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Let V be a vertex algebra and M a V -module. We define the 
first and second cohomology of V with coefficients in M , and 
we show that the second cohomology H2(V, M) corresponds 
bijectively to the set of equivalence classes of square-zero 
extensions of V by M . In the case that M = V , we show 
that the second cohomology H2(V, V ) corresponds bijectively 
to the set of equivalence classes of first order deformations 
of V .
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1. Introduction

This is the second of a series of papers (see [11]) trying to extend certain restricted 
definitions and constructions developed for vertex operator algebras to the general frame-
work of vertex algebras without assuming any grading condition neither on the vertex 
algebra nor on the modules involved, and we make a strong emphasis on the commutative 
associative algebra point of view instead of the Lie theoretical point of view.

In this work we define the first and second cohomology of a vertex algebra V with 
coefficients in a V -module M , and we show that the second cohomology H2(V, M) corre-
sponds bijectively to the set of equivalence classes of square-zero extensions of V by M . 
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In the case that M = V , we show that the second cohomology H2(V, V ) corresponds bi-
jectively to the set of equivalence classes of first order deformations of V . If we restrict it 
to a vertex algebra given by an associative commutative algebra, then we clearly obtain 
the Harrison cohomology.

In [6,7], Huang developed the cohomology theory of graded vertex algebras using ana-
lytical methods and complex variables. In the present paper we develop the cohomology 
theory for vertex algebras (without grading conditions) using algebraic methods and 
formal variables, obtaining a very simplified, clear and nice theory.

In the definition of H2(V, M), Huang used two complex variables. In fact, in the proofs 
of the theorems that relate the second cohomology with extensions and deformations [7], 
Huang passed from two complex variables to one formal variable. We directly use one 
formal variable (cf. [2] versus [5]). So, if we add grading conditions to our definitions and 
constructions, then we obtain a simpler algebraic version of the results in [7].

As it was pointed out in [6], Borcherds [4] also proposed a cohomology theory for gen-
eral vertex algebras by using his categorical formulation of vertex algebra and an analogy 
with the Hochschild homology of associative algebras. However, the subtle details of this 
cohomology theory were not carried out and the basic properties that the cohomology 
theory must have were not discussed.

We keep using the more comfortable notation introduced in [11], where the map 
Y (a, z)b is replaced by aż b (see section 2 for the detail).

This paper is organized as follows. In section 2, we introduce the basic definitions and 
notations. In section 3, we define the first and second cohomology of a vertex algebra 
V with coefficients in a module M . In section 4, we show that the second cohomol-
ogy H2(V, M) corresponds bijectively to the set of equivalence classes of square-zero 
extensions of V by M . In section 5, in the case that M = V , we show that the second 
cohomology H2(V, V ) corresponds bijectively to the set of equivalence classes of first 
order deformations of V .

Unless otherwise specified, all vector spaces, linear maps and tensor products are 
considered over an algebraically closed field k of characteristic 0.

2. Definitions and notation

In order to make a self-contained paper, in this section we present the notion of 
vertex algebra and their modules. Our presentation and notation differ from the usual 
one because we want to emphasize the point of view that vertex algebras are analog of 
associative commutative algebras with unit.

Throughout this work, we define (x + y)n for n ∈ Z (in particular, for n < 0) to be 
the formal series

(x + y)n =
∑
k∈Z+

(
n

k

)
xn−kyk,

where 
(
n
)

= n(n−1)...(n−k+1) .
k k!
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Definition 2.1. A vertex algebra is a quadruple (V, ż , 1, d) that consists of a vector space 
V equipped with a linear map

ż : V ⊗ V −→ V ((z)) (2.1)

a⊗ b �−→ aż b,

a distinguished vector 1 and d ∈ End(V ) satisfying the following axioms (a, b, c ∈ V ):

• Unit:

1ż a = a and aż 1 = ezda;

• Translation-Derivation:

(da)ż b = d

dz
(aż b), d(aż b) = (da)ż b + aż (db);

• Commutativity:

aż b = ezd(b ˙−z a);

• Associativity: For any a, b, c ∈ V , there exist l ∈ N such that

(z + w)l (aż b)ẇ c = (z + w)l a ˙z+w (bẇ c), (2.2)

in V [[z±1, w±1]].

Observe that the standard notation Y (a, z) b for the z-product in (2.1) has been 
changed. We adopted this notation following the practical idea of the λ-bracket in the 
notion of Lie conformal algebra (also called vertex Lie algebra in the literature), see [8]. 
In fact, we have been using this notation since 2011 (see the undergraduate thesis of my 
student in [12]).

The commutativity axiom is known in the literature as skew-symmetry (see [9,8]). We 
will use the word ‘commutativity’ to emphasize the point of view of a vertex algebra as 
a generalization of an associative commutative algebra with unit (and a derivation), as 
in [1,10].

An equivalent definition can be obtained by replacing the associativity axiom by the 
associator formula (which is equivalent to what is known in the literature as the iterate 
formula (see [9], pp. 54–55) or the n-product identity (see [1])):

(aż b)ẏ c− a ˙z+y (bẏ c) = bẏ (a ˙y+z c− a ˙z+y c), (2.3)

for a, b, c ∈ V . Observe that in the last term of the associator formula we can not use 
linearity to write it as a difference of bẇ

(
a ˙w+z c

)
and bẇ

(
a ˙z+w c

)
, because neither of 
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these expressions in general exists (see [9], p. 55). This alternative definition of vertex 
algebra using the (iterate formula or) the associator formula is essentially the original 
definition given by Borcherds [3], but in our case it is written using the generating series 
in z instead of the n-products.

It is well known (see [9]) that in the two equivalent definitions that we presented, 
some of the axioms can be obtained from the others, but we prefer to make emphasis on 
the properties of d and the explicit formula for the multiplication by the unit.

Definition 2.2. A (left) module over a vertex algebra V is a vector space M equipped 
with an endomorphism d of M and a linear map

V ⊗M −→ M((z))

(a, u) �−→ a
M
ż u

satisfying the following axioms (a ∈ V and u ∈ M):

• Unit:

1M
ż u = u;

• Translation-Derivation:

(da)Mż u = d

dz
(aM

ż u), d(aM
ż u) = (da)Mż u + a

M
ż (d u);

• Associativity: For any a, b ∈ V and u ∈ M , there exist l ∈ N such that

(z + w)l ( aż b )Mẇ u = (z + w)l a
M
˙z+w ( bMẇ u ) , (2.4)

in M [[z±1, w±1]].

Sometimes, if everything is clear, we shall use aż u instead of aM
ż u. Obviously, V is a 

module over V . We follow [1], in the definition of module, because we need to work with 
this k[d]-module structure (similar to the situation of Lie conformal algebras [8]).

Any V -module M satisfies the weak commutativity or locality: for all a, b ∈ V , there 
exist k ∈ N such that

(x− y)k aẋ (bẏ u) = (x− y)k bẏ (aẋ u) for all u ∈ M. (2.5)

For V -modules M and N , a V -homomorphism or a homomorphism of V -modules from 
M to N is a linear map ϕ : M → N such that for a ∈ V and u ∈ M

ϕ(aż u) = aż ϕ(u) and ϕ(du) = dϕ(u).
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A subspace W of a vertex algebra V is called an ideal of V if aż b ∈ W for all a ∈ V

and b ∈ W .

3. Definition of lower cohomologies

Let V be a vertex algebra, and M a (left) V -module. We define the right action of V
on M by

mż a = ezd(a ˙−z m),

for a ∈ V and m ∈ M . A linear map f : V → M is called a vertex derivation if

f(aż b) = aż f(b) + f(a)ż b

for a, b ∈ V . We denote by VDer(V, M) the space of all such derivations.
Now we consider

0 −−−−−→ C0(V,M) δ0−−−−−→ C1(V,M) δ1−−−−−→ C2(V,M)

with C0(V, M) = M and δ0 ≡ 0, therefore H0(V, M) = Kerδ0 = M . We define

C1(V,M) = { g ∈ Homk(V,M) : g(da) = dg(a) and g(1) = 0 }

and we set for g ∈ C1(V, M)

(δ1 g)z(a, b) = aż g(b) − g(aż b) + g(a)ż b

with a, b ∈ V . Hence, H1(V, M) = Kerδ1 = VDer(V, M). We define C2(V, M) as the 
space of linear functions fz : V ⊗ V → M((z)) satisfying (for all a, b ∈ V )

∗ Unit:

fz(a,1) = fz(1, b) = 0 (3.1)

∗ Translation-Derivation:

d

dz
fz(a, b) = fz(da, b), d(fz(a, b)) = fz(da, b) + fz(a, db), (3.2)

∗ Symmetry:

fz(a, b) = ezdf−z(b, a). (3.3)
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Now, let Z2(V, M) be the space of functions fz ∈ C2(V, M) that satisfy that for all 
a, b, c ∈ V there exists n ∈ N such that

(x + z)n
[
fz(aẋ b, c) + fx(a, b)ż c

]
= (x + z)n

[
a ˙x+z fz(b, c) + fx+z(a, bż c)

]
(3.4)

and define H2(V, M) = Z2(V, M)/Imδ1. If V is an associative commutative algebra, it 
is clear that we obtain the Harrison cohomology.

The associativity condition (2.2) of a vertex algebra produce the condition (3.4). But 
if we impose the associator formula (2.3), we shall see after the proof of Theorem 4.2
that (3.4) could be replaced by

0 = fz(aẋ b, c) + fx(a, b)ż c− a ˙x+z fz(b, c) − fx+z(a, bż c) (3.5)

− bż (fz+x(a, c) − fx+z(a, c)) − fz(b, a ˙z+x c− a ˙x+z c).

for all a, b, c ∈ V , and the RHS of (3.5) could be the definition of (δ2f)z,x(a, b, c). In this 
case H2(V, M) = Kerδ2/Imδ1, but we do not know how to define higher cohomology.

Proposition 3.1. H2(V, M) is well defined, that is Imδ1 ⊆ Z2(V, M).

Proof. Let g : V → M such that dg(a) = g(da) and g(1) = 0. We define fz : V ⊗ V →
M((z)) by fz(a, b) = (δ1 g)z(a, b) = aż g(b) − g(aż b) + g(a)ż b. Now,

fz(1, b) = 1ż g(b) − g(1ż b) + g(1)ż b = g(b) − g(b) = 0,

and

fz(a,1) = aż g(1) − g(aż 1) + g(a)ż 1 = aż g(1) − g(ezda) + ezdg(a) = 0,

therefore fz satisfies (3.1). Now we prove that it satisfies (3.2):

d

dz
fz(a, b) = daż g(b) − g(daż b) + dezd(b ˙−z g(a)) − ezd((db) ˙−z g(a))

= daż g(b) − g(daż b) + ezd(b ˙−z dg(a)) = fz(da, b),

and

d(fz(a, b)) = daż g(b) + aż dg(b) − g(daż b) − g(aż db)

+ ezd((db) ˙−z g(a)) + ezd(b ˙−z dg(a))

= fz(da, b) + fz(a, db).

The symmetry (3.3) follows by

ezdf−z(b, a) = ezd (b ˙−z g(a)) − ezdg(b ˙−z a) + ezd
(
e−zd(aż g(b))

)
= g(a)ż b− g(ezdb ˙−z a) + aż g(b) = fz(a, b).
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Now we should check (3.4):

fz(aẋ b, c) + fx(a, b)ż c− a ˙x+z fz(b, c) − fx+z(a, bż c)

= (aẋ b)ż g(c) − a ˙x+z (bż g(c)) − g((aẋ b)ż c) + g(a ˙x+z (bż c)) (3.6)

− a ˙x+z (g(b)ż c) + (aẋ g(b))ż c + (g(a)ẋ b)ż c− g(a) ˙x+z (bż c)

using the associativity (2.4) of M , the first two terms in the RHS cancel after the 
multiplication by (x + z)n for some n ∈ N. Similarly with the third and fourth terms, by 
using the associativity (2.2) of V . Now consider the fifth and sixth terms in (3.6). Using 
that ezdaẋ w = a ˙x+z (ezdw), we have

(aẋ g(b))ż c− a ˙x+z (g(b)ż c) = ezd(c ˙−z (aẋ g(b))) − a ˙x+z (ezd(c ˙−z g(b)))

= ezd[c ˙−z (aẋ g(b)) − aẋ (c ˙−z g(b))]

which is zero after the multiplication by (x + z)n for some n ∈ N, due to locality (2.5) in 
the action of V on M . Finally, consider the seventh and eighth terms in (3.6). On one 
hand, we have

(g(a)ẋ b)ż c = ezd(c ˙−z (g(a)ẋ b)) = ezd(c ˙−z (exd(b ˙−x g(a))))

= e(z+x)d(c ˙−z−x (b ˙−x g(a))
)
,

and on the other hand, we have

g(a) ˙x+z (bż c) = exd
(
(bż c) ˙−x (ezdg(a))

)
= exd

(
(ezd(c ˙−z b)) ˙−x (ezdg(a))

)

= e(x+z)d((c ˙−z b) ˙−x g(a)),

then using the associativity (2.4), both terms are equal after the multiplication by (x +z)n
for some n ∈ N, finishing the proof. �
4. Second cohomology and square-zero extensions

Definition 4.1. (a) Let V be a vertex algebra. A square-zero ideal of V is an ideal W of 
V such that for any a, b ∈ W , aẋ b = 0.

(b) Let V be a vertex algebra and M a V -module. A square-zero extension (Λ, f, g)
of V by M is a vertex algebra Λ together with a surjective homomorphism f : Λ → V of 
vertex algebras such that ker f is a square-zero ideal of Λ (so that ker f has the structure 
of a V -module) and an injective homomorphism g of V -modules from M to Λ such that 
g(M) = ker f .

(c) Two square-zero extensions (Λ1, f1, g1) and (Λ2, f2, g2) of V by M are equivalent
if there exists an isomorphism of vertex algebras h : Λ1 → Λ2 such that the diagram
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0 M
g1

1M

Λ1
f1

h

V

1V

0

0 M
g2

Λ2
f2

V 0,

is commutative.

Now we have the following result:

Theorem 4.2. Let V be a vertex algebra and M a V -module. Then the set of the equiva-
lence classes of square-zero extensions of V by M corresponds bijectively to H2(V, M).

Proof. Let (Λ, f, g) be a square-zero extension of V by M . Then there is an injective 
linear map Γ : V → Λ such that the linear map h : V ⊕ M → Λ given by h(a, u) =
Γ(a) + g(u) is a linear isomorphism. By definition, the restriction of h to M is the 
isomorphism g from M to ker f . Then the vertex algebra structure and the V -module 
structure on Λ give a vertex algebra structure and a V -module structure on V ⊕ M

such that the embedding i2 : M → V ⊕ M and the projection p1 : V ⊕ M → V are 
homomorphisms of vertex algebras. Moreover, ker p1 is a square-zero ideal of V ⊕ M , 
i2 is an injective homomorphism such that i2(M) = ker p1 and the diagram

0 M
i2

1M

V ⊕M
p1

h

V

1V

0

0 M
g

Λ
f

V 0

of V -modules is commutative. So we obtain a square-zero extension (V ⊕ M, p1, i2)
equivalent to (Λ, f, g). We need only consider a square-zero extension of V by M of the 
particular form (V ⊕ M, p1, i2). Note that the difference between two such square-zero 
extensions are in the ż-product maps. So we use (V ⊕M, V ⊕M

ż , p1, i2) to denote such a 
square-zero extension.

We now write down the ż-product map for V ⊕M explicitly. Since (V ⊕M, V ⊕M
ż , p1, i2)

is a square-zero extension of V , there exists a linear map ψz : V ⊗ V → M((z)) such 
that

(a, u)V ⊕M
ż (b, v) = (aż b, aż v + uż b + ψz(a, b)) (4.1)

for a, b ∈ V and u, v ∈ M .
Now we shall prove that V ⊕ M with V ⊕M

ż , the vacuum vector 1V⊕M = (1, 0) and 
dV⊕M (a, u) = (dV a, dMu), is a vertex algebra if and only if ψz ∈ Z2(V, M). In order to 
simplify the proof, observe that in Proposition 4.8.1 in [9], they showed that V ⊕M with 
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1V⊕M , dV⊕M and V ⊕M
ż corresponding to ψz ≡ 0, is a vertex algebra. Therefore, when 

we check the axioms, we know that all the terms without ψz satisfy the corresponding 
equation. So, in order to prove that V ⊕M with V ⊕M

ż given by (4.1) is a vertex algebra, 
we only need to see the terms with ψz. For example, the element (1, 0) satisfies (for 
a, b ∈ V and u, v ∈ M)

(1, 0)V ⊕M
ż (b, v) = (1ż b,1ż v + ψz(1, b)) = (b, v)

and

(a, u)V ⊕M
ż (1, 0) = (aż 1, uż 1 + ψz(a,1)) = (ezdV a, ezdM (1 ˙−z u) + ψz(a,1))

= ezdV ⊕M (a, u)

if and only if ψz(1, b) = 0 = ψz(a, 1) for all a, b ∈ V . From now on, we use d = dV = dM . 
A simple computation shows that V ⊕M satisfies the translation-derivation properties 
if and only if for all a, b ∈ V

d

dz
ψz(a, b) = ψz(da, b), and d(ψz(a, b)) = ψz(da, b) + ψz(a, db).

Now consider the commutativity axiom, that is:

ezdV ⊕M (b, v)V ⊕M
˙−z (a, u) = ezdV ⊕M (b ˙−z a, b ˙−z u + e−zdaż v + ψ−z(b, a))

= (ezdb ˙−z a, ezdb ˙−z u + aż v + ezdψ−z(b, a))

and (a, u)V ⊕M
ż (b, v) = (aż b, aż v + ezdb ˙−z u + ψz(a, b)). Therefore, ψz must satisfy 

ψz(a, b) = ezdψ−z(b, a).
Similarly, expanding

(
(a, u)V ⊕M

ẋ (b, v)
)
V ⊕M

ż (c, w) and (a, u)V ⊕M
˙x+z

(
(b, v)V ⊕M

ż (c, w)
)
,

and taking the terms with ψz, it is easy to see that the associativity axiom (2.2) holds 
if and only if for all a, b, c ∈ V there exists n ∈ N such that

(x + z)n
[
ψz(aẋ b, c) + ψx(a, b)ż c

]
= (x + z)n

[
a[ ˙x+z ψz(b, c) + ψx+z(a, bż c)

]
, (4.2)

proving that V ⊕M is a vertex algebra if and only if ψz ∈ Z2(V, M), and together with 
the projection p1 : V ⊕ M → V and the embedding i2 : M → V ⊕ M , V ⊕ M is a 
square-zero extension of V by M .

Next we prove that two elements of Z2(V, M) obtained in this way differ by an element 
of δ1C1(V, M) if and only if the corresponding square-zero extensions of V by M are 
equivalent.
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Let ψ, φ ∈ Z2(V, M) be two such elements obtained from square-zero extensions 
(V ⊕M, (1)

ż , p1, i2) and (V ⊕M, (2)
ż , p1, i2), respectively. Assume that ψ = φ + δ1(g) where 

g ∈ C1(V, M).
We now define a linear map h : V ⊕M → V ⊕M by

h(a, u) = (a, u + g(a))

for a ∈ V and u ∈ M . Then h is a linear isomorphism and it satisfies (for a, b ∈ V and 
u, v ∈ M)

h
(
(a, u)(1)

ż (b, v)
)

= (aż b, aż v + uż b + ψz(a, b) + g(aż b))

= (aż b, aż v + uż b + φz(a, b) + aż g(b) + g(a)ż b) (4.3)

= (a, u + g(a))(2)
ż (b, v + g(b))

= h(a, u)(2)
ż h(b, v).

Thus h is an isomorphism of vertex algebras from (V ⊕M, (1)
ż , (1, 0)) to (V ⊕M,

(2)
ż , (1, 0))

such that the diagram

0 M
i2

1M

V ⊕M
p1

h

V

1V

0

0 M
i2

V ⊕M
p1

V 0

(4.4)

is commutative. Thus the two square-zero extensions of V by M are equivalent.
Conversely, let (V ⊕M, (1)

ż , p1, i2) and (V ⊕M, (2)
ż , p1, i2) be two equivalent square-zero 

extensions of V by M . So there exists an isomorphism h : V ⊕M → V ⊕M of vertex 
algebras such that (4.4) is commutative. Let h(a, u) = (f(a, u), g(a, u)) for a ∈ V and 
u ∈ M . Then by (4.4), we have f(a, u) = a and g(0, u) = u. Since h is linear, we have 
g(a, u) = g(a, 0) + g(0, u) = u + g(a, 0). So h(a, u) = (a, u + g(a, 0)). Taking g(a) to be 
g(a, 0), we see that there exists a linear map g : V → M such that h(a, u) = (a, u +g(a)). 
Using that d h(a, 0) = h(d(a, 0)) and h(1, 0) = (1, 0), it is clear that g(da) = dg(a) and 
g(1) = 0. Thus, g ∈ C1(V, M).

Let ψ and φ be elements of Z2(V, M) obtained from (V ⊕M, (1)
ż , p1, i2) and (V ⊕M,

(2)
ż , p1, i2), respectively. Then, since h is a homomorphism of vertex algebras, (4.3) holds 
for a, b ∈ V and u, v ∈ M . So the two expressions in the middle of (4.3) are equal. Thus, 
we have ψ = φ + δ1(g). Therefore, ψ and φ differ by an element of δ1C1(V, M). �

In the proof of Theorem 4.2 (by taking the terms with ψz), we saw in (4.2) that the 
associativity axiom holds in (V ⊕M, V ⊕M

ż , (1, 0)) if and only if for all a, b, c ∈ V there 
exists n ∈ N such that
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(x + z)n
[
ψz(aẋ b, c) + ψx(a, b)ż c

]
= (x + z)n

[
a ˙x+z ψz(b, c) + ψx+z(a, bż c)

]
.

Recall that we can replace the associativity axiom (2.2) in the definition of vertex 
algebra, by the associator formula (2.3). By taking the terms with ψz, it is possible to 
prove that the associator formula holds in (V ⊕ M, V ⊕M

ż , (1, 0)) if and only if for all 
a, b, c ∈ V we have

0 = ψz(aẋ b, c) + ψx(a, b)ż c− a ˙x+z ψz(b, c) − ψx+z(a, bż c)

− bż (ψz+x(a, c) − ψx+z(a, c)) − ψz(b, a ˙z+x c− a ˙x+z c).

We avoid replacing the associativity or associator formula by the Jacobi identity be-
cause we want to make emphasis that a vertex algebra is a generalization of an associative 
commutative algebra, and that the cohomology must be a generalization of Harrison co-
homology.

5. Second cohomology and first order deformations

Definition 5.1. (a) Let t be a formal variable and let (V, ż , 1, d) be a vertex algebra. 
A first order deformation of V is a family of z-products of the form

a
z
∗ b = aż b + t fz(a, b)

with a, b ∈ V , where fz : V ⊗ V → V ((z)) is a linear map (independent of t), such that 
(V, 

z
∗, 1, d) is a family of vertex algebras up to the first order in t (i.e. modulo t2). More 

precisely, the quadruple (V, 
z
∗, 1, d) satisfies the following conditions:

∗ Unit:

1
z
∗ a = a and a

z
∗ 1 = ezda; (5.1)

∗ Translation-Derivation:

(da)
z
∗ b = d

dz
(a

z
∗ b), d(a

z
∗ b) = (da)

z
∗ b + a

z
∗ (db); (5.2)

∗ Commutativity:

a
z
∗ b = ezd(b

−z
∗ a); (5.3)

∗ Associativity up to the first order in t: For any a, b, c ∈ V , there exist l ∈ N such that

(z + w)l (a
z
∗ b)

w
∗ c = (z + w)l a

z+w
∗ (b

w
∗ c) mod t2. (5.4)
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(b) Two first order deformations 
(1)
z
∗ and 

(2)
z
∗ of (V, ż , 1, d) are equivalent if there exists 

a family φt : V → V [t], of linear maps of the form φt = 1V + tg where g : V → V is a 
linear map such that

φt(a
(1)
z
∗ b) = φt(a)

(2)
z
∗ φt(b) mod t2

for a, b ∈ V .

We have:

Theorem 5.2. Let V be a vertex algebra. Then the set of the equivalence classes of first 
order deformations of V corresponds bijectively to H2(V, V ).

Proof. Let 
z
∗ be a first order deformation of V . By definition, there exists a linear map 

fz : V ⊗ V → V ((z)) such that

a
z
∗ b = aż b + t fz(a, b) (5.5)

for a, b ∈ V , and (V, 
z
∗, 1, d) is a family of vertex algebras up to the first order in t.

The unit properties (5.1) for (V, 
z
∗, 1, d) gives

1
z
∗ a = 1ż a + t fz(1, a) = a

and

a
z
∗ 1 = aż 1 + t fz(a,1) = ezda

for a ∈ V . So, they are equivalent to

fz(a,1) = 0 = fz(1, a) for all a ∈ V. (5.6)

Similarly, the coefficient in t0 of the Translation-Derivation properties (5.2) corresponds 
exactly to the Translation-Derivation properties of (V, ż , 1, d), and the coefficient of t1
in (5.2) corresponds exactly to the following properties on fz:

d

dz
fz(a, b) = fz(da, b), and d(fz(a, b)) = fz(da, b) + fz(a, db). (5.7)

Now the coefficient in t0 of the Commutativity property (5.3) corresponds exactly to 
the Commutativity property of (V, ż , 1, d), and the coefficient of t1 in (5.3) corresponds 
exactly to the following property on fz:

fz(a, b) = ezdf−z(b, a). (5.8)



JID:YJABR AID:15951 /FLA [m1L; v1.190; Prn:4/11/2016; 14:54] P.13 (1-14)
J.I. Liberati / Journal of Algebra ••• (••••) •••–••• 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42
In the same way, using (5.5), we take the expansions modulo t2 of the expressions

(a
z
∗ b)

w
∗ c and a

z+w
∗ (b

w
∗ c)

and we consider the coefficients of t0 and t1 of them. By a direct computation, we can 
see that the coefficient of t0 of the associativity property (5.4) corresponds exactly to the 
associativity property of ż, and the coefficient of t1 corresponds exactly to the following 
property: for all a, b, c ∈ V there exists n ∈ N such that

(w + z)n
[
fw(aż b, c) + fz(a, b)ẇ c

]
= (w + z)n

[
a ˙z+w fw(b, c) + fz+w(a, bẇ c)

]
. (5.9)

Therefore, using (5.6), (5.7), (5.8) and (5.9), we have seen that

a
z
∗ b = aż b + t fz(a, b)

is a first order deformation of V if and only if fz ∈ Z2(V, V ).
Now we prove that two first order deformations of V are equivalent if and only if the 

difference between the corresponding elements in Z2(V, V ) is in Imδ1.
Consider two first order deformations of V given by

a
(1)
z
∗ b = aż b + t ψz(a, b) and a

(2)
z
∗ b = aż b + t φz(a, b),

where ψz and φz are in Z2(V, V ). They are equivalent if and only if there exists ft =
1V + t g where g : V → V is a linear map such that

ft(a
(1)
z
∗ b) = ft(a)

(2)
z
∗ ft(b) mod t2 (5.10)

for a, b ∈ V . Now since

ft(a
(1)
z
∗ b) = ft(aż b + t ψz(a, b)) = aż b + t ψz(a, b) + t g(aż b) mod t2

and

ft(a)
(2)
z
∗ ft(b) = (a+ t g(a))

(2)
z
∗ (b+ t g(b)) = aż b+ t aż g(b)+ t g(a)ż b+ t φz(a, b) mod t2

then (5.10) is equivalent to

ψz(a, b) − φz(a, b) = aż g(b) − g(aż b) + g(a)ż b

for all a, b ∈ V . Therefore, it is equivalent to ψz − φz = (δ1g)z, finishing the proof. �



JID:YJABR AID:15951 /FLA [m1L; v1.190; Prn:4/11/2016; 14:54] P.14 (1-14)
14 J.I. Liberati / Journal of Algebra ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
Acknowledgments

The author would like to thank M.V. Postiguillo and C. Bortni for their constant help 
and support throughout this work. Special thanks to C. Boyallian.

References

[1] B. Bakalov, V.G. Kac, Field algebras, Int. Math. Res. Not. IMRN (3) (2003) 123–159.
[2] B. Bakalov, V.G. Kac, A. Voronov, Cohomology of conformal algebras, Comm. Math. Phys. 200 (3) 

(1999) 561–598, MR1675121.
[3] R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 

83 (1986) 3068–3071.
[4] R.E. Borcherds, Vertex algebras, in: Topological Field Theory, Primitive Forms and Related Topics, 

Kyoto, 1996, in: Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 35–77.
[5] A. De Sole, V. Kac, Lie conformal algebra cohomology and the variational complex, Comm. Math. 

Phys. 292 (3) (2009) 667–719, MR2551791.
[6] Y.Z. Huang, A cohomology theory of grading-restricted vertex algebras, Comm. Math. Phys. 327 (1) 

(2014) 279–307, MR3177939.
[7] Y.Z. Huang, First and second cohomologies of grading-restricted vertex algebras, Comm. Math. 

Phys. 327 (1) (2014) 261–278, MR3177938.
[8] V.G. Kac, Vertex Algebras for Beginners, second edition, Univ. Lecture Ser., vol. 10, American 

Mathematical Society, Providence, RI, 1996, 1998.
[9] J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations, Progr. 

Math., vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004, xiv+318 pp.
[10] H. Li, Axiomatic G1-vertex algebras, Commun. Contemp. Math. 5 (2) (2003) 281–327.
[11] J. Liberati, Tensor product of modules over a vertex algebra, available at http://arxiv.org/abs/

1609.07551.
[12] F. Orosz, Algebra de Vértices, Undergraduate Thesis – Advisor: J. Liberati – Universidad Na-

cional de Córdoba, Facultad de Matemática, Astronomía y Física, http://www.famaf.unc.edu.ar/
institucional/biblioteca/trabajos/601/16294.pdf.
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

http://arxiv.org/abs/1609.07551
http://arxiv.org/abs/1609.07551
http://www.famaf.unc.edu.ar/institucional/biblioteca/trabajos/601/16294.pdf
http://www.famaf.unc.edu.ar/institucional/biblioteca/trabajos/601/16294.pdf

	Cohomology of vertex algebras
	1 Introduction
	2 Deﬁnitions and notation
	3 Deﬁnition of lower cohomologies
	4 Second cohomology and square-zero extensions
	5 Second cohomology and ﬁrst order deformations
	Acknowledgments
	References


