast to Newton’s theory of
gravity, the Bondi mass or momentum will not be conserved
for an isolated system since gravitational waves carry away
mass and momentum. Therefore, one also expects that the
velocity of the center of mass will change when radiation is
emitted.

It is also worth mentioning that there is a qualitative differ-
ence between the geometrical meaning of the dipole mass mo-
ment in Newtonian gravity and in special relativity. Whereas
in Newton theory the mass moment is a vector, in special rel-
ativity it is a component of the so called, the mass dipole
moment/angular momentum 2-form [1]. Thus, to imple-
ment this program one should generalize the mass dipole mo-
ment/angular momentum 2 form to GR, and then define the
center of mass worldline as the special place where the mass
dipole vanishes. As a bonus one should obtain the intrinsic
angular momentum evaluating the non-vanishing part of this
generalized 2-form on the center of mass worldline.

However, as one can see in the literature, there are many
definitions of angular momentum/mass dipole moment for
isolated systems in general relativity. As a non complete list
of authors we could mention Dray and Streubel [2], Bram-

son [3], Geroch [4], Helfer [5], Moreschi [6], Penrose [7] and
Winicour [8]. Although a recent living review [9] offers a
complete survey of the main results in the field with the main
motivations and technical aspects of each definition, the fact
that there is no agreement among these alternative approaches
reflects the difficulty of the subject. However, there is a com-
mon link between them that can be used as a starting point:
all the approaches agree for quadrupole radiation.

This fact has been used in the Adamo-Newman-Kozameh
[10] approach. By restricting themselves to quadrupole radi-
ation data, it is shown that both the center of mass and an-
gular momentum are defined from an asymptotic Weyl scalar
whosel = 1 part of the spherical harmonic decomposition
transforms as a 4-dim two form under the action of the ho-
mogeneous Lorentz algebra of the BMS group, the available
kinematic geometry of null infinity [10]. Moreover, the ANK
formulation is the only one that gives equations of motion for
both the center of mass and spin of an isolated system. In the
ANK approach the center of mass and spin are respectively
the real and imaginary parts of a complex worldline defined
in the solution space of the good cut equation. The geometri-
cal interpretation of this space is that each solution describes a
congruence of asymptotically shear free null geodesics reach-
ing null infinity. The novelty of the formulation lies in the
definition of the spin as an intrinsic property of this complex
worldline and thus it can be used to give a classic definition of
a gravitational particle with spin.

From our perspective, however, the ANK approach has
some points that deserve further attention

1. the angular momentum is only defined for quadrupole
radiation and cannot be extended to generic radiation
since it does not give the expected results when the
space time has a rotational symmetry. Thus, one must
generalize this definition to spacetimes with arbitrary
gravitational radiation, and include the case when the
spacetime is axially symmetric,

2. By assumption, the approach is based on null congru-
ences with vanishing shear at null infinity. However,
at null infinity the shear of the future null cone of any
point does not vanish. This follows from the optical
equations since a non vanishing Weyl curvature on the
null cone induces non vanishing shear. Thus, the cen-
ter of mass worldline defined on the solution space of
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asymptotically vanishing shears does not correspond to
a worldline of the underlying spacetime.

3. The spin is defined as the imaginary part of a complex
worldline instead of simply evaluating the angular mo-
mentum at the center of mass.

In this work we present new definitions of center of mass
and spin using the available tools on asymptotically flat space-
times. In these new definitions we try to answer the above is-
sues by constructing one parameter (Newman-Unti) foliations
of null infinity that are related to null cones cuts from points
of the spacetime and have non vanishing shear at null infin-
ity. The spin is simply the angular momentum at the center of
mass and the center of mass is the place where the mass dipole
moment vanishes.

Since there are many technical details, some of them in-
volved, it is better to outline here the main ideas of our ap-
proach. In this way the reader can have a broad picture with-
out the technical complications.

We first introduce the notion of null cone cuts as the inter-
section of the future null cones from pointsxa of the space-
time with null infinity. We then define the regularized null
cone cuts (or RNC cuts) as the Huygens part of the null cone
cuts. By construction the RNC cuts are smooth 2-surfaces at
null infinity that parametrically depend on the points of the
spacetime. If the pointsxa(u) describe a worldline the RNC
cuts yield a special Newman-Unti (NU) family of cuts.

We then introduce the notion of linkages [8, 11] on this
special family of NU cuts to define the dipole mass mo-
ment/angular momentum. The main reason for this choice
is that the linkage is a linear generalization of the Komar for-
mula which automatically yields the standard Komar defini-
tion when the spacetime has a Killing field associated to a ro-
tational symmetry. By restricting the linkages to the RNC cuts
we fix one of the main problems in the linkage formulation.
Instead of having a definition of angular momentum with a
supertranslation freedom we restrict the freedom to the RNC
family, a special 4-dim family of Newman-Unti cuts, where
the notions of dipole mass moment and angular momentum
are introduced (see ref. [9] page 30). Although there are still
infinite degrees of freedom, one for each worldline, the free-
dom is analogous to the choice of origins in the Newtonian
definition of angular momentum.

Finally, by demanding that on one RNC cut the mass dipole
term vanishes we select a special point associated with thiscut
that by definition is called center of mass. Evaluating the an-
gular momentum on this special RNC cut yields the intrinsic
angular momentum or spin.

Note that the notion of a null cone cut as the intersection
of null cones from points of the spacetime with null infinity
is purely geometric. Note also that, as pointed out by Geroch
and Winicour, the linkages also offer a coordinate free defi-
nition. Thus in principle our construction solely depends on
a family of NU cuts and it is independent on the coordinates
used for its description.

As it was also done in the ANK formulation, this approach
yields explicit equations of motion for the center of mass and
spin when gravitational radiation is emitted from the source.

The equations of motion of both formulations can be com-
pared and, as one would expect, they are different. Given
that there is available in the literature models of binary coa-
lescence based on the post Newtonian approximation it is also
of great interest to compare our equations with these models.
It is surprising to find out that the time evolution of the total
mass, linear and angular momentum in our approach agrees
with the PN formulation up to octupole terms in the gravita-
tional radiation.

It is left for future work to analyse other definitions of
dipole mass moment/angular momentum, that yield the Ko-
mar formula for axial symmetry. In this sense one should
mention that the Gallo-Moreschi definition [12], following a
completely different approach, gives exactly the same formula
as the Linkages on Bondi sections. (The old definition had
some freedom and the original way to fix it yielded a different
result [13].)

Since the Moreschi approach also defines a preferred fam-
ily of Bondi cuts (called nice sections) it is worth making a
few remarks about them. The nice sections are found by de-
manding that thel ≥ 2 part of the supermomentum at null
infinity vanishes when restricted to those cuts. The nice sec-
tion equation is obtained and the center of mass frame is a
special solution of the equation. The nice section equationis
different from either the null cone cut equation at a local level
or the regularized null cone cut equation at a global level on
the sphere. Whereas the cut equations have (at least) a linear
dependence on the Bondi shear, the nice section equation has
a quadratic dependence. In addition, since the RNC cut equa-
tion yield monoparametric families of NU cuts whose areas
are time dependent and in general are not unit spheres, the nice
sections are by construction Bondi surfaces and thus have unit
area. Furthermore, the solutions to the nice sections are spe-
cially adapted to get rid of unwanted supermomentum terms
and thus define unambiguously the notion of center of mass
and intrinsic angular momentum at each Bondi time. On the
other hand, our formulation is based on a special monopara-
metric family of cuts at null infinity together with a coordinate
free approach to find the notion of center of mass and intrinsic
angular momentum. In the end however, one uses a Bondi co-
ordinate system to obtain explicit description of the approach.
Therefore, it is worthwhile to examine in more detail both ap-
proaches and find similarities and differences in a future work.

The technical material needed for this work is presented in
Sections 2-4. Section 5 is the main part of this work. We give
definitions of center of mass and spin, derive the equations of
motion and compare our results with other approaches. The
work ends with some concluding remarks.

II. FOUNDATIONS

In this section, we introduce several of the key ideas and
the basic tools that are needed for our later discussion.
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A. Asymptotically flatness andI +

We first introduce some mathematical framework. In par-
ticular we introduce the notion of an isolated source of grav-
itational radiation realized by defining the so called asymp-
totically flat spacetimes. Bondi, Sachs and collaborators in
the sixties [14, 15], used a canonical coordinate system were
mass, momentum and gravitational radiation could be defined.
Later, Penrose gave a geometrical definition using a rescaled
metric together with a null boundary [16]. Both approaches
can be found in the review of Newman and Tod [17]. We fol-
low Newman and Tod in the following definitions.

A spacetime(M , gab) is called asymptotically flat if the
curvature tensor vanishes as infinity is approached along
the future-directed null geodesics of the spacetime. These
geodesics end up at what is referred to as future null infin-
ity I +, the future null boundary of the spacetime . These
ideas can be formalized by giving the following,

Definition: a future null asymptote is a manifoldM̂ with
boundaryI + ≡ ∂M̂ together with a smooth lorentzian met-
ric ĝab, and a smooth functionΩ onM̂ satisfying the follow-
ing

• M̂ = M ∪ I +

• OnM , ĝab = Ω2gab with Ω > 0

• At I +, Ω = 0, n∗
a ≡ ∂aΩ 6= 0 andĝabn∗

an
∗
b = 0

We assumeI + to have topologyS2 × R. A Newman-Unti
(N-U) coordinate system [18] is introduced in the neighbor-
hood ofI +,as follows. We first give a regular one-parameter
family of closed 2-dim cuts at null infinity, labelled by the
parameteru which meet every generator once. The stere-
ographic coordinates(ζ, ζ̄) label each generator on the cut.
We then construct a family of null surfaces whose intersection
with I are these NU cuts,and use the affine parameterr on
each null surface as our last coordinate.

SinceI + is a null hypersurface in the rescaled manifold
M̂ the restriction of the rescaled metric on this null boundary
takes the form

dŝ2 =
4dζdζ̄

P 2
. (1)

with P (u, ζ, ζ̄) a strictly positive function. With the choice of
Ω = r−1 as the conformal factor, the physical metric is then
given as

ds2 =
4r2dζdζ̄

P 2
. (2)

B. Null Tetrads and Operators on the sphere

Associated with the NU coordinates(u, r, ζ, ζ̄), there is a
null tetrad system denoted by (l∗a,n∗

a,m∗
a,m̄∗

a). The first null
tetrad covectorl∗a is defined as [17]

l∗a = ∇au, (3)

Thus, la∗ is a null vector tangent to the null surfaceu =
const.. The remaining null vectors are then prescribed atI +

and then parallel propagated inwards alongla∗. The second
tetrad vectorn∗a is tangent to the null generators ofI + and
normalized tol∗a

na∗l∗a = 1. (4)

The null tetrad atI + is finally completed by selecting two
complex null vectors at the intersection ofu = const. and
Ω = 0. The complex vectorma∗ orthogonal tola∗ andna∗ is
normalized to

m∗
am̄

∗a = −1. (5)

The null tetrad for the spacetime is then constructed from
parallel propagation alongla∗. The spacetime metric is given
by

gab = l∗an
∗
b + n∗

al
∗
b −m∗

am̄
∗
b − m̄∗

am
∗
b . (6)

(In this work the lettersa, b, c, d take values0, 1, 2, 3.) For
more details on the asymptotic form of the metric in NU co-
ordinates see ref. [17].

Since there is a gauge freedom in the choice of conformal
factorΩ one can freely choose the functionP (u, ζ, ζ̄). The
particular choiceP = P0 = (1 + ζζ̄), yields a two-surfaces
metric (2) of unit radius that is Lie derived along the null di-
rections ofI +. For this particular choice of conformal factor
a Bondi timeuB is introduced as the affine length of the null
geodesicna ≡ ĝab∇bΩ. The covectorla = ∇auB yields a
Bondi tetrad(la, na,ma, m̄a) following the same procedure
as above.

SinceuB = const. are unit spheres whereasu = const.
are not, the description of one cut in terms of the other may be
written as

uB = Z(u, ζ, ζ̄), (7)

u = T (uB, ζ, ζ̄). (8)

whereZ is a smooth function andT is the inverse ofZ. They
satisfyṪZ ′ = 1, where "dot" and "prime" denote the deriva-
tive with respect touB andu respectively.

We also introduce the concept of spin weight. A quantityη
that transforms asη → eisλη under a rotationma∗ → eiλma∗

is said to have a spin weights. For any functionf(u, ζ, ζ̄), we
define the differential operatorsð∗ andð̄∗ [10] by

ð
∗f = P 1−s ∂(P

sf)

∂ζ
, (9)

ð̄
∗f = P 1+s ∂(P

−sf)

∂ζ̄
, (10)

wheref has a spin weights andP is the conformal factor
defining the metric (2). Likewise, we define

ðf = P 1−s
0

∂(P s
0 f)

∂ζ
, (11)

ð̄f = P 1+s
0

∂(P−s
0 f)

∂ζ̄
, (12)
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with P0 = (1 + ζζ̄). Furthermore, usingP = P0Z
′ (which

follows from rB
P0

= r
P

andrB = Z ′r [18]) one can relate
these two operators as

ð
∗f = Z ′

ðf + sfðZ ′ (13)

ð̄
∗f = Z ′

ð̄f − sf ð̄Z ′. (14)

The above equation (which is not a coordinate transformation
between the NU and Bondi coordinate systems) will be used
below to expand regular functions on the sphere in the stan-
dard spherical harmonic basis.

Now, we are interested in the relationship between the NU
and Bondi null tetrads. We start by rewriting eq. (3) in the
form la = ∇aZ(u, ζ, ζ̄) and using the orthogonality of the
null vectors to get

l∗a =
1

Z ′
[la −

L

rB
m̄a −

L̄

rB
ma +

LL̄

r2B
na], (15)

n∗
a = Z ′na, (16)

m∗
a = ma −

L

rB
na, (17)

m̄∗
a = m̄a −

L̄

rB
na, (18)

where

L(uB, ζ, ζ̄) = ðZ(u, ζ, ζ̄).

C. The Spin Coefficient Formalism

In this subsection we will describe the NP formalism in
term of the Bondi coordinates(uB, rB , ζ, ζ̄), this means that
all introduced functions depend on these coordinates. First,
we introduce the Ricci rotation coefficientsγµνρ [17, 19]

γµνρ = λaρλ
b
ν∇aλbµ, (19)

the Ricci rotations coefficients satisfy

γµνρ = −γνµρ. (20)

where

λaµ = (la, na,ma, m̄a), (21)

whereµ, ν, ρ = 1, 2, 3, 4 are tetrad indexes. The twelve spin
coefficients are defined as combinations of theγµνρ

α =
1

2
(γ124 − γ344); λ = −γ244; κ = γ131

β =
1

2
(γ123 − γ343); µ = −γ243; ρ = γ134 (22)

γ =
1

2
(γ122 − γ342); ν = −γ242; σ = γ133

ε =
1

2
(γ121 − γ341); π = −γ241; τ = γ132

The Peeling theorem of Sachs [20] tell us the asymptotic be-
havior of the spin coefficients [10].

κ = π = ε = 0; ρ = ρ̄; τ = ᾱ+ β

ρ = −r−1
B − σ0σ̄0r−3

B +O(r−5
B )

σ = σ0r−2
B + [(σ0)2σ̄0 − ψ0

0/2]r
−4
B +O(r−5

B )

α = α0r−1
B +O(r−2

B )

β = β0r−1
B +O(r−2

B ) (23)

γ = γ0 − ψ0
2(2r

2
B)

−1 +O(r−3
B )

µ = µ0r−1
B +O(r−2

B )

λ = λ0r−1
B +O(r−2

B )

ν = ν0 +O(r−1
B )

where the relationships among the r-independent functions

α0 = −β̄0 = −ζ
2
, γ0 = ν0 = 0,

ω0 = −ð̄σ0, λ0 = ˙̄σ0, µ0 = −1,

with σ0 the value of the Bondi shear at null infinity. This
complex scalar is called the Bondi free data (or Bondi news)
sinceσ̈0 yields the gravitational radiation reaching null infin-
ity. Since the BOndi shear is a s.w. 2 object it can be written
as

σ0 = ð
2(σR + iσI).

The real functionsσR, σI are respectively called the elec-
tric and magnetic part of the Bondi shear. They are related to
the mass and magnetic nth-poles moments of the gravitational
source.

As the spacetime is assumed to be empty in a neighborhood
of I + the gravitational field is given by the Weyl tensor.
Using the available tetrad one defines five complex scalars,
whose asymptotic behavior is [20]

ψ0 = Cabc
dmalblcmd ≃ ψ0

0

r5B
, ψ3 = Cabc

dlanbncm̄d ≃ ψ0
3

r2B
.

ψ1 = Cabc
dnalblcmd ≃ ψ0

1

r4B
, ψ4 = Cabc

dm̄anbncm̄d ≃ ψ0
4

rB
.

ψ2 =
1

2
(Cabc

dlanbmcm̄d − Cabcdl
anblcnd) ≃

ψ0
2

r3B
.

Using the peeling theorem the radial part of the Einstein
equations can be integrated leaving only the Bianchi identities
atI as the unsolved equations. In a Bondi frame the resulting
equations look remarkably simple. Some of those equations
relate the Weyl scalars with the Bondi shear, i.e., [10, 17]

ψ0
2 + ð

2σ̄0 + σ0 ˙̄σ0 = ψ̄0
2 + ð̄

2σ0 + σ̄0σ̇0, (24)

ψ0
3 = ð ˙̄σ0, (25)

ψ0
4 = −¨̄σ0, (26)

Here theð operator is taken atuB = const.
In the same way we can define the Weyl scalars in N-U us-

ing the fact that the Weyl tensorCabc
d is conformally invariant
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[17].

ψ∗
1 = Cabc

dna∗lb∗lc∗m∗
d ≃ ψ0∗

1 r
−4,

σ∗ = m∗am∗b∇al
∗
b ≃ σ0∗r−2.

From the equations (15-18) we can find transformations from
NU to Bondi for any scalar or spin coefficient [21, 22]. In
particular we are interested in

ψ0∗
1

Z ′3
= [ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4 ], (27)

whereψ0∗
1 is constructed from the N-U tetrad. Similarly we

find the relation betweenσ0∗ andσ0 [21]

σ0∗

Z ′
= σ0 − ð

2Z. (28)

whereσ0∗ is the NU shear [18].

D. Evolution equations

Finally, the Bianchi identities (in Bondi coordinates) are
given by [10, 17]

ψ̇0
0 = −ðψ0

1 + 3σ0ψ0
2 , (29)

ψ̇0
1 = −ðψ0

2 + 2σ0ψ0
3 , (30)

ψ̇0
2 = −ðψ0

3 + σ0ψ0
4 . (31)

Note that eq. (24) defines a real variableΨ called the mass
aspect [14].

Ψ = ψ0
2 + ð

2σ̄0 + σ0 ˙̄σ0, (32)

In term ofΨ is possible to write the Bondi MassM and Bondi
lineal momentumP i by

M = − c2

8π
√
2G

∫

ΨdS, (33)

P i = − c3

8π
√
2G

∫

Ψl̃idS, (34)

with

l̃i =
1

1 + ζζ̄
(ζ + ζ̄,−i(ζ − ζ̄), 1− ζζ̄). (35)

with dS = 4dζ∧dζ̄

P 2

0

the area element on the unit sphere and
wherei, j, k, l,m = 1, 2, 3 are three dimensional Euclidian
indices. It is important to note that atI we move upstairs
and downstairs indices with the flat metric.

It is also quite convenient to give the evolution equation for
Ψ. Directly from eq. (31) one obtains

Ψ̇ = σ̇0 ˙̄σ0. (36)

This equation will be used later.

III. REGULARIZED NULL CONE CUTS

Another important construction in this work is a special NU
foliation obtained from the null cone cuts of null infinity or
NC cuts for short.

Given a pointxa on the spacetime and denoting byNx the
future null cone fromxa, we define a null cone cut (NC cut)
asNx ∩ I +. The local and global properties of the NC cuts
have been extensively analysed [23–25] and some of them are
summarized in the Appendix. In this section we briefly review
some results that are needed for this work.

In flat spacetime the NC cuts are smooth surfaces that can
be written as a regular functions on the sphere, i.e.,

Z0 = xaℓa, xa = (t, xi), ℓa = (Y 0
0 ,−

1

2
Y 0
1i),

(37)
with xa the apex of the null cone andY 0

0 , Y
0
1i the ℓ = 0, 1

spherical harmonics. If the apex describes a timelike world-
line xa(τ) in Minkowski space the NC cuts describe a one
parameter foliation of Null Infinity.

The idea is to generalize this concept for asymptotically flat
spacetimes. This is a highly non trivial task since curvature
induces caustics on the future null cones of points. Thus, the
NC cuts have self-intersections and caustics. Nevertheless one
can show that it is always possible to find a neighborhood at
null infinity where a NC cut is a smooth 2-surface. In a Bondi
coordinate system, this surface is a graph of a function

uB = Z(xa, ζ, ζ̄). (38)

For the type of systems we are interested in describing, i.e.,
gravitational radiation coming from compact sources in the
observation volume of aLIGO, one can always assume the null
cone cut can be described by the above function. Moreover,
to recover the pointxa from which the radiation is coming
one does not need the whole 2-surface, rather a small neigh-
borhood of points(ζ, ζ̄) in the sphere. This follows from
the dual meaning ofZ as the past null cone from(uB, ζ, ζ̄).
Thus,(ðZ, ð̄Z) gives you the incoming direction of the null
geodesic of that past null cone whereasð̄ðZ identifies a point
on that null geodesic. Therefore, with a very small array of
observers one can identify points in the spacetime such that
their null cone cuts are described by equation (38).

One can also show thatZ,a is a null covector, namely, it
satisfies

gabZ,aZ,b = 0. (39)

The above equation can also be used to reconstruct the con-
formal metric from knowledge ofZ. The explicit construc-
tion is given on a preferred coordinate system(u, ω, ω̄, R) =
(Z, ðZ, ð̄Z, ð̄ðZ), and the metric coefficients are given in
terms of a functionΛ(Z, ðZ, ð̄Z, ð̄ðZ, ζ, ζ̄), related toZ by
the equation

ð
2Z = Λ.
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This function plays a central role in the metric reconstruction
technique. IfΛ is given, to obtain a Lorentzian metric from
(39), Λ must satisfy a set of PDEs called metricity conditions.
This is the core of the Null Surface Formulation of General
relativity [26], or NSF for short, and it gives a generalization
of Cartan’s work on third order ODEs and a Lorentzian metric
on the solution space [27, 28]. Note that ifΛ = 0 we obtain a
flat metric and the solution ofð2Z = 0 is given by (37).
Λ also has a very simple geometric meaning. Using Sachs’

theorem one can show that

ð
2Z = σ0 − σx, (40)

with σ0 the asymptotic Bondi shear at null infinity andσx the
asymptotic shear of the future null cone fromxa evaluated at
null infinity [29]. In generalσx will always be non-vanishing
for a non flat spacetime since the Weyl tensor induces shear
on the future null cone from any pointxa. It follows from
the above equation that a vanishing asymptotic shear does not
correspond to a NC cut. (As a remark we point out that in the
ANK approach one uses a congruence of null geodesics such
that the associated asymptotic shear vanishes at null infinity.
One thus setsσx = 0 in eq. (40) to obtain the so called "good
cut equation".)

As we are interested in describing a particular worldline
whose motion will depend onσ0(uB, ζ, ζ̄) we assumėσ0 is
known. Moreover, the outgoing gravitational radiation we are
interested in is emitted by closed binaries, supernovae or scat-
tering of compact sources. For those systems one can always
assume they are asymptotically stationary, i.e.,σ̇0 vanishes
asuB → −∞. In that limit σI → 0, σ0 is purely electric
and by a supertranslation one can get rid of the electric part
at that initial time. We thus assume that we work in a definite
Bondi system such thatσ0 vanishes asuB → −∞. This re-
stricts the Bondi supertranslation freedom to the translations
of the Poincare group. Following the above results the de-
scription of the cuts in any other Bondi system will be given
by Z̃(xa, ζ, ζ̄) = Z(xa, ζ, ζ̄) + α(ζ, ζ̄) and theℓ = 0, 1 parts
of Z andZ̃ do not depend on the higher harmonics ofα(ζ, ζ̄).

Finally, we want to obtain dynamical equations forZ to ex-
hibit the explicit dependence ofσx onσ0. It is clear that one
cannot hope to obtainZ or Λ in closed form for an arbitrary
asymptotically flat spacetime. On the other hand it is not dif-
ficult to set up a perturbation procedure off Minkowski space
and obtain a first order deviation from a flat cut.

Writing

Z = Z0 + Z1,

with Z0 given by (37) and

Λ1 = ð
2Z1,

one can show thatΛ1 satisfies the wave equation in
Minkowski space and that it functionally depends on the
Bondi shear via (see AppendixA)

ð̄
2
ð
2Z1 = ð̄

2σ0(Z0, ζ, ζ̄) + ð
2σ̄0(Z0, ζ, ζ̄). (41)

The second term in the r.h.s. of eq. (41) gives the relation-
ship betweenσx andσ0. Since the Bondi shear is a smooth

s.w. 2 function onI + the above equation admit regular so-
lutions on the sphere. Thus, the first order deviation from a
flat cut are smooth 2-surfaces (they can be expanded in spher-
ical harmonics) at null infinity and are called the (linearized)
regularized null cone cuts. Ifxa(u) describes a worldline in
Minkowski space, the functionZ(xa(u), ζ, ζ̄) describes a one
parameter family of cuts. To show that this family is NU we
perform a Taylor expansion

Z(xa(u+ δu), ζ, ζ̄) = Z(xa(u), ζ, ζ̄) + va∂aZδu,

whereva ≡ ∂ux
a andδu > 0. If we assumeva is future

pointing with respect to the flat metric, it then follows that

va∂aZ > 0,

sinceZa is null and future pointing (for the flat metric) for
small values ofσB . We conclude that this monoparametric
family never intersects itself and it is a well behaved NU foli-
ation.

Solving for (41) yields

Z = R0 − 1

2
RiY 0

1i +

(

σij
R

12
+

√
2

72
σ̇ig
I R

f ǫgfj

)

Y 0
2ij , (42)

with Y 0
0 , Y

0
1i andY 0

2ij the tensorial spin-s harmonic expansion
[30]. Note thatZ depends on the real and imaginary part of
the Bondi shear [22, 29]. This is what one would expect in a
perturbation expansion since the imaginary part of the Bondi
shear is related to the current quadrupole moment whereas the
real part comes from the mass quadrupole moment[31].

The first order solution (42) will be used to define center of
mass and spin for isolated sources of gravitational radiation.
It will also be used to compare our results with those derived
in the ANK and postNewtonian formulations.

Finally, it is a fair question to ask what happens to the above
construction if one goes beyond the linearized approximation.

If we assume the spacetime is Ricci flat in a neighborhood
of I + one obtains the field equation forZ [26] (see appendix
A). The field equation exhibits the non Huygens nature of
the NC cuts showing explicitly which term is responsible for
caustics. Thus, a generic NC cut is not a smooth 2-surface
at null infinity. However, ifσ̇0 is small both in the past or in
the future of some small interval of time, one expects that the
leading contribution to the solution comes from the Huygens
part of field equation,

ð̄
2
ð
2Z = ð̄

2σ0(Z, ζ, ζ̄) + ð
2σ̄0(Z, ζ, ζ̄), (43)

referred to as the Regularized Null Cone cut equation or RNC
cut equation for short. Since (43) only containsl > 2 terms in
a spherical harmonic decomposition, the kernel of (43) is a 4
dim spacexa, i.e. a flat cutZ0 = xaℓa.

Equation (43) or its linearized version (41) should be com-
pared with the good cut equation

ð
2ZC = σ0(ZC , ζ, ζ̄), (44)

Note that the good cut equation yields complex cuts with
vanishing shear whereas the NRC cut equation yields NU cuts
whose shear depends linearly on the Bondi shear.
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Thus, from the point of view of available structures at null
infinity we could start with the RNC cut equation (43). On its
4-dim solution space one constructs a Lorentzian metric fol-
lowing the NSF procedure[26]. A perturbative solution gives
a Minkowski space together with flat cuts (37) at its lowest
order and the linearized RNC cuts (42) at first order.

IV. LINKAGES AND THE ANGULAR
MOMENTUM-CENTER OF MASS TENSOR

For axially symetric spacetimes the Komar integral con-
structed from the axial Killing field yields a natural definition
of angular momentum that it is a conserved quantity in vac-
uum and has a flux law in Einstein-Maxwell spacetimes [22].
This idea can be generalized to asymptotically flat spacetimes
by first introducing the notion of asymptotic Killing vectors
and then giving a generalization of the Komar integral, the
Winicour-Tamburino linkage [32], which yields the Komar
formula when the spacetime has a Killing symmetry. We will
use in future sections these concepts to define the spin, total
angular momentum and center of mass of an asymptotically
flat spacetime.

A. The Asymptotic Symmetry Group

First we introduce the generatorsξa of asymptotic symme-
tries on a neighborhood ofI + as smooth solutions of the
asymptotic Killing equation [11]

ξa;b + ξb;a = O(r−n) (45)

(ξa;b + ξb;a)l
b∗ = 0. (46)

Here lb∗ is a null vector tangent to the generators of each
outgoing null hypersurface inM andn differs with the choice
of components [18]. The second equation represents the
Killing propagation law along the null hypersurface [33]. At
I + the collection of all solutions form the BMS algebraL

[20]. If ξa ∝ na they define the supertranslation subalgebra
T and the quotientL /T is isomorphic to the Lorentz group
[11]. This subalgebra is realizad by an equivalence class[ξa]
whereξa ∼ ξ′a if ξa − ξ′a ∝ na∗. Equations (45) and (46)
can be solved by direct integration using the spin-coefficient
[34]. The results may be written as

ξa = Ala∗ +Bna∗ + Cm̄a∗ + C̄ma∗ (47)

where

A = A1r +A0 + A−1r
−1 +O(r−2)

B = B0

C = C1r + C0 + C−1r
−1 +O(r−2)

and

A1 = −(1/Z ′)(B0Z
′)′,

A0 = ð
∗
ð̄
∗B0 +B0ð

∗
ð̄
∗ lnP,

A−1 =
1

2
[B0(ψ

0∗
2 + ψ̄0∗

2 ) + C̄1ψ
0∗
1 + C1ψ̄

0∗
1 ],

C1 = a(ζ, ζ̄)/Z ′, with ða = 0,

C0 = ð
∗B0 + C̄1σ

0∗,

C−1 = 0,

B0 = b(ζ, ζ̄)/Z ′ − (1/2Z ′)

∫ u

0

Z ′3[ð(āZ ′−2) + ð̄(aZ ′−2)]du.

Note that the only freedom is inb(ζ, ζ̄), the supertranslation
freedom, and solutions toða = 0, which correspond to the
homogeneous Lorentz transformation.

B. Linkages in Asymptotically Flat Spacetimes

Given au = const. null foliation, which can be either NU
or Bondi, introducing an affine parameterr and constructing
ther = const. 2-surface with surface elementl∗[an̂∗b]dS, the
linkage integral is defined as [35]

Lξ(I
+) = − 1

16π
lim
r→∞

∫

(

∇[aξb] +∇cξ
cl∗[an̂∗b]

)

l∗an̂
∗
bdS,

(48)
Note thatn̂∗b is not one of the associated null vectors of the
NU tetrad. Whereasn∗b is parallel propagated alongl∗a, n̂∗b

is orthogonal to theu = const., r = const. surface. It can be
rewritten in terms of the NU tetrad via a null rotation around
l∗b as [34]

n̂∗b = n∗b − ω̄∗m∗b − ω∗m̄∗b + ωω̄l∗b (49)

with

ω∗ = −(ð̄∗σ0∗)r−1 +O(r−2) (50)

This scalar linear functional ofξb transforms as an adjoint
representation of the BMS group. Ifξb is a translation eq.
(48) yields the Bondi energy momentum vector. Likewise, if
ξb belongs to the Lorentz subgroup, eq. (48) can be used to
define the notion of the mass dipole and angular momentum.
Solving the asymptotic Killing equation by making use of the
radial dependence of the spin coefficients and tetrad compo-
nents, one can show that this linkage integral can be written
as [34],

L =
1

8π
√
2
Re

∫

[b

(

ψ0∗
2 + σ0∗λ0∗ − ð∗2σ̄0∗

Z ′3

)

+ā

(

2ψ0∗
1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

)

]dS

puttingb = 0 we obtain



8

LDJ =
Re

8π
√
2

∫

ā

[

2ψ0∗
1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]

dS

(51)

whereā = āiY −1
1i with āi three complex constants. The three

complex, i.e six real, values of (51) are by definition, the com-
ponents of the mass dipole - angular momentum tensor (for
more details the reader can see ref. [34]). To obtain those
components it is quite convenient to define a complex vector
D∗

i + i

c
J∗
i wherei symbolize the vectors (1,0,0), (0,1,0) and

(0,0,1) as

D∗
i +

i

c
J∗
i =

∫

Y −1
1i

[

2ψ0∗
1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

8π
√
2Z ′3

]

dS

(52)

It is worth mentioning that at a linearized level and for sta-
tionary spacetimes, the real and imaginary parts ofψ0

1 cap-
ture the notion of the two form that defines the center of mass
and angular momentum and transform appropriately under the
Lorentz transformation. The linkage is a natural generaliza-
tion for asymptotically flat spacetimes.

It is also worth mentioning that the value of the linkage
depends on the choice of section introduced for its definition
[11]. This is analogous to the freedom in special relativity
with the choice of origin for the definition for center of mass
or angular momentum. The main difference is that whereas in
relativistic mechanics the freedom is a point on the spacetime,
in the definition of a linkage the freedom is a whole section, an
infinite set of constants, one for each coefficient in a spherical
harmonic decomposition. Consequently, if one now has a NU
foliation, where each coefficient now depends on the Bondi
time, the freedom becomes an infinite set of functions of time
a priori without physical meaning.

However, in what follows below, we will restrict this infi-
nite freedom to four functions that describe a worldline in the
solution space of the RNC cuts. From its geometrical mean-
ing there is a one to one correspondence between worldlines
in the solution space and a RNC foliation at null infinity. Fur-
thermore, by defining the notion of mass dipole moment and
requiring that for one worldline of the RNC foliation the mass
dipole moment vanishes, one gets the right number of equa-
tions from which a special worldline is found. This special
worldline will be called the center of mass worldline. Fi-
nally, restricting the angular momentum to this special RNC
cut yields the notion of spin or intrinsic angular momentum.

V. MAIN RESULTS

A. Definitions of Center of Mass and Angular Momentum

Directly from (52) we define the mass dipole moment
and angular momentum associated with a RNC foliation as

D∗
i +

i

c
J∗
i =

−c2G−1

12
√
2

[

2ψ0∗
1 − 2σ0∗

ð
∗σ̄0∗ − ð

∗(σ0∗σ̄0∗)

Z ′3

]i

.

(53)

The six functions of the NU timeu defined above function-
ally depend on the particular worldlinexa(u) that character-
izes each RNC cut.

We then impose a condition on a special RNC foliation, i.e.,
on a special worldline (42), at eachu = const. cut, the mass
dipole momentD∗i vanishes. This condition is given by

Re

[

2ψ0∗
1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]i

= 0. (54)

By adequately choosingxa(u) one has enough freedom to
satisfy the above equation for each value ofu. Since the
4-velocity of the worldline is normalized to one (using the
spacetime metric), we use this norm to fix the timelike com-
ponent of the worldline coordinate. Thus, the freedom left
are the spatial components of the worldlinexa(u) and the
above equation gives three algebraic equations from which
these components are obtained. This special worldline will
be called the center of mass worldline. The angular momen-
tumJ i∗ evaluated at the center of mass will be called intrinsic
angular momentumSi, i.e.,

Si = − c3

12
√
2G

Im

[

2ψ0∗
1 − 2σ0∗ð∗σ̄0∗ − ð∗(σ0∗σ̄0∗)

Z ′3

]i

.

(55)

The above equations have been obtained from two surface
integrals on a particular RNC cut foliation, namely, the center
of mass foliation. Thus, they have a well defined geometrical
meaning. We now solve eq. (54) explicitly on a Bondi frame
since variables like gravitational radiation, mass loss, linear
momentum, are easier to define in Bondi coordinates. To write
down the mass dipole moment and and angular momentum
(53) in Bondi coordinates it is convenient to define analogous
quantities in a Bondi tetrad, i.e.,

Di + ic−1J i = − c2

12
√
2G

[

2ψ0
1 − 2σ0

ðσ̄0 − ð(σ0σ̄0)
]i
.

(56)
Using the relations between the NU and the Bondi
null vectors given by (15-28) to transform the quantities
(ψ0∗

1 , σ
0∗, ð∗)→(ψ0

1 , σ
0, ð), one can write (53) as

D∗i(u) = Di(uB) +
3c2

6
√
2G

Re[ðZ(Ψ− ð
2σ̄0) + F ]i(57)

J i∗(u) = J i(uB) +
3c3

6
√
2G

Im[ðZ(Ψ− ð
2σ̄0) + F ]i(58)

with

F = −1

2
(σ0

ðð̄
2Z + ð

2Zðσ̄0 − ð
2Zðð̄2Z)

−1

6
(σ̄0

ð
3Z + ð̄

2Zðσ0 − ð̄
2Zð3Z). (59)

If we insert the center of mass RNC cutZ1 in (57), then its
l.h.s. vanishes on au = const. surface and we obtain an
algebraic equation to be solved forRi(u). Equation (58) then
gives a relationship betweenSi andJ i, the intrinsic and total
angular momentum respectively.
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B. Approximations and assumptions

Although the main equations have been presented above, to
obtain the explicit form of the worldline in this work we will
make the following assumptions.

• σ = 0 for some initial Bondi time, usually taken to be
−∞.

• Ri is a small deviation form the coordinates origin.

• R0 = u assuming the slow motion approximation.

• The Bondi shear only has a quadrupole term.

The first assumption fixes the supertranslation freedom and
is consistent with our choice of null cone cut, namely, the
freedom in the solution of eq. (41) is only a translation be-
tween two Bondi frames. The second assumption is a work-
ing simplification. Since we are particularly interested inthe
acceleration of the center of mass, which is quadratic in the
gravitational radiation, we want to ignore terms likeR2σ. Fi-
nally, the third assumption is a physical one. Since in most
astrophysical processes less than25% of the total mass is lost
as gravitational radiation the gamma factor for the center of
mass velocity is about1.003. Putting it in other words, even if
two coalescing stars are approaching each other at relativistic
speeds, if the center of mass is initially at rest it will never
acquire a relativistic velocity.

In principle all of these assumptions can be relaxed but
since we want to make direct comparisons with other formula-
tions, like the ANK approach or the PN equations of motion,
they are needed for these purposes.The ANK approach uses
the same Bondi gauge as ours whereas the PN formulation
selects an initial time where the system is stationary and the
metric is flat.

It is possible to extract several important formulae relating
the dynamical evolution of mass, momentum, etc. by expand-
ing the Bianchi identities in a spherical harmonics decompo-
sition. Using the tensorial spin-s spherical harmonics [30];
Y 0
0 , Y

0
1i, Y

0
2ij , etc., one can expand the relevant scalars at null

infinity as

σ0 = σij(uB)Y
2
2ij(ζ, ζ̄),

ψ0
1 = ψ0i

1 (uB)Y
1
1i(ζ, ζ̄) + ψ0ij

1 (uB)Y
1
2ij(ζ, ζ̄), (60)

Ψ = −2
√
2G

c2
M − 6G

c3
P iY 0

1i(ζ, ζ̄) + Ψij(uB)Y
0
2ij(ζ, ζ̄),

Note that the complex tensorσij represents the quadrupole
momentum of the gravitational wave.

Now, from eq. (41) if we write xa(u) as(R0(u), Ri(u)),
assuming the Bondi shear only has a quadrupole term, and
using the tensorial spin-s harmonic expansion, this solution is
given as

Z1(u, ζ, ζ̄) = R0(u)− 1

2
Ri(u)Y 0

1i +
1

12
σij
R (u)Y 0

2ij . (61)

the freedom left in (61) is an arbitrary worldline in a fiducial
spacetime. Choosingu as the proper time, we can easily solve

forR0(u) in terms of the spatial components of the 4-velocity.
Furthermore, in the slow motion approximationR0(u) = u+
O(v2).

C. The center of mass and spin

The center of mass worldlineRi(u) is obtained from (57)
by demanding that the l.h.s. vanishes on theu = const. cut
whenuB = Z1(u, ζ, ζ̄) is inserted in the r.h.s. of the equation.
Furthermore, since by assumptionRi(u) andσij

R (u) are small,
we write

Z1 = u+ δu = u− 1

2
Ri(u)Y 0

1i +
1

12
σij
R (u)Y 0

2ij , (62)

and make a Taylor expansion of the Bondi tetrad variables up
to first order inδu. We write (57) as

0 = Di(u+ δu) +
3c2

6
√
2G

Re[(Ψ− ð
2σ̄0)ðδu+ F ]i

= Di(u) + [Ḋ(u)δu]i +
3c2

6
√
2G

Re[(Ψ− ð
2σ̄0)ðδu+ F ]i

= Di(u) +
c2

6
√
2G

Re[(ðΨ− ð
3σ̄0)δu]i

+
3c2

6
√
2G

Re[(Ψ− ð
2σ̄0)ðδu + F ]i,

(63)

where we have used eq. (30) to rewriteḊi. Note that in this
case the second line in the definition ofF (59) vanishes since
σ0 only has quadrupole terms. In the remaining terms of (57)
we simply replaceuB by u as the extra terms are cubic or
higher in the expansion variables. Solving forRi from the
above equation yields

MRi = Di +
8

5
√
2c
σij
RP

j , (64)

whereσij
R andσij

I are respectively the real and the imaginary
part ofσij . Note that inserting eq. (64) in (62) yields

ZCM = u− 1

2M
(Di+

8

5
√
2c
σij
RP

j)Y 0
1i+

1

12
σij
RY

0
2ij , (65)

the special NU foliation that represents the center of mass
worldline.

As it was mentioned previously, replacing eq. (64) in the
imaginary part of (53) yields the spin of the system. To do
that we start with the relationship (58)

J∗i(u) = J i(u+ δu) +
3c3

6
√
2G

Im[(Ψ− ð
2σ̄0)ðδu + F ]i,

perform a Taylor expansion,

J∗i(u) = J i(u)+[J̇(u)δu]i+
3c3

6
√
2G

Im[(Ψ−ð
2σ̄0)ðδu+F ]i,
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and use the Bianchi identities,

J∗i = J i(u) +
c3

6
√
2G

Im[(ðΨ − ð
3σ̄0)δu]i (66)

+
3c3

6
√
2G

Im[(Ψ− ð
2σ̄0)ðδu+ F ]i.

Finally, using eq. (65) gives

Si = J i −RjP kǫijk. (67)

Note that this equation is exactly the same formula as in New-
tonian theory although no post-Newtonian approximation has
been assumed.

D. Dynamical Evolution

The time evolution ofDi andJ i follows from the Bianchi
identity forψ0

1 , where we must insert the proper factor of
√
2

to account for the retarded Bondi time, i.e., the retarded time,
uret =

√
2uB. The use of the retarded time,uret, is important

in order to obtain the correct numerical factors in the expres-
sions for the final physical results [10]. Note that the two last
important eqs. (64) and (67) remain unchanged in term ofuret
oruB. However, for the rest of the paper, we adopt the symbol
“dot” for ∂uret

.
Then, we use the definition (56) and replace the real and

imaginaryl = 1 component of (30) to obtain

Ḋi = P i, (68)

J̇ i =
c3

5G
(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )ǫ

ijk. (69)

In the same way taking thel = 0, 1 part of (36) yields the mass
loss equation and the linear momentum time rate, namely,

Ṁ = − c

10G
(σ̇ij

R σ̇
ij
R + σ̇ij

I σ̇
ij
I ), (70)

Ṗ i =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk. (71)

Note that in this Bondi gaugeσij
R = hij+ and σij

I = hij×
strains in the transverse traceless gauge [36]. Now, taking a
time derivative of eq. (64), using eq. (68), and writing up to
quadratic terms inσij , gives

MṘi = P i +
8

5
√
2c
σ̇ij
RP

j , (72)

the relationship between the velocity of the center of mass
Ṙi and the Bondi momentum. It departs from the Newtonian
formula by radiation terms.

Finally, taking one more Bondi time derivative of (72)
yields the equation of motion for the center of mass,

MR̈i =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk +
8

5
√
2c
σ̈ij
RP

j . (73)

The r.h.s. of the equation only depends on the gravitacional
data at null infinity and the initial mass of the system.

Similarly, taking a time derivative of (67) together with (69)
gives

Ṡi = J̇ i =
c3

5G
(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )ǫijk. (74)

This equality is also true in Newtonian mechanics for an iso-
lated system (with both terms being equal to zero). However,
in GR the angular momentum of an isolated system is not con-
served since it is being carried away by the gravitational radi-
ation.

E. Comparison with ANK equations

In this subsection we compare the (ANK) equations of
motion with the ones obtained in our approach. Before that
we list the main differences between the approaches,

1. We give a definition of angular and mass dipole mo-
menta based on TWG linkages, the ANK uses theℓ = 1
part ofψ0

1 for these definitions.

2. The ANK approach relies on asymptotically vanish-
ing shears, this approach uses non vanishing shears ob-
tained from the RNC cut equation.

3. The solution space of the good cut equation is complex
manifold, the solution space of the RNC cut equation is
real.

4. The ANK approach defines the intrinsic angular mo-
mentum as the imaginary part of a complex worldline.
We evaluate the angular momentum on the center of
mass to define the spin.

Thus, it is interesting to see if the final equations in these
two formulations have some similarities. To proceed with the
comparison we identify the flat metric of our construction with
the real flat metric used in the ANK approach to write the
equations of motion for the center of mass worldline.

It is also important to note that the Bondi massM and
the linear momentumP i have the same definition in both ap-
proaches. First we introduce the mass dipole moment, angular
momentum and spin definitions given in the ANK formalism
[10]

Di
ANK = − c2

6
√
2G

ψ0i
1R, (75)

J i
ANK = − c3

6
√
2G

ψ0i
1I , (76)

Si
ANK = cMξiI . (77)

Now computing the componentl = 1 of eq. (56) we can write

Di = − c2

6
√
2G

ψ0i
1R +

c2

5G
σjl
Rσ

kl
I ǫ

ijk + higher harmonics

J i = − c3

6
√
2G

[ψ0
1 − σ0

ðσ̄0 − 1

2
ð(σ0σ̄0)]iI . (78)
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The relationship between the mass dipole moment and angu-
lar momentum with the asymptotic fields at null infinity are
different in both formalisms. These differences are a conse-
quence of the definitions used in both formulations. Whereas
in our approach we integrate a two form with values on the
BMS algebra, in the ANK approach one directly usesψ0i

1 for
the definitions.

The angular momenta in the ANK formulation is only de-
fined for quadrupole radiation, where most of the definitions
available in the literature agree. However, one could forsee
potential problems forJ i

ANK if one considers higher multipole
moments in the radiation data and/or spacetimes with symme-
try. The fact thatψ0i

1I is not conserved for axially symmetric
spacetimes is a clear indication that the ANK definition must
be changed when including higher multipole moments [22].
It is worth mentioning that only for quadrupole radiation both
formulae agree. We obtain non vanishing extra terms when
octupole data is included (see appendixB).

When comparing the relationship between the center of mas
worldline, and spin and the geometrical quantities at null in-
finity like the Bondi mass, momentum, etc., we will only con-
sider quadrupole radiation data.

In the ANK approach one has [10]

P i =Mξ̇iR +
4

3c
√
2
σ̇ij
RP

j +
c2

G
(σjl

Rσ
kl
I )̇ǫijk, (79)

whereξiR is the center of mass worldline. In our formulation,
from eq. (72) we get

P i =MṘi − 8

5
√
2c
σ̇ij
RP

j , (80)

The main difference between the above equations is the last
term in the ANK, which is missing in our equation. Note also
a different factor with an opposite sign in front of the second
term. This difference can be traced back in the ANK formu-
lation to the use of the relationΨij = −σ̄ij in eq. (6.33)
[10]. However, this relationship contradicts eq. (36) as one
can see by deriving the relationship with respect to time and
gettingΨ̇ij = − ˙̄σij . It is clear from eq. (36) thatΨ̇ij must be
quadratic inσ̇ij . Thus, some derivations in the ANK formu-
lation, and in particular the above relation, are incorrect.

The ANK equations for the angular momentum is given by

J i
ANK = Si

ANK + ξjRP
kǫijk +

4

5
√
2
P kσki

I . (81)

whereas we obtain

J i = Si +RjP kǫijk. (82)

Another subtle but important difference is that our definition
of spin is via a linkage formulation whereas in the ANK for-
mulation the spin is an intrinsic property of a complex world-
line, by definition it is the imaginary part of a complex world-
line.

Finally in the ANK formalism the equation of motion for
the center of mass is given by

Mξ̈iR =
2
√
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk − c2

G
(σjl

Rσ
kl
I )̈ǫijk − 4

3c
√
2
σ̈ij
RP

j ,

(83)

while in our formalism it is given by

MR̈i =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk +
8

5
√
2c
σ̈ij
RP

j . (84)

Although both formulations agree for stationary spacetimes,
they differ when gravitational radiation is present.

F. Comparison with PN equations

In this subsection we partially compare the evolution equa-
tions obtained in our approach with those coming from the
PN formalism. In principle, a full comparison between these
approaches can be a formidable task, i.e., the PN start with
definitions in the near zone with multipoles defined in terms
of the source whereas the asymptotic formulation defines ra-
diative multipole moments. The asymptotic formulation has
exact equations of motion for mass, momentum and angu-
lar momentum whereas in the PN approach one builds up the
loss due to gravitational radiation valid up to the level of ap-
proximation considered since apriori one does not have avail-
able an exact formula. Nevertheless it is very useful to try to
build a bridge between these approaches and see whether or
not they yield equivalent equations of motion for a compact
source emitting gravitational radiation.

We compare below the evolution equations for the to-
tal mass, momentum and angular momentum of a compact
source of gravitational radiation. In both formalisms, a dot
derivative means derivation with respect with the retarded
time, as one can see following ref.[37] page 6 and 27.

In the PN equations the radiative energy loss, the linear and
angular momentum loss are given by (in units ofG = c = 1)
[38, 39]

ĖPN = −1

5
U̇ ijU̇ ij − 16

45
V̇ ij V̇ ij − 1

189
U̇ ijkU̇ ijk

− 1

84
V̇ ijkV̇ ijk (85)

Ṗ i
PN =

(

16

45
U̇klV̇ jl +

1

126
U̇klmV̇ jlm

)

ǫijk

− 2

63
(U̇ jkU̇ ijk + 2V̇ jkV̇ ijk) (86)

J̇ i
PN = −

(

2

5
UklU̇ jl +

32

45
V klV̇ jl

)

ǫijk

−
(

1

63
UklmU̇ jlm +

1

28
V klmV̇ jlm

)

ǫijk (87)

where in the above equations the quadrupole as well as oc-
tupole terms have been included.

To compare both approaches, we must include in our for-
malism the octupole contribution to the equations for the
mass, angular and linear momentum (see AppendixB). In this
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way we can write our equations (in term ofG = c = 1) as

Ṁ = − 1

10
(σ̇ij

R σ̇
ij
R + σ̇ij

I σ̇
ij
I )− 3

7
(σ̇ijk

R σ̇ijk
R + σ̇ijk

I σ̇ijk
I ),

Ṗ i = − 2

15
σ̇kl
R σ̇

jl
I ǫ

ijk −
√
2

7
(σ̇jk

R σ̇ijk
R + σ̇jk

I σ̇ijk
I )

−3

7
σ̇klm
R σ̇jlm

I ǫijk. (88)

J̇ i =
1

5
(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )ǫijk

+
9

7
(σklm

R σ̇jlm
R + σklm

I σ̇jlm
I )ǫijk. (89)

Since the r.h.s of the above equations are quadratic in the
radiation terms we only need a linear relationship between
the radiation data and the PN multipole expansion. Using the
linearized Einstein’s equation in the TT gauge and following
[37], one finds that

σij
R = −

√
2U ij

σij
I =

8

3
√
2
V ij

σijk
R = −1

9
U ijk

σijk
I =

1

6
V ijk

Thus, both have identical r.h.s. to this order. This is a re-
markable result since the evolution equations come from com-
pletely different approaches. On the other hand one must be
careful with the final equations of motion for the center of
mass, energy and spin of the system since their relationship
to kinematical variables are different in both formulations. In
several PN papers, the recoil velocity of the center of mass
is defined as∆P i

M
which is the integral of eq. (71) divided

by the total mass. However, it follows from eq. (72) that in
our formulation one obtains a different result. This a straight-
forward consequence that in this formalism the gravitational
radiation is part of the total linear momentum. In some sense
this is analogous to the definition of momentum in electrody-
namics where the kinematical definitionΣimi

−→v i as well as
the electromagnetic radiation enter in the definition ofP i. A
more careful look into these differences will be addressed in
the future.

VI. FINAL COMMENTS AND CONCLUSIONS

We summarize our results and make some final remarks.

• We have defined the notion of center of mass and
spin for asymptotically flat spacetimes, i.e., spacetimes
where there is a precise notion of an isolated gravita-
tional system.

• The main tools used in our approach are the linkages to-
gether with a canonical NU foliation constructed from
solutions to the Regularized Null Cone cut equation.
The RNC cut foliation is given in the so called Newman

Penrose gauge with a vanishing shear in the asymptotic
past. Physically this corresponds to an isolated gravita-
tional system which is asymptotically stationary in the
past and it is specially useful to describe the emission of
sources like of closed binary coalescence, supernovas or
scattering of compact objects.

• The RNC cut equation is an important ingredient in this
construction. Its 4-dim solution space together with the
lorentzian metric constructed from the solutions of the
RNC cut equation provide the background to define the
center of mass worldline. In this work we have used a
perturbative approach to the RNC cut equation to intro-
duce a flat metric at the zeroth order and a first order
solution of the RNC cut equation to obtain NU folia-
tions, one for each timelike worldline (with respect to
the flat metric) on the solution space.

• We have obtained the center of mass worldline by re-
quiring that the mass dipole moment vanishes at the
special NU foliation associated with this worldline. We
have derived equations of motion for the center of mass
and spin linking their time evolution to the emitted grav-
itational radiation. They are given by a very simple
set of equations that resemble their Newtonian coun-
terparts and thus should be useful in generalizing many
well known results in astrophysics when very energetic
processes are considered.

• In astrophysics very often one assumes conservation
laws for isolated systems. However, our equations show
that for highly energetic processes were a fair percent-
age of energy is emitted as gravitational radiation, this
is far from being true. We have shown here that this
radiation affects the motion of the center of mass and
the spin of the system and the solutions to the above
equations yield their dynamical evolution.

• We have compared our approach with the ANK formu-
lation to check for differences and similarities. This
comparison suggest that our definitions of mass dipole
moment and angular momentum are better suited to al-
low for higher multipole radiation or spacetimes with
rotational symmetry.

• We have also compared our equations with those de-
rived from the PN formalism. Although we have mainly
done so for a very simple set of global variables, the re-
sults are very encouraging since, to second order ap-
proximation, the r.h.s. of the evolution equation for
these variables are identical in both formulations. How-
ever, the relationship between total linear momentum
and the velocity of the center of mass is different in
both approaches. This difference might disappear af-
ter taking a careful look at other variables like radiative
vs local shears, etc. A lot more work is needed to find a
bridge between these formulations that start at opposite
ends, one at null infinity, the other from local definitions
based on the sources.
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• It is believed that in late 2017 aLIGO will be operational
to detect radiation from coalescing neutron stars and/or
black holes. As we are all aware, numerical waveforms
will never be able to fill out the parameter space needed
for a coincidence check. Therefore, several ODE mod-
els like the PN approach or the EOB have been pursued
with that goal in mind. Our approach should be useful
to the ODE models for the reasons outlined below.

The PN approach has several tentative definitions of
center of mass with vanishing acceleration while emit-
ting gravitational radiation. Since the motion of the cen-
ter of mass is crucial in analyzing the motion of the co-
alescing sources, evolution of the mass and current mo-
menta, and finally in the plot of the waveform in time
domain, it is important to know whether or not the cen-
ter of mass has an acceleration during this process. In
this work we have shown that the center of mass has
an acceleration which is partially given by the radiation
reaction ofM , P i, andJ i and partially given by the re-
lationship between the center of mass velocity, gravita-
tional radiation and the global quantitiesM ,P i, andJ i.
Following our results, the equations of motion for the
coalescing sources should be revised if it can be shown
that the waveform changes when the center of mass has
acceleration. This will be addressed in the future.

• Finally we want to address an important conceptual is-
sue, the meaning of the observational space, i.e. the
solution space of the RNC cut equation.

In this work we have used worldlines on a 4-dim
Minkowski space constructed on the solution space of
the RNC cut equation. This flat metric can be re-
garded as the zeroth order approximation on a perturba-
tion procedure on NSF to construct Lorentzian metrics.
Note also that, both the in ANK and PN approaches, a
flat background metric is used to introduce worldlines
and propagate the gravitational radiation. Thus, in the
three formulations that provide equations of motion for
the gravitational sources one uses the same Minkowski
background to compare results.

However, the RNC cut equation provides a method to
construct a 4-dim observational space with a regular
metric constructed from fields at null infinity. In which
sense is the solution space pointsxa and regular met-
ric associated with the RNC cut equation related to the
"real spacetime" from which the gravitational radiation
is obtained at null infinity?

If the gravitational source is composed of ordinary mat-
ter. Then the NSF equations provides in principle a
method to construct null cone cuts for "real" points of
the spacetime. The equation has three different terms,
a Huygens part made of gravitational radiation, a grav-
itational tail and a source term that includes integrals
along spacetime lines and is responsible for caustics and
singularities. Therefore, if one is able to detect gravita-
tional waves one can then safely assume that is not on a
caustic region. Moreover, we do not have the technol-
ogy to detect gravitational tails and we conclude that

the dominant part of the NSF equation for the situation
assumed above is the Huygens one.

The RNC cut equation is the smoothed version of the
NSF equation, obtained by neglecting the other contri-
butions and extending de validity of the Huygens part to
the whole sphere. Thus, one could define a "norm" for
metrics constructed from the NSF and RNC cut equa-
tions using energy methods to see how far apart are the
solutions. One should mention that this comparison is
a highly non trivial task that is worth addressing in the
future.

Even if the space time contains black holes our ap-
proach can also assign a center of mass worldline. From
the gravitational radiation reaching null infinity one
constructs the observation space with a regular metric
and in that space one defines the center of mass world-
line associated with this radiation. In this case the reg-
ular metric of the solution space has no relationship to
the spacetime with black holes. Nevertheless, from the
gravitational radiation reaching null infinity one com-
putes the equation of motion including the back reaction
effects. If a black hole is formed after the coalescence,
one can also compute its final position and velocity al-
though one knows that a black hole evolution is not a
worldline in the real spacetime. We find this a desir-
able feature of this formalism since it gives a method
of defining particle worldlines without the infinities that
appear when one introduces delta functions in stress en-
ergy tensors. It has been pointed out that this second
method yields ill defined quantities [40].
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Appendix A: Null Cone Cuts

We present here some properties of the NC cuts coming
from a worldline on the spacetime.

• Globally the NC cuts are projections from smooth 2-
dim Legendre submanifolds of the projective cotangent
bundle ofI+ [23–25]. It follows from this property that
a generic NC cut has a finite number of singularities
and those singularities can be classified as either cusps
or swallowtails. Thus, locally the NC cuts are smooth
2-surfaces at null infinity.

• For the gravitational systems we would like to de-
scribe, compact sources such in the observational vol-
ume space of aLIGO, it is always possible to give a lo-
cal description of the cuts in a given Bondi coordinate
system as

uB = Z(xa, ζ, ζ̄). (A1)



14

• The above equation has also a second meaning, namely,
for fixed values of(uB, ζ, ζ̄) the pointsxa that satisfy
the above equation form the past null cone from the
point(uB, ζ, ζ̄) at null infinity. Thus,Z satisfies

gab(x)∂aZ∂bZ = 0, (A2)

• Under a Bondi supertranslatioñuB = uB + α(ζ, ζ̄), Z
transform as̃Z = Z +α,. However, neither the confor-
mal metric nor the field equations forZ change under a
supertranslation as they all depend on spacetime deriva-
tives ofZ.

• The explicit algebraic construction of the conformal
metric is done by first selecting a((ζ, ζ̄) family of)
null coordinate systemu = Z(xa, ζ, ζ̄), ω = ðZ, ω̄ =
ð̄Z,R = ð̄ðZ and then extracting the metric compo-
nents from (A2 by successiveð and ð̄ derivatives of
(A2).

• It can be shown that all the non trivial components of the
conformal metric are obtained in terms of spacetimes
derivatives of a functionΛ(xa, ζ, ζ̄) defined as

ð
2Z = Λ(xa, ζ, ζ̄). (A3)

This functionΛ plays a major role in the field equations
for the NSF. Note that from its definition it follows that

ð̄
2Λ = ð

2Λ̄. (A4)

This condition is called the reality condition and it will
be used below to restrict the free data in the field equa-
tions.

• A perfectly valid question is whether a conformal met-
ric can be constructed from any arbitrary function
Z(xa, ζ, ζ̄). In general the answer is no since for a fixed
value ofxa equation (A2) is an algebraic equation for
nine constants whereas(ζ, ζ̄) can take any value. Thus,
conditions must be imposed onZ for a metric to exist.
It can be shown that the so called metricity conditions
are given by

ð
3
(

gab(x)∂aZ∂bZ
)

= 0, (A5)

and they must be satisfied byZ before one looks for a
conformal metric. These conditions generalize work by
Cartan[27], and Chern[28] originally derived for third
order ODEs although coming from a completely differ-
ent approach. In three dimensions, one derives exactly
the same condition from either the NSF[41] or the Car-
tan approach.

• Further insight into the geometrical meaning ofΛ can
be gained by Using Sachs theorem. One can show that
theΛ satisfies

Λ = σ0(Z, ζ, ζ̄)− σZ(x
a, ζ, ζ̄), (A6)

with σ0 the Bondi shear at null infinity andσZ the
asymptotic shear of the future null cone fromxa evalu-
ated at null infinity [29].

• Under a Bondi supertranslation the above equation re-
mains valid in form asσ′0 = σ0 + ð2α andσZ remains
the same.

• As a particular case of equation (A6), one can obtain
the null cone cuts in Minkowski space. SinceσZ = 0
(null cones are shear free) and the imaginary part of the
shear vanishes we have,

ð
2ZM = σ0(ζ, ζ̄) = ð

2σR,

with σR a real function on the sphere. Using a super-
translation one eliminatesσR and obtains a canonical
equation

ð
2Z0 = 0,

whose solution will be given and used in this work.

To obtain the dynamical equations forZ one uses the alge-
braic relation between the conformal metric of the spacetime
andZ directly from (A2). One then constructs the Ricci and
Weyl tensor and imposes the Einstein equations. Since the re-
sulting equations are technically involved we present firstthe
linearized version of the field equations forΛ andZ.

Keeping only terms of orderΛ in the metric components
and writing down the Ricci flat equation to linear order inΛ
one gets

✷Λ = 0,

with ✷ the D’Alembertian in flat space. Thus,Λ satisfies Huy-
gens principle and its solution only depends on the data given
on the flat null cone cut. If in addition one imposes the metric-
ity conditions and the reality condition forΛ one gets

∂

∂u

[

ð̄
2Λ − ð̄

2σ0(u, ζ, ζ̄)− ð
2σ̄0(u, ζ, ζ̄)

]

= 0, (A7)

and as expected, the above equation is supertranslation invari-
ant.

To go from the above equation to the RNC cut equation one
replacesΛ by ð2Z, u byZ, etc. obtaining

ð̄
2
ð
2(Z − Zi) = ð̄

2(σ − σi) + ð
2(σ̄ − σ̄i) (A8)

with Zi some initial cut, andσi = σ(Zi, ζ, ζ̄). Thus,Z − Zi

is supertranslation invariant and only depends onσ − σi.
Defining [Z] = Z − Zi, [σ0] = σ0 − σ0

i , one writes the
formal linearized solution as

[Z](xa, ζ, ζ̄) = xaℓa +

∮

K(ζ, ζ′)(ð̄′2[σ′0] + ð
′2[σ̄′0])dS′2,

(A9)

with xaℓa andK(ζ, ζ′) the kernel and the Green function of
the ð̄2ð2 operator on the sphere. In the above equation the
four constantsxa = (R0, Ri) are interpreted as points in the
spacetime whereas ℓa = (Y 0

0 ,− 1
2Y

0
1i) are thel = 0.1

spherical harmonics. Alsoσ′0 = σ0(xaℓ′a, ζ
′, ζ̄′).
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We now seek for a one parameter family of solutions that
represents worldlines on the spacetime, i.e.,xa = xa(τ). For
this family we setZi = Z(xa(τi), ζ, ζ̄). Instead of finding the
most general form of the solution to the above equation we
want to concentrate in the compact systems we are interested
in describing. Essentially we would like to describe sources
in the volume of space that can be observed by aLIGO such as
closed binaries, supernovae or gravitational kicks. For those
situations it is fair to assume that the system is asymptotically
stationary both in the past and in the future. We thus assume
that asτi → −∞ the imaginary part of the Bondi vanishes and
the cutZi is shear free. In that limit we getσi = ð2σR(ζ, ζ̄),
Zi = xa(τi)ℓa + σR(ζ, ζ̄). Selecting a Bondi frame with
vanishingσR(ζ, ζ̄) we obtain

ð̄
2
ð
2Z = ð̄

2σ0(Z, ζ, ζ̄) + ð
2σ̄0(Z, ζ, ζ̄). (A10)

This equation is used in this work and is referred to as the
regularized null cone cut equation or RNC cut equation for
short. Its linearized version was independently derived byL.
Mason [42] and by Fritelli and collaborators [43].

Although the RNC cut does not corresponds to any space-
time point, the full NSF equation[29] can be used to check
how far apart is the RNC cut from a "real" cut coming from
a spacetime point. Assuming the propagation is mostly along
the characteristics and there are no caustics in the propagation
(this is the type of situation aLIGO will be operating) then the
main contribution to the NSF equation is the Huygens part.
Work of Luc Blanchet show that the contribution of gravita-
tional tails on binary coalescence are 5 to 7 orders of magni-
tude smaller than the leading part of the radiation. Thus, the
real null cone cut is locally smooth and close to, in a precise
way given by the non-Huygens terms of the NSF equation, a
RNC cut.

This seems to be the case for the gravitational radiation that
can be detected by aLIGO. If aLIGO can only detect radia-
tion for null directions where the intensity is higher it is safe
to assume that for such isolated system the RNC cut will ad-
equately describe the null cone from the center of mass since
one only detects the Huygens part of the gravitational wave.

We thus claim that the solution space of the RNC cut equa-
tions is useful to describe the dynamical behaviour of global
variables such as the center of mass and intrinsic angular mo-
mentum defined in this work.

Appendix B: Octupole Contribution

To include the octupole contribution in our equation of
Ṁ, Ṗ i and J̇ i we write the expansion of the Bondi shear of

the set of eqs. (60) in the form

σ0 = σij(uB)Y
2
2ij(ζ, ζ̄) + σijk(uB)Y

2
3ijk(ζ, ζ̄). (B1)

The energy and the linear momentum loss are thel = 0, 1
component of the eq. (36). Introducing the above equation in
(36) and using the tensorial harmonics products table of refs.
[22] and [30] we get

Ṁ = − c

10G
(σ̇ij

R σ̇
ij
R + σ̇ij

I σ̇
ij
I )− 3c

7G
(σ̇ijk

R σ̇ijk
R + σ̇ijk

I σ̇ijk
I ),

Ṗ i =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk −
√
2c2

7G
(σ̇jk

R σ̇ijk
R + σ̇jk

I σ̇ijk
I )

+
3c2

7G
σ̇jlm
R σ̇klm

I ǫijk.

To obtain the quadrupole and octupole contribution to the
angular momentum loss we compute the imaginaryl = 1
component of the definition (56). For this we use (30) and
the tensorial harmonics products table to get

J̇ i =
c3

5G
(σkl

R σ̇
jl
R+σ

kl
I σ̇

jl
I )ǫ

ijk+
9c3

7G
(σklm

R σ̇jlm
R +σklm

I σ̇jlm
I )ǫijk

In a similar way one can write the n-pole contribution to the
evolution equation forM , P i andJ i.

Appendix C: The Tensor Spin-s Harmonics

In order to clarify the derivation of the main results in this
article we give several tensor spin-s harmonics examples.

Y 0
0 = 1

Y 0
1i = ðY −1

1i = ð̄Y 1
1i

ðY 0
1i = −2Y 1

1i

ð̄Y 0
1i = −2Y −1

1i

ðY 1
1i = 0

ð̄Y −1
1i = 0

ðð̄Y 1
1i = −2Y 1

1i

ð̄ðY −1
1i = −2Y −1

1i

and forl = 2

Y 1
2ij = ð̄Y 2

2i

ðY 1
2ij = ðð̄Y 2

2ij = −4Y 2
2ij

Y 0
2ij = ð̄

2Y 2
2ij

ðY 0
2ij = −6Y 1

2ij

ðð̄Y 0
2ij = −6Y 0

2ij

For more details and definitions of the Spin-weighted spher-
ical harmonics the reader must see ref. [30] and for higher
products see ref [22].
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