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Abstract
In the class of vacuum Petrov type D spacetimes with cosmological constant, 
which includes the Kerr-(A)dS black hole as a particular case, we find a set 
of four-dimensional operators that, when composed off shell with the Dirac, 
Maxwell and linearized gravity equations, give a system of equations  for 
spin weighted scalars associated with the linear fields, that decouple on shell. 
Using these operator relations we give compact reconstruction formulae for 
solutions of the original spinor and tensor field equations in terms of solutions 
of the decoupled scalar equations. We also analyze the role of Killing spinors 
and Killing–Yano tensors in the spin weight zero equations and, in the case of 
spherical symmetry, we compare our four-dimensional formulation with the 
standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS  
black hole. Our results uncover a pattern that generalizes a number of previous 
results on Teukolsky-like equations  and Debye potentials for higher spin 
fields.

Keywords: Petrov type D spacetimes, linear fields, symmetry operators, 
black holes, spinor methods

1.  Introduction

One of the most important open issues in general relativity (GR) is the black hole stability 
problem, which consists in proving the dynamical, non-linear stability of the Kerr metric 
within the set of solutions of the Einstein equations. Due to the high complexity, different 
levels of simplifications are considered when approaching this problem; in the first place, one 
considers linear systems, which, from the physical point of view, represent the propagation 
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of the fundamental classical fields on these spacetimes ignoring back reaction. The dynamical 
evolution of these fields is described by solutions of partial differential equations of tensorial 
or spinorial nature on the Lorentzian manifold that represents the spacetime, the structure of 
which depends on the kind of field we are dealing with. For example, the linearized Einstein 
equations are a set of ten (in four-dimensional GR) linear, second order, partial differential 
equations governing the evolution of the linearized metric.

The problem of analyzing solutions of these equations would be simplified if we were able 
to find equivalent field equations for scalar fields encoding the dynamical degrees of free-
dom of the perturbative field, as scalar fields are simpler and, unlike spinor and tensor fields 
on a Lorentzian manifold, carry an obvious notion of size. This turns out to be the case for 
the gravitational perturbations of the Schwarzschild black hole, as recently showed in [15].  
The proof of nonmodal linear stability of the Schwarzschild black hole in [15] makes use of the  
fact that the linearization of a scalar curvature invariant [ ]Φ h , αβh  the metric perturbation, 
satisfies a wave-like equation which, according to the conventions of the present paper reads1

− Φ =⎜ ⎟
⎛
⎝

⎞
⎠�

M

r

8
0,

3� (1.1)

where = ∇∇αβ
α β� g  is the standard D’Alembertian, with ∇α the Levi-Civita connection. 

Furthermore, for the odd sector, a solution of the linearized Einstein equations can be covari-
antly reconstructed from a scalar field satisfying (1.1) by means of

( )= ∇∇ Φαβ α
γδ
β γ δ

− ∗h
r

M
C r

3
,

2
3� (1.2)

where αβγδ
∗C  is the dual Weyl tensor of the background Schwarzschild solution. This suggests 

that there exists a four-dimensional map transforming off-shell the linearized Einstein tensor, 
regarded as a linear differential operator on αβh , into the composition of the scalar wave opera-
tor acting on Φ in (1.1) and the linear differential operator [ ]Φ h . By off-shell we mean that this 
is an operator equality for operators acting on the space of symmetric (0, 2) tensors (where 
the perturbed metric tensor lives) and, as such, it holds regardless of any field equations satis-
fied by αβh . If this is so, a natural question to ask, besides what the explicit form of this map 
is, is whether such an operator equality exists for more general spacetimes, in particular for 
the Kerr solution. In this work we address this question for the class of vacuum Petrov type 
D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a 
particular case. We proof the existence of maps transforming spinor/tensor field operators into 
scalar operators. These maps have a universal form that depends on the spin s of the field (for 

s = , 1, 21

2
) and the spin weight s of the scalar Φ, and (1.1) corresponds to the particular case 

( )s = =s2, 0  on a Schwarzschild background. We find that the mechanism explaining why 
(1.1)–(1.2) solves the linearized Einstein equations is the transposition of linear differential 
operators introduced by Wald in [34]. We also investigate the role of Killing–Yano tensors in 
the description of perturbative fields, since, although not stated in [15], it turns out that the Φ 
solving (1.1) (in the particular case of the Schwarzschild solution) can be written as

Φ = αβ
γδ αβ

γδ∗Y Y Ċ ,� (1.3)

where αβY  is a Killing Yano tensor, αβ
∗Y  its dual, and αβ γδĊ  is the linearized Weyl tensor.

As is well-known, perturbations of rotating black holes are traditionally studied by the 
Teukolsky equations [31], which are a set of decoupled scalar equations for the extreme spin 

1 We take the metric to have signature (+−−−), whereby � corresponds to −� in [15].
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weight components of perturbative fields of spin 1

2
, 1 and 2. As showed in [9], these equa-

tions  can be put in a wave-like form by adding to the Levi-Civita derivative a connection 
1-form Γα (see (2.30) below for an explicit expression), that gives a weigthed covariant deriva-
tive ∇ + Γα αp , Z∈p , and the weighted wave operator [1]

( )( )= ∇ + Γ ∇ + Γαβ
α α β βg p p: .pT� (1.4)

The advantage of using this modified wave operator is that the Teukolsky equations adopt a 
very simple and elegant form in terms of it [1, 9]:

( ) ( )− Ψ Φ =s4 0,s
sT 2

2
2� (1.5)

where the field ( )Φ s  has spin weight s and it is assumed a vacuum type D background spacetime 
(the adjointness property of the Teukolsky system is also easily seen in terms of the modified 
wave operator, see section 2.5 below and references therein). The extreme spin weight cases 
are those treated in the original work of Teukolsky. However, we are particularly interested 
in spin weight zero fields, both because they are truly (tetrad independent) scalar fields and 
also because the scalar field in (1.1) is of this type. For gravitational perturbations, decoupled 
equations for all the perturbed Weyl scalars have been derived in [1] (for spin weight =±s 1 
the equations in [1] are actually not decoupled, in the sense that they involve perturbed quanti-
ties other than the Weyl scalars). In any case, the equations in [1] are valid on-shell, i.e. the 
linearized vacuum Einstein equations are assumed to hold. Since we are interested in find-
ing operator relations we cannot make this assumption. Working off shell is what ultimately 
allows us to find patterns relating the equations for perturbed Weyl scalars and the linearized 
Einstein tensor, and these relations allow us to construct solutions of the linearized Einstein 
equations from solutions of the decoupled scalar equations. In the following section we state 
our main results. They all have the form of operator relations for operators acting on Dirac, 
Maxwell and perturbed metric fields. On shell, they give a system of decoupled scalar wave-
like equations implied by the (Dirac, Maxwell and linear gravity) field equations. Their off-
shell validity is what allow us to construct solutions for the Dirac, Maxwell and linear gravity 
equations from solutions of simple scalar wave-like equations.

1.1.  Main results

We recall that, in the Petrov classification, type D spaces, which include the Kerr family, have 
two principal null directions (PNDs) oA, ιA in terms of which the only non-trivial Weyl scalar 
of the curvature is Ψ2. In the following, the spinors oA, ιA (and the associated null vectors) will 
always refer to these PNDs. In particular, we introduce the anti-self-dual 2-forms

= = + =αβ α β αβ α β α β αβ α βM l m M l n m m M m n: 2 , : 2 2 , : 2 ,
0 1 2

¯ ¯[ ] [ ] [ ] [ ]� (1.6)

associated with the principal null tetrad { ¯ }α α α αl n m m, , , , and the following tensors, which are 
anti-self-dual in each pair of indices and have the symmetries of the Weyl tensor:

=αβγδ αβ γδW M M: ,
0 0 0

� (1.7)

= + +αβγδ αβ γδ αβ γδ αβ γδW M M M M M M: ,
2 0 2 2 0 1 1

� (1.8)

=αβγδ αβ γδW M M: .
4 2 2

� (1.9)
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In this paper we prove that there are four-dimensional maps that transform off-shell (in a 
sense to be made precise below) the field operators of higher spin fields into scalar operators. 
Although these operators have a generic form that depends on the spin s of the field and the 
spin weight s of the related scalar (as we show in section 2.5), for clarity purposes we give 

now, in separate form, the explicit operators for spins s = 1

2
, 1 and 2, and for zero and extreme 

spin weight, s= ±s 0, .

Consider first spin s = 1

2
; this case describes massless Dirac fields. We will use the 2-spinor 

formalism, in which the massless Dirac equation is χ∇ =′ 0AA
A .

The proof of the theorem below can be found in section 3.

Theorem 1.1 (Spin s = 1
2
).  Consider an arbitrary spinor field χA on a vacuum Petrov type 

D spacetime with cosmological constant λ. Then we have the following equalities:

χ λ χΨ ∇ Ψ ∇ = − − Ψ +−
+

′
′

⎜ ⎟
⎛
⎝

⎞
⎠o o

1

2

2

3
B

B
B

B
A

A
A

A2
1 3

2
1 3

T 1 2[ ] [ ]/ /
� (1.10)

ι χ λ ι χ∇ Ψ ∇ = − − Ψ + Ψ−
−

−′
′

⎜ ⎟
⎛
⎝

⎞
⎠

1

2

2

3
.B

B
B

B
A

A
A

A2
1 3

T 1 2 2
1 3[ ] [ ]/ /

� (1.11)

Note that χA in equations (1.10) and (1.11) is an arbitrary s = 1

2
 field, that is, not satisfying 

any field equation, these are examples of what we mean by off shell equations. If the field χA 
satisfies the Dirac equation, the left hand sides of (1.10) and (1.11) vanish and we get a system 
of two decoupled linear homogeneous (Teukolsky) equations for the scalar fields χoA

A and 
ι χA A. Knowledge of the off shell relations above is crucial for constructing solutions of the 
original (Dirac, in this case) field equations from scalar (Debye) potentials.

The spin s = 1 case corresponds to Maxwell fields, which are solutions to φ∇ =′ 0AA
AB . 

The following theorem, proved in section 4, shows that a similar structure to that of spin s = 1

2
 

occurs for this case:

Theorem 1.2 (Spin = 1s , spinor version).  Consider an arbitrary symmetric spinor 
field φAB on a vacuum Petrov type D spacetime with cosmological constant λ. Then we have 
the following equalities:

[ ] [ ]/ / φ λ φΨ ∇ Ψ ∇ = − − Ψ +−
+

′
′

⎜ ⎟
⎛
⎝

⎞
⎠o o o o

1

2
4

2

3
B C

C
B

B
A

AB
A B

AB2
2 3

2
2 3

T 2 2� (1.12)

[ ] [ ]/ ( ) / /ι φ λ ι φΨ ∇ Ψ ∇ = − + Ψ + Ψ− −′
′

⎜ ⎟
⎛
⎝

⎞
⎠�o o

1

2
2

2

3
B C

C
B

B
A

AB
A B

AB2
1 3

2
2 3

2 2
1 3

� (1.13)

[ ] [ ]/ /ι ι φ λ ι ι φ∇ Ψ ∇ = − − Ψ + Ψ−
−

−′
′

⎜ ⎟
⎛
⎝

⎞
⎠

1

2
4

2

3
B C

C
B

B
A

AB
A B

AB2
2 3

T 2 2 2
2 3

� (1.14)

The tensor version of this theorem is achieved by introducing an anti-self-dual 2-form 

= +
∼
αβ αβ αβ

∗F F Fi , and by using the tensors (1.6):

Theorem 1.2′ (Spin s = 1, tensor version).  Consider an arbitrary anti-self-dual 2-form 
∼
αβF  on a vacuum Petrov type D spacetime with cosmological constant λ. Then we have the 

following equalities:
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λΨ ∇ Ψ ∇ = − − Ψ +
∼ ∼βγ

γ
α
αβ

αβ
αβ

−
+

⎛
⎝
⎜

⎞
⎠
⎟
⎡
⎣⎢

⎤
⎦⎥

M F M F4
2

32
2 3

0

2
2 3

T 2 2

0
[ ]/ /

� (1.15)

[ ]/ / /λΨ ∇ Ψ ∇ = − + Ψ + Ψ
∼ ∼βγ

γ
α
αβ

αβ
αβ

− −
⎛
⎝
⎜

⎞
⎠
⎟
⎡
⎣⎢

⎤
⎦⎥

�M F M F2
2

32
1 3

1

2
2 3

2 2
1 3

1

� (1.16)

λ∇ Ψ ∇ = − − Ψ + Ψ
∼ ∼βγ

γ
α
αβ

αβ
αβ

−
−

−
⎛
⎝
⎜

⎞
⎠
⎟
⎡
⎣⎢

⎤
⎦⎥

M F M F4
2

3
.

2

2
2 3

T 2 2 2
2 3

2
[ ]/ /

� (1.17)

As in the Dirac field case, on shell the left hand sides of the above equations vanish and 
give decoupled scalar field equations  for the Maxwell scalars on the right hand side, gen-
eralizing Teukolsly equations  to non extreme spin weights. Once again, the fact that equa-

tions (1.15)–(1.17) hold for any anti-self-dual 2-form 
∼
αβF  is what interest us most.

Finally, spin s = 2 corresponds to gravitational perturbations. We assume there is a mono-
parametric family of metrics ( )αβ εg , where the unperturbed metric ( ) =αβ αβg g0  solves 

Einstein equations. In what follows, we use alternatively | =ε ε
d

d 0 and a dot over a quantity 

to denote linearization. Assuming linearized Einstein vacuum equations (with cosmological 
constant) are also satisfied (that is, on shell), the linearized Bianchi identities are formally 

( )ψ| ∇ ==
′

ε ε
0AA

ABCD
d

d 0  (see e.g. [12, equation  (2.8)]). The operators to be applied off shell 

to these identities follow a similar pattern to those of spin s = 1

2
 and s = 1, as the following 

theorem shows:

Theorem 1.3 (Spin s = 2, spinor version).  Let ( ( ))αβ εMε g,  be a monoparametric 
family of pseudo-Riemannian manifolds, analytic around =ε 0, such that ( )αβg 0  satisfies the 
vacuum Einstein equations (with cosmological constant λ) and is of Petrov type D. Let ψABCD 
be the Weyl curvature spinor of the metric ( )αβ εg . Then we have the following equalities:

[ ( )]/ / ψ λ| Ψ ∇ Ψ ∇ = − − Ψ + Ψ=
−

+
′

′
⎜ ⎟
⎛
⎝

⎞
⎠ε ε

o o o o
d

d

1

2
16

2

3
˙B C D E

E
B

B
A

ABCD0 2
4 3

2
4 3

T 4 2 0

�

(1.18)

ι ι ψ| Ψ ∇ Ψ ∇ = − | + Ψ + Ψ=
−

=
′

′
⎜ ⎟
⎛
⎝

⎞
⎠ε ε

�ε εo o
Rd

d

3

2

d

d
2

6
B C D E

E
B

B
A

ABCD0 2
2 3

2
4 3

0 2 2
1 3[ ( )] [ ]/ ( ) / /

�

(1.19)

ι ι ι ι ψ λ| ∇ Ψ ∇ = − − Ψ + Ψ Ψ=
−

−
−′

′
⎜ ⎟
⎛
⎝

⎞
⎠ε ε

d

d

1

2
16

2

3
˙B C D E

E
B

B
A

ABCD0 2
4 3

T 4 2 2
4 3

4[ ( )] [ ]/ /

�

(1.20)

where ( )Ψ = | Ψ= ε
ε ε

˙
i i

d

d 0 , i  =  0, 4.
This theorem shows how to map off shell the linearized Bianchi identities to decoupled 
equations for perturbed Weyl scalars. However, gravitational perturbations are traditionally 

described in terms of the perturbed metric ( )= = |αβ αβ αβ= ε
ε ε

h g g˙ d

d 0 , which is a solution to 

the linearized Einstein equations  [ ] λ+ =αβ αβG h h˙ 0, where [ ] ( )= |αβ αβ= ε
ε ε

G h G˙ d

d 0  is the lin-

earized Einstein tensor, which is a— αβg  dependent—linear functional on αβh :

[ ] ( )( )= − − ∇∇ +∇ ∇ + −∇ ∇αβ αβ α β
γ
α β γ αβ

γ δ
γδ� �G h h h h g h h˙ 1

2

1

2

1

2
,� (1.21)
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where = γδ
γδh g h . In order to relate the perturbed Weyl scalars in theorem 1.3 to the linearized 

Einstein tensor, we use the linearized Bianchi identities in the following way: let αβγO  be a 

linear differential operator such that [ ]=αβγ αβ γO O  and =αγ
αβγg O 0 (see section 5 for explicit 

expressions of αβγO  in spinor form). As we will show, applying αβγO  to the Bianchi identities 
on an arbitrary spacetime, one gets

∇ = − ∇αβγ δ
αβγδ

αβγ
α βγO C O R ,� (1.22)

where αβγδC  is the Weyl tensor. The idea is to choose αβγO  such that the left hand side of (1.22) 
is a decoupled equation for some Weyl scalar plus additional terms that vanish when linear-
izing. When we linearize the right hand side of (1.22) around a vacuum solution (i.e. with 

| =αβ =εR 00 ), the linearization operator | =ε ε
d

d 0 commutes with ∇αβγ
αO  and we are left with a 

background operator acting on the linearized Ricci tensor:

[ ]
⎡
⎣⎢

⎤
⎦⎥

∇ = − ∇αβγ δ
αβγδ

αβγ
α βγ

= =ε εε ε
O C O R

d

d

d

d
.

0 0
� (1.23)

Note that the symmetries of αβγO  are such that we can add a term propotional to the metric in 
the right hand side of (1.22), this allows us to replace αβR  by the Einstein tensor and to include 
a cosmological constant term (in which case we consider λ-vacuum background solutions, 
( )λ+ | =αβ αβ =εG g 00 ). See section  5.1 for details. When combined with theorem 1.3, and 
using the tensors (1.7)–(1.9), the previous idea leads to the following result:

Theorem 1.3′ (Spin s = 2, tensor version).  Consider an arbitrary metric perturbation 
αβh  on a vacuum Petrov type D spacetime with cosmological constant λ. Then we have the 

following equalities:

[ ( [ ] )] ( ) [ ]/ / λ λΨ ∇ Ψ ∇ + = − Ψ + Ψαγβδ
δ γ αβ αβ

−
+W G h h h

0 ˙ 16
2

3
˙

2
4 3

2
4 3

T 4 2 0� (1.24)

λ

λ

Ψ ∇ Ψ ∇ +

= + Ψ + Ψ Ψ + + Ψ

αγβδ
δ γ αβ αβ

−

−

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

� �

W G h h

h
R

2 ˙

6 8
2

3
˙ 3 ˙

˙

6
,h

h

2
2 3

2
4 3

2 2
2 3

2 2
1 3

( [ ] )

( )[ [ ]] ( )

/ /

/ /
�

(1.25)

[ ( [ ] )] ( )[ [ ]]/ /λ λ∇ Ψ ∇ + = − Ψ + Ψ Ψαγβδ
δ γ αβ αβ

−
−

−W G h h h
4 ˙ 16

2

3
˙ .2

4 3
T 4 2 2

4 3
4� (1.26)

In the next sections we put the equalities in the previous theorems in an operator identity 
form in the spirit of [34]. This provides a way to reconstruct solutions of the original field 
equations from solutions of the decoupled equations of which (1.1)–(1.2) is a particular case 
(see lemma 6.1 and below).

The proof of all theorems requires combining spinor and Geroch–Held–Penrose (GHP) 
techniques, although in section 6 we also give some alternative proofs using the 2  +  2 decom-
position of warped product spacetimes, which is useful for connecting our formalism to the 
traditional approach in the spherically symmetric case.

B Araneda﻿Class. Quantum Grav. 34 (2017) 035002
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1.2.  Conventions and overview

We will assume the spacetime to be a 3  +  1 dimensional, orientable, Lorentzian manifold 
with metric signature (+−−−), and we further assume that it admits a spinor structure. Greek 
indices refer to spacetime indices, and (primed and unprimed) latin capital indices are spinor 
indices. Additional notation, when needed, will be explained in the corresponding sections. 
Throughout the paper, we will omit the soldering forms σα ′AA for the correspondence between 
spinors and tensors. For background on the 2-spinor and GHP formalisms, see for example 
[26, 27]. We will often use ‘λ-vacuum spacetime’ for referring to a spacetime which is vac-
uum apart from a nonzero cosmological constant λ. For the sign conventions we use regarding 
curvature tensors, see appendix A.1.

In section 2 we explain the methods we will use in the calculations of this paper, in par
ticular the basics of the GHP formalism, the properties of Petrov type D spacetimes relevant 
for this work, and a review of Wald’s method of adjoint operators, together with a unified 
form of the operator to be applied to a spin-s field in order to get decoupled equations for its 
components. Sections 3–5 are devoted to the proof of theorems 1.1–1.3 respectively, we also 
give covariant, compact expressions for solutions of the field equations in terms of solutions 
of decoupled equations; in particular, in section 5 we show in detail how to relate the equa-
tions for perturbed Weyl scalars to the linearized Einstein tensor, and then how to construct 
a solution of the linearized Einstein equations from solutions of the decoupled equations. In 
section 6 we give the relation of our methods and results with the 2  +  2 decomposition of spa-
cetimes with warped product structure, particularized to the Schwarzschild-(A)dS solution. In 
particular, we demonstrate the origin of (1.1), (1.2) (section 6.2.1) and (1.3) (section 6.2.2). 
Finally, the conclusions of this work are presented in section 7, together with a summary of 
previously known results. We also include an appendix collecting relevant formulae for the 
proofs of the main theorems.

2.  Spinor and GHP methods

The purpose of this section is to introduce the different techniques we will use in the calcul
ations of this paper. In section 2.1 we discuss briefly the spinor fields we will consider in this 
work and the associated scalar, decoupled equations. In section 2.2 we give the basics of the 
GHP formalism needed to understand the notation and calculations of the next sections (we 
mainly follow [19] and section 4.12 in [26]). In section 2.3 we present the compact form of 
the Teukolsky equations using weighted wave operators [1, 9], we will use them in the case 
of extreme spin weight. The characteristics of Petrov type D spacetimes relevant to this work 
are presented in section 2.4, together with the properties of the Killing spinor associated with 
these solutions. Finally, in section 2.5 we recall the method of adjoint operators due to Wald 
[34], that will be central in this work, and we give the general ( )s s, -operator that maps off-
shell the field equations into scalar, decoupled equations for the spin weight s component of 
a spin-s field.

2.1.  Preliminaries

The fields one typically considers in the study of black hole stability are obtained as a gener-
alization of the situation in the Minkowski space. The possible physical fields that can exist 
on a flat spacetime are in turn determined by very general symmetry arguments. More pre-
cisely, the (massless) physical fields are classified by studying the massless irreducible rep-
resentations of the universal covering of the Poincaré group, which is the isometry group of 

B Araneda﻿Class. Quantum Grav. 34 (2017) 035002
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Minkowski space. This leads to the notion of massless free fields of spin2 s: totally symmetric 
spinors ( )s s

φ φ=A A A A... ...1 2 1 2
 with s2  indices satisfying the equation3

s
φ∂ =′ 0,A A

A A...
1 1

1 2
� (2.1)

where σ∂ = ∂α
α′ ′AA AA , with σα ′AA the soldering form and ∂α derivatives with respect to global 

inertial coordinates. Physically important examples of (2.1) are the Dirac ( /s = 1 2), Maxwell 
(s = 1) and linearized gravitational fields (s = 2). For curved spacetimes, however, the exis-
tence of spinor fields depends on whether or not it is possible to define a spinor structure, for 
which there are some topological obstructions [20, 21]. If the topological conditions are met, 
spinors are defined by using the local SO(1,3) symmetry, and the generalization of (2.1) to a 
curved space is achieved by the minimal substitution →∂ ∇α α,

s
φ∇ =′ 0,A A

A A...
1 1

1 2
� (2.2)

where now 
s

φA A...1 2
 is a cross section of the corresponding spinor bundle. The spin now labels 

the irreducible representations of ( )CSL 2, , which is the covering of SO(1,3). On the other 
hand, even if the spacetime admits a spin structure, the existence of non trivial solutions of 
(2.2) for s> 1 is constrained by algebraic consistency conditions: if we assume (2.2) holds and 
take an extra covariant derivative we find that

φ =ψ
+

0,ABC A A
ABC

... A4 2 2 1
( )s s

� (2.3)

where ψABCD is the Weyl curvature spinor. This equation  is sometimes referred to as the 
Buchdahl constraint, and it imposes strong restrictions on the geometry of the background 
spacetime (see e.g. [8]). Moreover, the gravitational perturbations of a generic curved space, 
represented by the linearized Weyl spinor, do not satisfy (2.2), i.e. they involve a non-trivial 
right hand side in this equation (see e.g. [12]), and the algebraic specialty is generally not 

preserved under perturbations [5]. Therefore, we will focus on the spin s = , 11

2
 cases of (2.2), 

while for the spin 2 case we will use the linearization of (2.2).
As mentioned in the introduction, a useful simplification in the study of solutions of ten-

sorial/spinorial field equations would be to find a scalar equation describing the system. Of 
course, one can obtain a set of scalar equations on an arbitrary spacetime by simply projecting 
the field equations on a basis frame at each tangent space. Simplifications useful for calcul
ations are achieved if the basis frame one chooses can be related to the particular geometric 
structure of the spacetime. This is the case for example when the geometry possesses distin-
guished directions, like in the algebraically special spacetimes of the Petrov classification. 
The Petrov type D is especially relevant for the black hole stability problem, since the Kerr 
family of stationary, vacuum black hole solutions corresponds to this case. Two (repeated) null 
directions are preferred at each point in this class of spaces, and, by adapting a null frame to 
them, a formalism especially suited for this situation can be implemented, namely the GHP 
formalism. However, the system of equations obtained this way typically consists of several 
interrelated equations which in principle cannot be analyzed separately. That is to say, the 
equations are generally coupled, in the sense that each one of them involves more than one of 
the components of the field relative to the basis frame one have chosen.

In a flat space, given a spin-s field (2.1), a single scalar equation  can be obtained by 
using Killing spinors4 (see [27, section 6.4]): if 

s
L A A...1 2  is a s2 -index Killing spinor, the field 

2 Or, more properly for the massless case, helicity.
3 In the case of spin 0s =  the field satisfies the massless wave equation  0φ =� .
4 Not to be confused with the homonymous object in the mathematics and supergravity communities [32].
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s
s

φΦ = LA A
A A

...
...

1 2
1 2

 satisfies the wave equation, Φ =� 0. In curved spacetimes, the situation 
is more subtle because the existence of Killing spinors imposes restrictions on the curvature 
to algebraically special cases. On the other hand, even if Killing spinors are available, it is 
expected the appearance of curvature terms in wave-like equations for s

s
φΦ = LA A

A A
...

...
1 2

1 2
. For 

example, Petrov type D spacetimes admit a 2-index Killing spinor KAB (see section 2.4 below), 
which is related to various symmetries of these spaces. The scalar field φΦ≡KAB

AB, where φAB 
is a spin-1 field (2.2), can be shown to satisfy the Fackerell–Ipser equation

( )+ Ψ Φ =� 2 0.2� (2.4)

This equation was found in [18] by other means in the particular case of the Kerr solution, but 
it is valid for all type D vacuum spacetimes.

On the other hand, it is possible that the scalar equations we are looking for involve wave 
operators distinct from the traditional D’Alembertian = ∇∇αβ

α β� g . We can think of this situ-
ation in the following geometrical terms. Let →π MP  be a principal fiber bundle with struc-
ture group G over the spacetime M, and let ωα be a g-valued connection 1-form on P, where 

( )g = GLie  is the Lie algebra of G. Tensor fields on M are sections of associated bundles to 
P, = ×ρE P V , where ( )ρ V,  is a representation of G on the vector space V. The covariant 
derivative on E is induced by the connection 1-form on P, and, acting on a cross-section ψ of 
E, it is explicitly given by

( )ψ ψ ρ ω ψΘ = ∂ − ′α α α ,� (2.5)

where → ( )gρ′ V: gl  is the associated representation of the Lie algebra g (see e.g. [25]). 
Formula (2.5) is very useful; it generalizes the expression for the covariant derivative of ten-
sor and spinor fields occurring in general relativity or Yang–Mills theories. (For example, the 
covariant derivative appearing in (2.2) is a particular case of (2.5), where the Lie algebra is 

( )g so= 1, 3  and the connection 1-form is the spin connection.) The equation we are look-
ing for may then involve a wave operator formed as Θ Θαβ

α βg . This is actually the case for 
the Teukolsky equation  [1], where, in the context of the GHP formalism, the gauge group 
is C× and its representations on the fields of interest are labeled by an integer number p; see 
section 2.3.

2.2.  GHP formalism

The GHP calculus is especially suited for situations in which two null directions αl  and αn  on 
the spacetime are distinguished, like in the case of Petrov type D spaces we are interested in. 
We align a spin dyad { }ιo ,A A  to these null directions, with ι =o 1A

A . The relation of this dyad 
with a null tetrad is as usual,

¯ ¯ ¯ ¯ ¯ι ι ι ι= = = =α α α α′ ′ ′ ′l o o n m o m o, , , .A A A A A A A A� (2.6)

As the normalization is preserved throughout the spacetime under → λo oA A, →ι λ ι−A A1 , 
where λ is a nowhere vanishing complex scalar field, then fixing the null directions reduces 
the local SO(1, 3) freedom in choosing an orthonormal tetrad, to a gauge freedom represented 
by a 2-dimensional subgroup of SO(1, 3), which is isomorphic to C× (the multiplicative group 
of complex numbers). In more geometrical terms [17], we get a reduction of the orthonormal 
frame bundle, with structure group SO(1, 3), to a principal fiber bundle →π MB  with structure 
group C×. The ( )C×Lie -valued connection form is
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¯ω β β= − + −′ ′α α α α αε εn l m m ,� (2.7)

and it transforms under C× as the gauge potential of an abelian Lie group, →ω ω λ λ+ ∇α α α
−1 .

The components of a tensor field projected on the null tetrad (or a spinor field projected 
on the dyad) are complex fields on the spacetime or, more precisely, fields →Cη B: , since 
they are associated with a particular frame. These components have a well-defined transfor-
mation law under a change of frame; in other words, they transform under the representation 

→ ( )C CΠ ×: GLp q,  of C× on C given by

( ) ¯η λ η λ λ ηΠ =� : ,p q
p q

,� (2.8)

for some integers p, q. Elements transforming under this representation are known as weighted 
quantities of type {p, q}, or, alternatively, quantities of spin weight s  =  (p  −  q)/2 and boost 
weight b  =  (p  +  q)/2. While the quantities of a well-defined type {p, q} form a complex vec-
tor space (carrying the representation (2.8) of C×), the quantities of all types together form a 
graded algebra. The properly weighted spin coefficients are ρ τ κ σ ρ τ κ σ′ ′ ′ ′, , , , , , ,  (see [26, 
equation (4.5.21)] for the definition of the spin coefficients as derivatives of the dyad spinors), 
while the coefficients β β′ ′ε ε, , ,  do not have a well-defined type, they enter in the formalism in 
the definition of the connection form (2.7). On the other hand, the components χ χ= oA

A
0  and  

χ χ ι= A
A

1  of a spinor field χA are of type {1, 0} and {−1, 0} respectively, while the Maxwell 
components φi are of type {2  −  2i, 0}, i  =  0, 1, 2, and the Weyl scalars Ψi, i  =  0, ..., 4 have 
types {4  −  2i, 0}.

The representation of the Lie algebra ( )g C= ×Lie  associated with (2.8), → ( )g Cπ : glp q, , 
is easily calculated as

( ) ( ¯ )π η η= +X pX qX .p q,� (2.9)

Then, according to (2.5), the covariant derivative on sections  of the associated bundles 
C= ×ΠE B:p q, p q,  is

¯ω ωΘ = ∇ − −α α α αp q� (2.10)

(the inclusion of the Levi-Civita derivative ∇α allows one to apply this formula to weighted 
spinor and tensor fields, besides weighted scalars). The traditional weighted derivative operators 
þ, ′þ , ð and ′ð  are simply the directional derivatives along the null tetrad, = Θα αlþ , = Θα α

′ nþ , 
= Θα αmð  and ′= Θα αmð ¯ . This is in contrast to the non-weighted directional derivatives of the 

Newman–Penrose formalism, = ∇α αD l , = ∇′ α
αD n , δ = ∇α αm  and ¯δ = ∇′ α

αm . The relation 
between both classes of operators can be inferred from (2.10) and (2.7): acting on a type {p, q}  
quantity, we have

¯= − −ε εD p qþ ,� (2.11)

δ β β= − + ′p qð ,¯� (2.12)

¯= + +′ ′ ′ ′ε εD p qþ ,� (2.13)

¯δ β β′ = + −′ ′p qð .� (2.14)

A very useful GHP operation taking weighted quantities into weighted quantities is the so-
called prime operation, which is defined by the interchange ↔ ιoA A. It is easy to see that if η 
is of type {p, q}, then η′ is of type {−p, −q}. This operation allows one to halve the number of 
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Newman–Penrose equations which are properly weighted, namely the Ricci identities involv-
ing derivatives of the weighted spin coefficients5,

ρ κ ρ σσ κτ τ κ− = + − − + Φ′ ′þ ð 2
00¯ ¯� (2.15)

( ¯) ( ¯ )σ κ ρ ρ σ τ τ κ− = + − + + Ψ′þ ð 0� (2.16)

( ¯ ) ( ¯ )τ κ τ τ ρ τ τ σ− = − + − + Ψ + Φ′ ′ ′þ þ 1 01� (2.17)

( ¯) ( ¯ )ρ σ ρ ρ τ ρ ρ κ− ′ = − + − − Ψ + Φ′ ′ð ð 1 01� (2.18)

τ σ ρ σ σ ρ τ κκ− ′ = − − + + + Φ′ ′ ′ð þ 2
02¯ ¯� (2.19)

ρ τ ρρ σσ ττ κκ′ − ′ = + − − − Ψ − Λ′ ′ ′þ ð 2 .2¯ ¯� (2.20)

The prime of these equations gives six more properly weighted Ricci equations. The remain-
ing Newman–Penrose equations involve derivatives of spin coefficients not properly weighted; 
in the GHP formalism they enter in the commutation relations for the derivative operators:

τ τ τ τ κκ ττ
κκ ττ

′ = − + − ′− − + Ψ + Φ − Λ
− − + Ψ + Φ − Λ

′ ′ ′ ′

′ ′

p

q

þ, þ ð ð

,
2 11

2 11

[ ] ( ¯ ) ( ¯ ) ( )
( ¯ ¯ ¯ ¯ ¯ )

� (2.21)

ρ σ τ κ ρ κ τ σ
σ κ ρτ

= + ′− − ′ − − + Ψ
− − + Φ

′ ′ ′
′ ′

p

q

þ, ð ð ð þ þ

,
1

01

[ ] ¯ ¯ ( )
( ¯ ¯ ¯ ¯ )�

(2.22)

[ ] ( ¯ ) ( ¯ ) ( )
( ¯ ¯ ¯ ¯ ¯ )
ρ ρ ρ ρ ρρ σσ
ρρ σσ

′ = − + − ′ + + + Ψ − Φ − Λ
− − + Ψ − Φ − Λ
′ ′ ′ ′ ′

′ ′

p

q

ð, ð þ þ

.
2 11

2 11
�

(2.23)

We also note the following commutation relation, in which a is an arbitrary constant and η is 
type {p, 0}:

[ ] ¯( ) ¯ ( ) ( )
( ( ¯ ))
( ( ¯ ))

ρ τ η ρ τ η τ ρ η η
η τ η η τ τ σ
η ρ η η ρ ρ κ

− − = − − − − + Ψ
+ ′ + + ′− +
− ′ + + ′ − +

′
′ ′
′ ′ ′

a a a a a p

p a

p a

þ , ð ð þ 2

ð ð

þ þ .

1

�

(2.24)

For type D spacetimes, the terms proportional to σ, κ and Ψ1 vanish, and we are left with [1]

[ ] ¯( ) ¯ ( )ρ τ η ρ τ η τ ρ η− − = − − −′a a a aþ , ð ð þ ,� (2.25)

this relation will be very useful in the following sections.
In order to find the spinor operators that map field equations to decoupled scalar equations, 

we will need the explicit form of χ∇ ′B
A

A, φ∇ ′B
A

AB and ψ∇ ′B
A

ABCD in its components in the { }ιo ,A A  
basis. This can be obtained readily by using formulae (4.12.27) in [26]. For Dirac fields, this 
gives

χ ρ χ τ χ

ρ χ τ χ ι

∇ = ′ − − −

+ − − ′−

′

′
′ ′

′

oþ ð

þ ð ,
B
A

A B

B

0 1

1 0

[( ) ( ) ] ¯
[( ) ( ) ] ¯

�
(2.26)

while for the Maxwell spinor, we get

5 The greek letter Λ (traditionally associated with the cosmological constant) represents the scalar curvature and is 
conventional in the two-spinor formalism [26, 27], this is the reason why we use λ for the cosmological constant.
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[( ) ( ) ] ¯
[( ) ( ) ] ¯
[( ) ( ) ] ¯
[( ) ( ) ] ¯

φ τ φ ρ φ σφ ι

ρ φ τ φ κ φ
τ φ ρ φ κφ ι ι
ρ φ τ φ σ φ ι

∇ = − − ′ − +

+ ′ − − − +
+ ′− − − −
+ − − ′− −

′

′ ′

′

′ ′

′ ′

′

′

′

o

o o

o

ð 2 þ

þ 2 ð

ð þ 2

þ ð 2 ,

B
A

AB B B

B B

B B

B B

1 0 2

1 2 0

0 1 2

2 1 0

�

(2.27)

and similarly for the Weyl spinor

[( ) ( ) ] ¯
[( ) ( ) ] ¯
[( ) ( ) ] ¯

[( ) ( ) ] ¯
[( ) ( ) ] ¯

[( ) ( ) ] ¯
[( ) ( ) ] ¯

[( ) ( ) ] ¯

( )

( )

( )

( )

ψ ρ τ σ ι

ρ τ κ σ ι
ρ τ κ σ ι
ρ τ κ
ρ τ κ ι ι
ρ τ κ σ ι ι
ρ τ κ σ ι ι
ρ τ σ ι

∇ = − ′ − Ψ − − Ψ − Ψ

+ ′ − Ψ − − Ψ + Ψ − Ψ
− ′ − Ψ − − Ψ + Ψ − Ψ
+ ′ − Ψ − − Ψ + Ψ
− − Ψ − ′− Ψ + Ψ
+ − Ψ − ′− Ψ + Ψ − Ψ
− − Ψ − ′− Ψ + Ψ − Ψ
+ − Ψ − ′− Ψ − Ψ

′

′ ′

′ ′

′ ′
′
′ ′

′ ′

′ ′

′ ′

′

′

′

′

′

′

′

o

o o

o o

o o

o

o

o

þ ð 4 3

3 þ 2 ð 3 2

3 þ 3 ð 2 2

þ 4 ð 3

þ 4 ð 3

3 þ 3 ð 2 2

3 þ 2 ð 3 2

þ ð 4 3 ,

B
A

ABCD BCD B

BC D B

B CD B

BCD B

BCD B

BC D B

B CD B

BCD B

0 1 2

1 2 0 3

2 3 1 4

3 4 2

1 0 2

2 1 3 0

3 2 4 1

4 3 2

�

(2.28)

where ι ι ι ι=ABC A B C, ι ι ι=AB A B, =o o o oABC A B C and =o o oAB A B. The Dirac and Maxwell equa-
tions and the vacuum Bianchi identities of the GHP formalism are given simply by setting all 
previous components equal to zero independently.

2.3. The Teukolsky equations

The Teukolsky equations [31], which were originally found by using the Newman–Penrose 
formalism, can be put in a compact form by using a modification of the covariant derivative 
(2.10). With this purpose we define the 1-form αB  by

¯ ¯ρι ι τι= − +′ ′ ′B o:AA A A A A� (2.29)

and, following [1], we introduce a new connection ωΓ = −α α αB:  on Ep,q; explicitly:

( ) ( ) ¯ρ β τ βΓ = − − + + −′ ′α α α α αε εn l m m .� (2.30)

Since in the next sections we will work on the Dirac, Maxwell and Weyl scalars, and they are 
all type {p, 0} quantities, we need only define the weighted wave operator

( )( )= ∇ + Γ ∇ + Γα α
α αp p: .pT� (2.31)

Note that ≡�T 0 . Its expression in terms of the weighted directional derivatives is

( ¯)( ) ( ¯ )( )
[( ) ] ( )( )

ρ ρ ρ τ τ τ
κκ σσ

= − − ′ − − − − ′−
+ − Ψ − Λ + − −

′ ′ ′

′ ′

p p

p p

2 þ þ 2 ð ð

3 2 4 2 1 ,
pT

2
� (2.32)

where /Λ = R 24, with R the Ricci scalar. The Teukolsky equations  for a field ( )Φ s  of spin 
weight s, on a background type D vacuum spacetime, are then [9]

( ) ( )− Ψ Φ =s4 0.s
sT 2

2
2� (2.33)

We will see that several of the identities we will prove follow easily from applying the prime 
operation to other identities. For this, we need to know the behavior of pT  under the prime 
operation. As proved in [1], acting on a type {p, 0} quantity Φ, pT  transforms as
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( )/ /Φ = Ψ Ψ Φ′ ′ ′−
− .p

p
p

p
T 2

3
T 2

3� (2.34)

2.4.  Petrov type D spacetimes

In the Petrov classification of spacetimes, type D spaces are characterized by the existence 
of two (repeated) principal null directions (PNDs). As mentioned, the Kerr–Newman–(A)dS 
family of stationary, electrovacuum black hole solutions belongs to this class. Aligning a spin 
dyad { }ιo ,A A  to the PNDs, several of the GHP coefficients and Weyl scalars vanish:

κ κ σ σ= = = = = Ψ = Ψ = Ψ = Ψ′ ′ 0 ,0 1 3 4� (2.35)

ψ ι ιΨ = ≠o o 0.ABCD
A B C D

2� (2.36)

The Weyl curvature spinor has the explicit form

( )ψ ι ι= Ψ o o6 ,ABCD A B C D2� (2.37)

and the Bianchi identities of a λ-vacuum, type D spacetime are simply

ρ τΨ = Ψ Ψ = Ψþ 3 , ð 32 2 2 2� (2.38)

and their primed versions. If we introduce a 1-form ′AAA as

/ /= Ψ ∇ Ψ−′ ′A : ,AA AA2
1 3

2
1 3� (2.39)

Bianchi identities imply that

¯ ¯ ¯ ¯ρι ι ρ τ ι τι= − − + +′ ′′ ′ ′ ′ ′A o o o o ,AA A A A A A A A A� (2.40)

Expressions (2.40) and (2.39) will be both very useful in the applications.
A very important property of λ-vacuum type D spaces, is that they admit a 2-index Killing 

spinor, namely a symmetric spinor ( )=K KAB AB  satisfying the twistor equation

( )∇ =′ K 0,C C AB� (2.41)

see [33] (also [27, section 6.7]). The explicit form of KAB in the principal dyad { }ιo ,A A  is

/
( )ι= Ψ−K k o ,AB A B2

1 3� (2.42)

where k is an arbitrary complex constant. This object is associated with several kind of sym-
metries and ‘hidden’ symmetries of the spacetime, as we briefly recall in the following. Taking 
the divergence of (2.42) in an unprimed index, we get ξ ≡∇′ ′KAA BA

B
A, which turns out to be 

complex a Killing vector [27, proposition 6.7.17], and in the case of the Kerr solution it is 
proportional to the (asymptotically) timelike Killing field. The tensor fields associated with 
KAB are the 2-forms

¯ ¯= −αβ ′ ′ ′ ′ε εY K Ki i ,AB A B A B AB� (2.43)

¯ ¯= +αβ
∗

′ ′ ′ ′ε εY K K ,AB A B A B AB� (2.44)

and they turn out to be conformal Killing–Yano tensors. In the case in which ξα is real (for 
example in the Kerr and Schwarzschild solutions), αβY  is an ordinary Killing–Yano tensor:

( )∇ =α β γY 0� (2.45)
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(see [23] for a thorough account of these tensor fields in the Kerr case). In [22] it was shown 
that αβY  generates conserved supercharges for the supersymmetric extension of the geodesic 
motion (see also [30] where further applications of Killing–Yano tensors are discussed). On 
the other hand, the square =αβ αγ

γ
βH Y Y  is a Killing tensor, ( )∇ =α βγH 0, whose existence in 

the Kerr spacetime allows one to completely integrate the geodesic equation [33]. Finally, the 

vector η ξ=α αβ
βH  is also a Killing vector (which is linearly independent from ξα in the Kerr 

case, and it is zero in Schwarzschild). Apart from section 4.1.1 below, in this work we do not 
assume that the Killing vector ξα is real.

The Weyl spinor (2.37) of a type D space can be written in terms of the Killing spinor 
(2.42) in the form

ψ = Ψ − Ψ +ε ε ε ε
k

K K
6 1

2
.ABCD AB CD AD CB AC DB2 2

5 3
2( )/

�
(2.46)

This leads to the following expression for the anti-self-dual Weyl tensor in terms of the 
Killing–Yano tensors

/
[ ]= − Ψ + Ψ +

∼
αβγδ αβ γδ α γ δ β αβγδ⎜ ⎟

⎛
⎝

⎞
⎠ε� �C

k
Y Y g g

6 i

2
,

2 2
5 3

2

�
(2.47)

where

( )= +αβ αβ αβ
∗�Y Y Y:

1

2
i .� (2.48)

We recall that, according to our conventions, we have

( )= +
∼
αβγδ αβγδ αβγδ

∗C C C
1

2
i .� (2.49)

Formula (2.47) will be particularly useful in section 6, where we explicitly evaluate our results 
in the Schwarzschild-(A)dS spacetime.

2.5.  Adjoint operators

In this section we review Wald’s idea of adjoint operators [34], since it plays a central role in 
this work. Suppose that we are interested in solutions f of the differential equation  ( ) =E f 0, 
where E is a linear differential operator acting on a (spinorial/tensorial) field f. Suppose also 
that there exist a new variable of the form ( )T f , and linear differential operators S and O such 
that, for all f (not only for solutions of ( ) =E f 0), the following equality holds:

( ) ( )=SE OTf f .� (2.50)

Then if f is a solution of ( ) =E f 0, ( )Ψ = T f  satisfies the equation  ( )Ψ =O 0. Furthermore, 
given that (2.50) is valid for all f, we may introduce a hermitian inner product ⟨ ⟩⋅ ⋅,  and define 
the adjoint of an operator A as ⟨ ⟩ ⟨ ⟩†=f Ag A f g, , ; and, since ( )† † †=AB B A , we have the adjoint 
of equation (2.50):

( ) ( )† † † †Φ = ΦE S T O .� (2.51)

This implies that a solution Φ of ( )† Φ =O 0 generates a solution of ( )† χ =E 0, where 
( )†χ = ΦS . Therefore, if the adjoint operators have a particularly useful form, we obtain in 

this way a mechanism for generating solutions of differential equations  from solutions of 
other equations. In practice, the hermitian product we will use is given by
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⟨ ⟩ ¯∫= M
f g f g, ,� (2.52)

where a total contraction of all the indices of f and g is understood. We will further assume that 
all fields decay to zero at infinity, so that divergence terms will be neglected.

In the next sections, we apply this idea to spinor fields of spin 1

2
, 1 and 2. The decoupled 

equations for Dirac, Maxwell and linearized gravitational fields on vacuum type D spacetimes 
with cosmological constant can be obtained from linear differential operators, acting on the 
corresponding spinor fields, that have a generic form. More precisely, for a totally symmetric 
spinor ( )s s

φ φ=A A A A... ...1 2 1 2
, we will show that applying the operator given by

( )/
( )

/s
s

ss

s
φΨ ∇ Ψ ∇−′
′P s

B A A
B
B

B
A

A A A2
2 3

,
...

2
2 3

....
1 2 2

1
1

1 2 2
� (2.53)

where

( )
( ) ( )( )

( )/ ( )s

s s
s

ss s s sι ι=
− +

Ψ − − − +P
s s

o o:
2 !

! !
... ... ,s

A A s A A A A
,
...

2
3 s s1 2 1 1 2� (2.54)

and then linearizing around a type D λ-vacuum background, the result is a decoupled equa-
tion for the spin weight s component of the field, with = ±s 0, s. Since we are assuming a 

λ-vacuum solution with no background spin s = 1

2
 or s = 1 fields, the linearization is actu-

ally only needed for spin s = 2, and we mention that in this case it should be understood in a  
‘tensor sense’6, that is to say, we linearize tensor quantities (we can do this because inte-
ger spin fields can be equivalently described by either spinor or tensor fields). We note that, 

writing (2.53) in the form ( )( )s
s

s
φP Qs

A A
A A,

...
...

1 2
1 2 , where

( )( ) /
(

/
)

s s
s s

φ φ= Ψ ∇ Ψ ∇−
| |

′
′Q : ,A A A

B
B
B

A A B... 2
2 3

2
2 3

....1 2 1 2 2� (2.55)

the operator Q coincides with the operator (2.13) recently presented in [2]7 (we also note that 
in this last reference, Wald’s method of adjoint operators is also applied to construct higher 
order symmetry operators for the Teukolsky equations and the Teukolsky–Starobinsky identi-
ties in the cases of spins 1 and 2). The following sections are therefore mostly dedicated to 
prove that the linearization of

( ) ( )( )
/

( )
/

s
s

s
ss

s
s

s
φ φ= Ψ ∇ Ψ ∇−′

′P Q Ps
A A

A A s
B A A

B
B

B
A

A A A,
...

... 2
2 3

,
...

2
2 3

....
1 2

1 2
1 2 2

1
1

1 2 2
� (2.56)

leads to decoupled equations for (rescaled) components of the field 
s

φA A...1 2
, i.e. to prove theo-

rems 1.1–1.3.
The only cases we will not worry about in this work are ( )s = =±s2, 1 , which correspond 

to the linearized Weyl scalars Ψ̇1 and Ψ̇3; this is because they do not satisfy decoupled equa-
tions, as showed in [1]. On the other hand, we note that for spins s = 1, 2 and spin-weight 
s  =  0, (2.54) turns out to be a Killing spinor, which explains the appearance of this object on 
the field equations for s  =  0 in the Maxwell and linearized gravity systems.

We finally mention that, in the next sections, the operator O of (2.50) will always have the 
form of the modified wave operator (2.31) (for some weight p) plus a (complex) potential V,

= +O V .pT� (2.57)

Using that ( )( )= ∇ + Γ ∇ + Γα α
α αp ppT , the adjoint †O  with respect to (2.52) is easily 

calculated as

6 This is because the linearization of a spinor is a rather delicate issue, see [7].
7 I thank Thomas Bäckdahl for this observation.
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¯ ¯† = +−O V ,pT� (2.58)

an identity that will be extensively used in the next sections when calculating adjoint equa-
tions. This adjointness property is very important in the Teukolsky system, see [34] and the 
recent article [2].

3.  Dirac fields on type D spaces

In this section we prove the theorem 1.1 for spin s = 1

2
, which corresponds to massless Dirac 

fields. We recall that we use two-component (Weyl) spinors, corresponding to the ( ), 01

2
 (or 

( )0, 1

2
) irreducible representation of ( )CSL 2, . As is well-known, Dirac spinors, more commonly 

used in quantum field theory, transform under the (reducible) representation ( ) ( )⊕, 0 0,1

2

1

2
.

For notational convenience we define

( )
= =±P P

s
s: ,

1

2
.

s
B B
1
2

,� (3.1)

Then, according to (2.54), we have

/ ι= = Ψ
−

−P o P, .B B B B

1
2

1
2

2
1 3� (3.2)

Theorem 3.1 (Spin s = 1

2
).  Consider a vacuum spacetime of Petrov type D with cosmo-

logical constant λ, and let =±s 1

2
. Then for all spinor field χA, the following equality holds:

( ) ( )χ χ=S E O T ,D s D A D s D s A, , ,� (3.3)

where the linear differential operators are

( ) [ ]/ /= Ψ ∇ Ψ−′
′

′S J P
s

J: ,D s B
B

B
B

B, 2
1 3

2
1 3� (3.4)

( )χ χ= ∇ ′E : ,D A B
A

A� (3.5)

( ) ( )λΦ = − Ψ + ΦO :
2

3
,D s s, T 2 2� (3.6)

( )χ χ= −T P
s

:
1

2
.D s A

A
A,� (3.7)

Proof.  Consider first the spin weight =s 1

2
 case. Using the expression (2.39) for the 1-form 

αA , we have

( )χ χ χ= ∇ ∇ + ∇′
′

′
′S E o o A .

D D A
B

B
B

B
A

A
B

B
B

B
A

A, 1
2

� (3.8)

For the term with second derivatives of χA, we use Leibniz rule:

( ) ( )( )χ χ χ∇ ∇ = ∇ ∇ − ∇ ∇′
′

′
′

′
′o o o .B

B
B

B
A

A B
B B

B
A

A B
B B

B
A

A� (3.9)
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The first term on the RHS of this equation gives:

( ) ( ¯ )

( ¯ ¯ ) ( ¯ ¯ )

( ( ))[ ¯ ] ( ( ))[ ¯ ]

( ¯ ¯)[ ¯ ]

( ¯ ¯ )[ ¯ ]

χ χ

ι χ ι χ

ι χ δ χ

ρ ρ ι χ

δ β β τ τ χ

∇ ∇ = −∇ ∇

= −∇ ∇ +∇ ∇

= − + ∇ ∇ + + ∇ ∇

= − + + − − ∇

+ + + − − ∇′ ′

α
α

α
α

′
′ ′

′ ′
′

′
′ ′

′ ′
′ ′

′

′
′

′
′

′
′

′
′

ε

ε ε

o o

o o o o

D l m o

D

o

B
B B

B
A

A CC
C C B

B
A

A

CC
C C B

B
A

A CC
C C B

B
A

A

B
B
A

A
B

B
A

A

B
B
A

A

B
B
A

A

where we have used (2.6) for the relation between the dyad and the tetrad vectors, and also 
expressions (A.14) and (A.16) for the divergence of the tetrad. For the second term in (3.9) we 
use equation (A.10) for the derivative of oB, then

( )( ) ( ) ¯ ( ) ¯χ β τ χ ρ ι χ− ∇ ∇ = − − ∇ + − ∇′
′

′
′

′
′εo o .B

B B
B
A

A
B

B
A

A
B

B
A

A� (3.10)

For the term with first derivatives of χA in (3.8), we use the expression (2.40) of αA , which 
implies

¯ ¯ρι τ= −′ ′ ′o A o .B
B
B B B� (3.11)

Combining with the previous calculations, using (2.11)–(2.12) for the definition of the weight-
ed derivatives þ and ð, and (2.26) for the corresponding components of χ∇ ′B

A
A, we have

( ) ( ¯ ¯)[ ¯ ] ( ¯ ¯ )[ ¯ ]

( ¯)[ ¯ ] ( ¯ )[ ¯ ]
( ¯)[( ) ( ) ]
( ¯ )[( ) ( ) ]
[( ¯)( ) ( ¯ )( )]
[( ¯)( ) ( ¯ )( )]

χ ρ ρ ι χ δ β τ τ χ

ρ ρ ι χ τ τ χ

ρ ρ ρ χ τ χ
τ τ ρ χ τ χ
ρ ρ ρ τ τ τ χ
ρ ρ τ τ τ ρ χ

= − + − − ∇ + + − − ∇

= − − − ∇ + − − ∇

= − − − ′ − − −
+ − − − − ′−

= − − − ′ − − − − ′−
+ − − − − − − −

′ ′

′

′

′ ′

′ ′ ′

′

′
′

′
′

′
′

′
′

εS E D o

oþ ð

þ þ ð

ð þ ð

þ þ ð ð

þ ð ð þ .

D D A
B

B
A

A
B

B
A

A

B
B
A

A
B

B
A

A

, 1
2

0 1

1 0

0

1
�

(3.12)

Using the explicit expression for the weighted wave operator (2.32) with p  =  1, we see that 
the term with χ0 in the previous equation is just

[( ¯)( ) ( ¯ )( )] ( )ρ ρ ρ τ τ τ χ λ χ− − − ′ − − − − ′− = − − Ψ +′ ′ ′þ þ ð ð
1

2

2

3
.0 T 1 2 0

�

(3.13)

For the term with χ1, we use the commutation relation (2.25) with a  =  1:

[( ¯)( ) ( ¯ )( )]
[ ] ¯( ) ¯ ( )

ρ ρ τ τ τ ρ χ
ρ τ χ ρ τ χ τ ρ χ

− − − − − − −
= − − − − + − ≡

′
′

þ ð ð þ

þ , ð ð þ 0,
1

1 1 1
�

(3.14)

and therefore we finally obtain

( ) ( )χ λ χ= − − Ψ +S E
1

2

2

3
.

D D A, 1
2

T 1 2 0� (3.15)
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For the spin weight = −s 1

2
 case, we just have to apply the prime operation and use formula 

(2.34) for the transformation law of T 1:

( ) ( )[ ]/χ λ χ= − − Ψ + Ψ− −
−S E

1

2

2

3
.

D D A, 1
2

T 1 2 2
1 3

1� (3.16)

� □

In order to generate Dirac fields from solutions of the decoupled equations, we take the 
adjoint equation to (3.3) in the manner described in section 2.5 (in particular we use (2.58)), 
this gives

[ ( )] ¯ ( ¯ ¯ )† λ−∇ Φ = − − Ψ + Φ−
′

′

S P
s1

2

2

3
,B

B
D s

B
B

s, T 2 2� (3.17)

where

[ ( )] ¯ [ ¯ ¯ ]† / /Φ = Ψ ∇ Ψ Φ− ′
′S P

s
.D s

B BB
B, 2

1 3
2
1 3� (3.18)

Equation (3.17) implies then the following corollary:

Corollary 3.2.  Let Φ be a solution to the decoupled equation  ¯ ( )Φ =−O 0D s, , which is the 

spin weight ∓ 1

2
 Teukolsky equation for =±s 1

2
, in a λ-vacuum type D spacetime. Then:

	 (a)	The spinor field

( ) ¯ [ ¯ ¯ ]/ /φ Φ = Ψ ∇ Ψ Φ− ′
′

s
P
s

A A
B

B2
1 3

2
1 3� (3.19)

		 is a solution to the massless Dirac equation, φ∇ =′
s

0AA
A .

	(b)	The operator AD s,  defined by

( ) ( )φΦ = ΦA P
s s

D s
A

A,� (3.20)

		 maps solutions of ( )Φ =O 0D s,  into solutions of ¯ ( )Φ =−O 0D s, .

For further symmetry operators for the massless Dirac equation, we refer to [4] (and refer-
ences therein).

4.  Maxwell fields on type D spaces

We now prove the theorem of spin s = 1, corresponding to Maxwell fields. The proof is very 
similar to the previous case, in the sense that the manipulations for extreme spin weight are 
the same. For spin weight zero, the proof can be done either by the same lines or by using the 
fact that the corresponding object is a Killing spinor.

Once more, for notational convenience we define

( )= = ±P P
s

s: , 0, 1.s
AB AB
1,� (4.1)

Explicitly, we have

= =P o o o
1

: ,AB A B AB� (4.2)
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/ ( )ι= Ψ−P o
0

2 ,AB A B
2

1 3� (4.3)

/ /ι ι ι
−

= Ψ = Ψ− −P
1

: .AB A B AB
2

2 3
2

2 3� (4.4)

Note that P AB
0

 coincides with the Killing spinor (2.42) (with k  =  2).
We recall that for spin weight =±s 1, theorem 1.2 should give us the =±s 1 Teukolsky 

equations for electromagnetic perturbations, while for s  =  0 we should obtain the Fackerell–
Ipser equation. This is summarized as follows:

Theorem 4.1 (Spin s = 1).  Consider a vacuum spacetime of Petrov type D with cos-
mological constant λ, and let = ±s 0, 1. Then for all symmetric spinor field ( )φ φ=AB AB ,  
the following equality holds:

( ) ( )φ φ=S E O T ,M s M AB M s M s AB, , ,� (4.5)

where the linear differential operators are

( ) [ ]/ /= Ψ ∇ Ψ−′
′

′S J P
s

J: ,M s B B
AB

A
B

B B, 2
2 3

2
2 3� (4.6)

( )φ φ= ∇ ′E : ,M AB B
A

AB� (4.7)

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠λΦ = + − Ψ + ΦO s: 2 1 3

2

3
,M s s, T 2

2
2� (4.8)

( )φ φ= −T P
s

:
1

2
.M s AB

AB
AB,� (4.9)

Proof.  We start with the spin weight s  =  1 case:

( ) ( )φ φ

φ φ

= ∇ + ∇

= ∇ ∇ + ∇

′ ′
′

′
′

′
′

S E o o A

o o A

2

2 ,

M M AB
BC

C
B BC

C
B

B
A

AB

BC
C
B

B
A

AB
BC

C
B

B
A

AB

,1
�

(4.10)

where we have used the expression (2.39) for the 1-form ′AAA. Leibniz rule for the term with 
second derivatives of φAB gives:

( ) ( )( )φ φ φ∇ ∇ = ∇ ∇ − ∇ ∇′
′

′
′

′
′o o o .BC

C
B

B
A

AB C
B BC

B
A

AB C
B BC

B
A

AB� (4.11)

The first and second terms in the right hand side of this equation are treated in a similar way 
as was done for the Dirac case in equation (3.9); using expressions for derivatives of the dyad 
spinors and tetrad vectors given in appendix A.2, we get

( ¯)[ ¯ ] ( ¯ )[ ¯ ]φ ρ ι φ τ φ∇ ∇ = − − ∇ + − ∇′′
′

′
′

′
′o o o oþ ð ,BC

C
B

B
A

AB
B B

B
A

AB
B B

B
A

AB� (4.12)

where we have also used the definition of the operators (2.11)–(2.12) acting on the corre
sponding weighted quantities. On the other hand, using the expression (2.40) for αA , the sec-
ond term in (4.10) is
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¯ ¯φ ρ ι φ τ φ∇ = ∇ − ∇′
′

′
′

′
′o A o o o2 2 2 .BC

C
B

B
A

AB
B B

B
A

AB
B B

B
A

AB� (4.13)

Thus:

( ) ( ¯)[ ¯ ] ( ¯ )[ ¯ ]φ ρ ρ ι φ τ τ φ= − − − ∇ + − − ∇′′
′

′
′S E o o oþ 2 ð 2 .M M AB

B B
B
A

AB
B B

B
A

AB,1

�
(4.14)

Now we use the formula (2.27) for expressing ῑ φ∇′ ′oB B
B
A

AB and ¯ φ∇′ ′o oB B
B
A

AB in GHP form; the 
result, after reordering terms in φ φ,0 1 and φ2, is:

( ) [( ¯)( ) ( ¯ )( )]
[( ¯)( ) ( ¯ )( )]
( ¯)[ ] ( ¯ )[ ]

φ ρ ρ ρ τ τ τ φ
ρ ρ τ τ τ ρ φ
ρ ρ σφ τ τ κφ

= − − − ′ − − − − ′−
+ − − − − − − −
+ − − − − −

′ ′ ′

′
′

S E þ 2 þ ð 2 ð

þ 2 ð 2 ð 2 þ 2

þ 2 ð 2 .

M M AB,1 0

1

2 2

For the term with φ0, using (2.32) we see that

[( ¯)( ) ( ¯ )( )]

( ) ( )

ρ ρ ρ τ τ τ φ

λ φ κκ σσ φ

− − − ′ − − − − ′−

= − − Ψ + + −

′ ′ ′

′ ′

þ 2 þ ð 2 ð

1

2
4

2

3
2 .

0

T 2 2 0 0

�

(4.15)

The term with φ1 identically vanishes because of (2.25) with a  =  2, similarly as in (3.14). 
Finally, using (2.35) for a type D background, we get:

( ) ( )φ λ φ= − − Ψ +S E
1

2
4

2

3
.M M AB,1 T 2 2 0� (4.16)

This completes the proof of spin weight s  =  1. For s  =  −1, as with the Dirac case, the 
corresponding identity follows by applying a prime to the previous equation and using (2.34) 
with p  =  2.

Consider now the spin weight s  =  0 case. We will use the fact that P AB
0

 in (4.3) coincides 

with the Killing spinor (2.42),

≡P K .AB AB

0
� (4.17)

We have:

φ φ

φ φ

φ φ φ

= Ψ ∇ Ψ ∇

= ∇ ∇ + ∇

= − + + ∇

−′
′

′
′

′
′

′
′

S E

� �

K

K K A

K K K A

2

1

2
2 2 .

M M AB
BC

C
B

B
A

AB

BC
C
B

B
A

AB
BC

C
B

B
A

AB

AB
AB

BC
CA

A
B

BC
C
B

B
A

AB

,0 2
2 3

2
2 3( ) [ ]/ /

Using the explicit action of the curvature operator �CA, we get
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φ φ φ φ

φ

φ φ ψ φ

φ

= − + −

+ ∇

= − + − +

+ ∇

′
′

′
′

⎡
⎣⎢

⎤
⎦⎥

S E �

�

K K X X

K A

K K
R

K A

1

2

2

1

2 6

2 ,

M M AB
AB

AB
BC

CAD
A D

B CAB
D A

D

BC
C
B

B
A

AB

AB
AB

AB
AB ABCD

CD

BC
C
B

B
A

AB

,0 ( ) [ ]

where we have used the identity (A.5), together with the decomposition (A.4) of the curva-
ture spinor XABCD. Now, the identities (A.18) and (A.20) for the Killing spinor allow us to 
write

( )φ φ φ φ

φ φ

− = − + +∇ ∇

= − − Ψ − + ∇ ∇

′
′

′
′

⎜ ⎟
⎛
⎝

⎞
⎠

� � �

�

K K K K

R
K K

1

2

1

2

1

2
1

2
2

6

2

3
.

AB
AB

AB
AB AB

AB C C AB
C C AB

AB
AB

C D
D

A
C
B

AB2

Furthermore, using (A.21) and the definition of ′AAA it is easy to see that = ∇′ ′
K A KBC

C
B

C
B BC1

3
; 

then combining with (A.19) we finally have

φ φ φ

φ φ

φ

= − − Ψ − + ∇ ∇

− Ψ + + ∇ ∇

= − + Ψ +

′
′

′
′

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

S E �

�

R
K K

R
K K

R
K

1

2
2

6

2

3

2
6

2

3
1

2
2

6
.

M M AB
AB

AB
C D

D
A

C
B

AB

AB
AB C

B BC
B
A

AB

AB
AB

,0 2

2

2

( )

Finally, replacing λ=R 4  we obtain the desired formula.� □

Now we want to see how to generate Maxwell fields from solutions of the decoupled equa-
tions. If we take the adjoint equation to (4.5), we get

[ ( )] ¯ ¯ ( ) ¯( † ) ⎜ ⎟
⎛
⎝

⎞
⎠λ−∇ Φ = − + − Ψ + Φ−

′ ′ ′ ′S P
s

s
1

2
2 1 3

2

3
,A A

M s A
B A B

s, T 2
2

2� (4.18)

where

[ ( )] ¯ [ ¯ ¯ ]† / /Φ = −Ψ ∇ Ψ Φ−′
′

′ ′S P
s

.M s
BB

A
B A B

, 2
2 3

2
2 3� (4.19)

This implies that if Φ is a solution to ¯ ( )Φ =−O 0M s, , then

[ ( )]( † )∇ Φ =′ ′S 0.A A
M s A

B
,� (4.20)

Evidently, these are not Maxwell equations. In order to construct a Maxwell field, we need 
the following lemma:

Lemma 4.1.  Let α ′A
A  be a solution of ( )α∇ =′ ′ 0A B

A
A  on an arbitrary spacetime. Then 

( )φ α= ∇ | |′
′

:AB A B B
B  is a Maxwell field, φ∇ =′ 0AA

AB .
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Proof.  If α ′A
A  satisfies ( )α∇ =′ ′ 0A A

A
B , then taking an additional derivative it is easy to see that

α α α α= − + Φ − +∇ ∇′
′
′ ′ ′

′
′ ′�

R
0

1

2 8
.B

A
BAQ

A Q A
B
A

BB A
A B A� (4.21)

On the other hand, if ( )φ α= ∇ | |′
′

AB A A B
A , then

φ α α α α∇ = −Φ + −∇ ∇′ ′
′
′ ′ ′ ′

′
′�

R
2

1

2 8
.AA

AB B
A

BAQ
A Q A

B
A

A
A

BB
B A

Note that the only difference between this equation and (4.21) is, besides a global sign, the 
order of the derivatives in the last term on the right hand side. Using (A.3), we have

α α

α α α

α α

α

∇ ∇ = ∇ ∇ + +

= ∇ ∇ + Φ +

+ + Φ

= ∇ ∇

′
′
′ ′ ′

′ ′ ′ ′ ′ ′
′

′ ′
′ ′

′
′ ′ ′

′ ′ ′

′ ′ ′
′ ′

′ ′
′

′
′ ′

⎡⎣
⎤⎦

ε ε ε

ε ε

ε

� �

X

X

,

A
A

BB
B A A C

BB AC C B AB AB C B
B A

A C
BB AC

B A
C B ABQ

B Q A
ABQ

A B Q

AB C B Q
B Q A

C B Q
A B Q

BB A
A B A

( )
( )

¯ ( ¯ )

¯ ¯

¯

where the identity (A.5) and its complex conjugate were also used in the intermediate steps. 
It follows that

φ∇ =′ 0.AA
AB� □

Combining theorem (4.1) with the results of the previous lemma, we have the following 
corollary:

Corollary 4.2 (Spinor version).  Consider a vacuum type D spacetime with cosmologi-
cal constant λ. Let Φ be a solution of the decoupled equation  ¯ ( )Φ =−O 0M s, , which is the spin 
weight ∓1 Teukolsky equation for =±s 1, and the Fackerell–Ipser equation for s  =  0. Then:

	 (a)	The spinor field

( ) [ ¯ [ ¯ ¯ ]](
/

)
/φ Φ = − ∇ Ψ ∇ Ψ Φ−

′ ′
′ ′

s
P
s

2AB B A B C
B C

2
2 3

2
2 3� (4.22)

		 is a solution to Maxwell equations, φ∇ =′ 0AA
AB .

	(b)	The operator AM s,  defined by

( ) ( )φΦ = ΦA P
s s

M s
AB

AB,� (4.23)

		 maps solutions of ( )Φ =O 0M s,  into solutions of ¯ ( )Φ =−O 0M s, .

We refer once more to [4] for further symmetry operators for Maxwell equations. We also 
note the recent work [2] in which symmetry operators for spin 1 and the connection with 
Teukolsky systems and Debye potentials are studied.

4.1. Tensor expressions

We now put in tensor form the spinor expressions for the Maxwell field. First, we need to 
introduce the anti-self-dual 2-form
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¯= = ±αβ ′ ′εP
s

P
s

s: , 0, 1,AB A B� (4.24)

or, explicitly,

[ ]=αβ α β

+
P l m: 2 ,

1

� (4.25)

( ¯ )/
[ ] [ ]= Ψ +αβ α β α β

−P l n m m: 2 ,
0

2
1 3

�
(4.26)

¯/
[ ]= Ψαβ α β

−
−P m n: 2 .

1

2
2 3

�
(4.27)

Note that (4.26) is the tensor version of the Killing spinor (2.42), therefore, it is the sum of a 
Killing–Yano tensor and its dual,

( )= − +αβ αβ αβ
∗P Y Y

0 i

2
i .

�
(4.28)

The tensor version of corollary 4.2 is the following:

Corollary 2′ (Tensor version).  Consider a vacuum type D spacetime with cosmological 
constant λ. Let Φ be a solution to ¯ ( )Φ =−O 0M s, , which is the spin weight ∓1 Teukolsky equa-
tion for =±s 1, and the Fackerell–Ipser equation for s  =  0. Then:

	 (a)	The tensor field

( ) ( ) ( )Φ = Φ − Φ
∼
αβ αβ αβ

∗F
s

E
s

E
s

i ,� (4.29)

		 where

( ) [ ( )][
/

]
/Φ = − ∇ Ψ ∇ Ψ Φαβ α

γ
β γ

−E
s

P
s

2 .2
2 3

2
2 3� (4.30)

		 is a (complex) solution to Maxwell equations, ∇ =
∼α
αβF
s

0.
	(b)	The operator defined by

( ) ( )Φ = Φ
∼αβ
αβA P

s
F
s1

2
M s,� (4.31)

		 maps solutions of ( )Φ =O 0M s,  into solutions of ¯ ( )Φ =−O 0M s, .

Proof.  We need only translate the spinor expressions into tensor form. It is easy to see that

− ∇ Ψ ∇ Ψ Φ = ∇ Ψ ∇ Ψ Φ

+ ∇ Ψ ∇ Ψ Φ

α
γ
β γ

− −

−

′ ′ ′
′

′
′

′
′

′ ′

ε

ε

P
s

P
s

P
s

2 A B D A B
C

C
D

AB D A
C D

B C

2
2 3

2
2 3

2
2 3

2
2 3

2
2 3

2
2 3

[ ¯ ( ¯ ¯ )] ¯ [ ¯ ( ¯ ¯ )]

[ ¯ ( ¯ ¯ )]

[
/

]
/

(
/

)
/

(
/

)
/

�
(4.32)

The dual to this 2-form is (see e.g. [26, equation (3.4.22)])

− ∇ Ψ ∇ Ψ Φ = − ∇ Ψ ∇ Ψ Φ

+ ∇ Ψ ∇ Ψ Φ

αβ
γδ
γ δ

− −

−

′ ′ ′
′

′
′

′
′

′ ′

ε ε

ε

ε
εP

s
P
s

P
s

i

i

A B D A B
C

C
D

AB D A
C D

B C

2
2 3

2
2 3

2
2 3

2
2 3

2
2 3

2
2 3

[ ¯ ( ¯ ¯ )] ¯ [ ¯ ( ¯ ¯ )]

[ ¯ ( ¯ ¯ )]

/ /
(

/
)

/

(
/

)
/

�
(4.33)
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Recalling the expression (4.22) for φ
s
AB we get:

¯ [ ¯ ( ¯ ¯ )] [ ¯ ( ¯ ¯ )][
/

]
/ / /φ = − ∇ Ψ ∇ Ψ Φ + ∇ Ψ ∇ Ψ Φα

γ
β γ αβ

γδ
γ δ

− −
′ ′ε ε ε

ε
s

P
s

P
s

2 i ,AB A B 2
2 3

2
2 3

2
2 3

2
2 3� (4.34)

which implies that

( ) ¯ ( ) ( )φΦ = = Φ − Φ
∼
αβ αβ αβ

∗
′ ′εF

s s
E
s

E
s

i ,AB A B
� (4.35)

where

( ) [ ¯ ( ¯ ¯ )][
/

]
/Φ = − ∇ Ψ ∇ Ψ Φαβ α

γ
β γ

−
E
s

P
s

2 .2
2 3

2
2 3� (4.36)

The proof of item 2. is immediate from corollary 4.2 and equation (4.24).� □

4.1.1.  Spin weight zero.  We now consider in more detail the spin weight s  =  0 case of (4.22), in 
order to understand the role that Killing spinors and Killing–Yano tensors have in the descrip-
tion of the Maxwell field. In this section we assume that the Killing vector ξ = ∇′ ′KAA BA

B
A is 

real. First, we need to put (4.22) (for s  =  0) in terms of the Killing–Yano tensor:

Lemma 4.2.  The spinor field given by (4.22) with s  =  0 can be rewritten as

( ) [ ] ( )φ λΦ = ∇ ∇ Φ + + Ψ + Φ′
′ ′

′ �Y K
0

2i 2
2

3
,AB A

B
BB CC

CC
AB 2� (4.37)

where αβY  is the Killing–Yano tensor (2.43).

Proof.  We have

( ) [ ¯ [ ¯ ¯ ]]
[ ¯ ¯ ] ( ¯ )
(

/
)

/

( ) ( )

φ Φ = − ∇ Ψ ∇ Ψ Φ

= ∇ Φ − ∇ ∇ Φ

−
′ ′

′ ′

′ ′
′ ′

′ ′
′ ′

K

A K K

0
2

4 2 .
AB B A B C

B C

B A B C
B C

B A B C
B C

2
2 3

2
2 3

Using (A.21) and the definition of the (real, Killing) vector ξ ′AA, we get ¯ ¯ ξ= −′
′ ′ ′

A KBC
B C

B
B1

3
, 

and then

( ) [ ] [( ¯ ) ¯ ]

( ) ¯

( ) ¯

( ) ( ) )

( ) ( )

( )

φ ξ

ξ ξ

ξ

Φ = − ∇ Φ − ∇ ∇ Φ+ ∇ Φ

= ∇ Φ+ ∇ Φ− ∇ ∇ Φ

= ∇ Φ+ Ψ + Φ− ∇ ∇ Φ

′
′

′ ′
′ ′ ′ ′

′

′
′ ′

′ ′ ′
′ ′

′
′

′ ′
′ ′

K K

K

R
K K

0 4

3
2

8

3

2

3
2

8

3
2

6
2

AB B A B
B

B A B C
B C B C

B C

A
A

B A B A B
B A B

AA BB

A
A

B A AB
A B

AA BB2

�

(4.38)

where we also used (A.22) for the divergence of ξ ′AA. On the other hand,
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[ ] [ ]

¯ ¯

¯ ¯

¯

¯

( ) ( ) ( )

( ) ( )

( ) ( )

( )

ξ ξ

ξ

∇ ∇ Φ = ∇ ∇ Φ+ ∇ ∇ Φ

= − ∇ ∇ Φ+ ∇ ∇ Φ

− ∇ ∇ Φ+ ∇ ∇ Φ

= + ∇ Φ− ∇ Φ− Φ

− ∇ ∇ Φ

= ∇ Φ− Φ− ∇ ∇ Φ

| |

′
′ ′

′ ′
′ ′

′
′

′ ′
′

′
′ ′

′ ′
′ ′

′

′ ′
′ ′

′ ′
′ ′

′
′

′
′

′ ′
′ ′

′
′

′ ′
′ ′

ε ε

ε ε

ε �

�

Y Y Y

K K

K K

K

K

K K

2i 2i 2

2 2

2 2
2

3
2

2
8

3
2 .

A
B

B B CC
CC

A
B

B B CC
CC

B B
CC

A
B

CC

A
B

B C B C
CC

A
B

B C B C
CC

BC B C A
B CC

B C BC A
B CC

C B A C
CC

C A B
C

AB

A B
AA BB

A
C

B C AB
A B

AA BB

�

(4.39)

Combining (4.38) and (4.39), (4.37) follows immediately.� □

Now we give the tensor form of (4.37). It is convenient to separate Φ into its real and imagi-
nary parts in the form Φ≡ +u vi , with u and v real scalar fields.

Corollary 4.3.  Let Φ = +u vi  be a solution of the Fackerell–Ipser equation   
¯ ( ¯ )λ= + Ψ + Φ =O � 2 0M,0 2

2

3
 on a λ-vacuum type D spacetime, then:

	 (a)	The tensor field ( ) ( ) ( )Φ = −αβ αβ αβ
∗F E u E v , where

( ) ( ) ( )[ ] Im= − ∇ ∇ − Ψαβ α β
γ
γ αβ

∗ ∗E v Y v Y v4 4 ,2� (4.40)

		 is a solution to Maxwell equations, ∇ = = ∇α
αβ

α
αβ

∗F F0 .
	(b)	The operator AM,0 defined by

( ) ( ) ( ) ( ) /ImΦ = − + ∇ ∇Φ − Ψ Ψ Φαβ αβ
α β

γ
γ

∗ −A Y Y Yi 8iM,0 2 2
2 3� (4.41)

		 maps solutions of ¯ ( )Φ =O 0M,0  into solutions of ( ( ))Φ =O A 0M M,0 ,0 .

We note that several simplifications in the above formulae occur in the case in which Ψ2 is real. 
In the first place, the second terms in the RHS of (4.40) and (4.41) vanish. Furthermore, using 
(2.43), (2.44) and (2.42) (for k  =  2), it is not difficult to see that

( )/Im= − Ψαβ
β
γ αγ∗ −Y Y g2 ,2

2 3� (4.42)

( )/Imξ = − ∇ Ψβ
γ β γ −Y 3 ,2

2 3� (4.43)

and then

( ) ( ) RΦ = − ∇ ∇Φ Ψ ∈αβ
α β

γ
γA Y Y , ,M,0 2� (4.44)

which coincides with the well-known Carter operator [11]. The most important case in our 
present work in which Ψ2 is real is the Schwarzschild solution, where the Carter operator coin-
cides in turn with the laplacian on the sphere. These observations are relevant in section 6.1, 
where we apply our general results to Maxwell fields on the Schwarzschild-(A)dS solution.

5.  Gravitational perturbations of type D spaces

We now turn our attention to linearized gravity on curved, Petrov type D backgrounds, which 
include the stationary, λ-vacuum black hole solutions of the Kerr-(A)dS family. Metric per-
turbations of rotating black holes are traditionally studied by the Teukolsky equations [31], 
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which are decoupled, separable differential equations  for the extreme perturbed Weyl sca-
lars Ψ̇0 and Ψ̇4. These fields have the desirable property of being tetrad and coordinate gauge 
invariant. The spin weight zero Weyl scalar Ψ̇2 (which is just tetrad gauge invariant), on the 
other hand, has proven to be useful in the spherically symmetric case [15], since, for the odd 
sector of gravitational perturbations of the Schwarzschild black hole, (a rescaled version of) 
the imaginary part ImΨ̇2 is gauge invariant, satisfies a wave-like equation (1.1), and encodes 
all the information of the gravitational perturbation (in [15] it is used as the linearization of 
a curvature invariant, an identity valid for all type D spacetimes). Furthermore, the perturbed 
metric can be reconstructed from this quantity in a covariant, compact form (1.2). The appli-
cation of the spin s = 2 theorem 3 will allow us to find the origin of this reconstruction, as 
well as similar covariant, compact maps from solutions of the Teukolsky equations to metric 
perturbations.

5.1. The Bianchi identities and the linearized Einstein tensor

We now explain how to relate off-shell the decoupled equations for perturbed Weyl scalars to 
the linearized Einstein equations. For this we use the Bianchi identities. As these identities 
are a consequence of the definition of the curvature tensor, [ ]∇ =α βγ δεR 0, they are valid in a 
generic spacetime regardless of the field equations. Contracting with the metric, they imply

[ ]∇ = − ∇δ
αβγδ α β γR R2 ,� (5.1)

or, in terms of the Weyl tensor,

[ ] [ ] [ ]∇ = −∇ − ∇ + ∇δ
αβγδ α β γ γ α

δ
β δ γ α βC R g R g R

1

3
.� (5.2)

Consider now a linear, covariant differential operator [ ]=αβγ αβ γO O , with =αγ
αβγg O 0. 

Applying αβγO  to the previous identity, one gets

∇ = − ∇αβγ δ
αβγδ

αβγ
α βγO C O R .� (5.3)

Note that the trace-free condition of the operator αβγO  implies that we can add to αβR  a term 
proportional to the metric; this way we can replace αβR  with the Einstein tensor and add a 
cosmological constant term:

( )λ∇ = − ∇ +αβγ δ
αβγδ

αβγ
α βγ βγO C O G g .� (5.4)

We claim that this equation is the key to relate the decoupled equations for the perturbed Weyl 
scalars to the linearized Einstein equations. In the following section we will choose αβγO  such 
that the left hand side of (5.4) is a decoupled equation for some Weyl scalar plus additional 
terms that vanish when linearizing. On the other hand, if we linearize the right hand side of 

(5.4) around a λ-vacuum solution, the linearization operator | =ε ε
d

d 0 commutes with ∇αβγ
αO  

(because ( )λ+ | =αβ αβ =εG g 00 ) and we are left with a background operator acting on the 
linearized Einstein tensor:

[ ] ( )
⎡
⎣⎢

⎤
⎦⎥

λ∇ = − ∇ +αβγ δ
αβγδ

αβγ
α βγ βγ

= =ε εε ε
O C O G g

d

d

d

d
.

0 0
� (5.5)

The operator αβγO  will have the generic form

( )= ∇ +αβγ αβγµ
µ µO W nA ,� (5.6)
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for some constant n, where αβγµW  has the symmetries of the Weyl tensor, and the 1-form µA  is 
the tensorial counterpart of the spinor ′AAA introduced before.

We find that the calculations are most easily performed using the Bianchi identities in spinor 
form. Following [26], contracting with the volume form they are equivalent to ∇ =α

αβγδ
∗R 0, 

where αβγδ
∗R  is the left-dual Riemann tensor, =αβγδ αβ

µν
µνγδ

∗ εR R1

2
. In spinor terms (see [26, 

section 4.10]), one gets

( )ψ∇ = ∇ Φ − ∇ Λ′
′

′ ′ ′ε2 ,
B
A

ABCD B
A

CDA B B C D B� (5.7)

where /Λ = R 24 (with R the curvature scalar), and Φ ′ ′CDA B  is the spinor analogue of the trace-
free Ricci tensor,

¯Φ = − +′ ′ ′ ′ ′ ′ε εR
R1

2 8
.ABA B ABA B AB A B� (5.8)

If we apply a linear differential spinor operator ( )=′ ′O OB BCD B BCD  in (5.7), the trace part van-
ishes because of the symmetries of ′OB BCD, and, analogously as in (5.4), we can replace Φ ′ ′CDA B  
with the Einstein tensor plus a cosmological constant term:

( ¯ )ψ λ∇ = − ∇ +′
′

′ ′
′ ′ ′ ′ε εO O G

1

2
.B BCD

B
A

ABCD
B BCD

B
A

CDA B CD A B� (5.9)

5.2. The decoupled equations

In [1], decoupled equations for all the perturbed Weyl scalars are obtained, assuming that the 
linearized Einstein equations are satisfied (that is, on-shell). These equations are the Teukolsky 
equations for spin weight =±s 2, corresponding to Ψ̇0 and Ψ̇4; the ‘linearized Fackerell–Ipser 
equation’ for spin weight s  =  0, which corresponds to Ψ̇2; and two more equations for spin 
weight =±s 1 that are not decoupled in the sense that they involve perturbed quantities other 
than the corresponding scalars Ψ̇1 and Ψ̇3. As we mentioned in section 2.5, we will focus only 
in the spin weight = ±s 0, 2 cases. We recall that, in what follows, all expressions contain-
ing linearization of spinors are purely formal; they should be understood as the linearization 
of the corresponding tensor expressions, which is always possible because we are work-
ing with fields of integer spin (see for example footnote 8 below). On the other hand, when 
linearizing tetrad components of tensors, we assume that there is a monoparametric family 
{ ( ) ( ) ( ) ¯ ( )}α α α αε ε ε εl n m m, , ,  such that, in the background, { ( ) ( ) ( ) ¯ ( )}α α α αl n m m0 , 0 , 0 , 0  is the 

principal tetrad of a type D space. Thus, for example, when the quantity ( )Ψ = | Ψ= ε
ε ε

˙ :0
d

d 0 0  

appears below, one has

( ) ( )

)( ) (

| Ψ = |

= | | + | |

∼

∼ ∼

αβγδ
α β γ δ

αβγδ
α β γ δ

αβγδ
α β γ δ

= =

= = = =
⎜ ⎟
⎛
⎝

⎞
⎠

ε
ε

ε

ε ε

ε ε

ε ε ε ε

C l m l m

C l m l m C l m l m

d

d

d

d
d

d

d

d

0 0 0

0 0 0 0

�

(5.10)

where ( )|α β γ δ
=εl m l m 0 refers to the principal tetrad of the background. We will not need to 

work explicitly with the perturbed tetrad.
We now demonstrate the spin s = 2 theorem 1.3, and in the following section we use the 

Bianchi identities to relate the decoupled equations  for the Weyl scalars to the linearized 
Einstein equations (i.e. we evaluate explicitly (5.9)).

B Araneda﻿Class. Quantum Grav. 34 (2017) 035002



28

The objects (2.54) for the s = 2 case are:

( ) = =P o o o o o: ,A A A A A A A A A A A A
2,2
1 2 3 4 1 2 3 4 1 2 3 4� (5.11)

( )
/ ( )ι ι= Ψ =−P o o L6 : ,A A A A A A A A A A A A

2,0 2
2 31 2 3 4 1 2 3 4 1 2 3 4� (5.12)

( )
/ /ι ι ι ι ι= Ψ = Ψ−

− −P : .A A A A A A A A A A A A
2, 2 2

4 3
2

4 31 2 3 4 1 2 3 4 1 2 3 4� (5.13)

Note that (5.12) is a four-index Killing spinor, ( )∇ =′ L 0E E ABCD  (the product of two KAB’s 
(2.42)). For spin weight =±s 2, theorem 1.3 give the =±s 2 Teukolsky equations for grav-
itational perturbations, while for s  =  0 we obtain the linearization of the Fackerell–Ipser 
operator.

Theorem 5.1 (Spin = 2s ).  Let ( ( ))αβ εMε g,  be a monoparametric family of pseudo-
Riemannian manifolds, analytic around =ε 0, such that ( )αβg 0  satisfies the vacuum Einstein 
equations (with cosmological constant λ) and is of Petrov type D. Let ψABCD be the Weyl cur-
vature spinor of the metric ( )αβ εg , and let = ±s 0, 2, then the following equality holds:

[ ( )] [ ( )]ψ ψ=
= =ε ε
S E O T

ε ε

d

d

d

d
,G s G ABCD G s G s ABCD

0
,

0
, ,� (5.14)

where the linear differential operators are

( ) [ ]/
( )

/= Ψ ∇ Ψ−′
′

′S J P J: ,G s B BCD s
ABCD

A
B

B BCD, 2
4 3

2, 2
4 3� (5.15)

( )ψ ψ= ∇ ′E : ,G ABCD B
A

ABCD� (5.16)

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠Φ = + − Ψ + ΦO s

R
: 2 1

9

4 6
,G s s, T 2

2
2� (5.17)

( )
( )

( )ψ ψ= −
−| |

T
s

P:
3

2
.G s ABCD s

ABCD
ABCD, 2,� (5.18)

Proof.  We start by the spin weight s  =  +2 case. We have

( ) [ ]ψ ψ

ψ ψ

= ∇ + ∇

= ∇ ∇ + ∇

+
′ ′

′

′
′

′
′

S E o o A

o o A

4

4 .

G G ABCD
EBCD

E
B EBCD

E
B

B
A

ABCD

EBCD
E
B

B
A

ABCD
EBCD

E
B

B
A

ABCD

, 2
� (5.19)

Noting that ( )ψ∇ | ==′ ε 0
B
A

ABCD 0 , we can evaluate the term 
′

o AEBCD
E
B  in the background; thus, 

using expression (2.40) for the 1-form ′AAA, the second term in the bottom line of (5.19) gives

( ¯ ¯ )ψ ρι τ ψ∇ = − ∇′
′

′ ′
′o A o o o o4 4EBCD

E
B

B
A

ABCD
B B B C D

B
A

ABCD� (5.20)

On the other hand, the term with second derivatives of ψABCD in (5.19) is treated along similar 
lines as in the Dirac and Maxwell cases. Leibniz rule gives

( ) ( )( )ψ ψ ψ∇ ∇ = ∇ ∇ − ∇ ∇′
′

′
′

′
′o o o ,EBCD

E
B

B
A

ABCD E
B EBCD

B
A

ABCD E
B EBCD

B
A

ABCD� (5.21)
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and manipulations analogous to those performed in (3.9) lead to

ψ ρ ι ψ

τ ψ

∇ ∇ = − − ∇

+ − ∇′

′
′

′
′

′
′

o o o o

o o o o

þ

ð

EBCD
E
B

B
A

ABCD
B C D B

B
A

ABCD

B C D B
B
A

ABCD

( ¯)[ ¯ ]

( ¯ )[ ¯ ]

where we used the definition of the operators (2.11) and (2.12). Combining this expression 
with (5.20), we get

[ ]

( ¯)[ ¯ ] ( ¯ )[ ¯ ]

ψ

ρ ρ ι ψ τ τ ψ

∇ + ∇

= − − − ∇ + − − ∇′

′ ′
′

′
′

′
′

o o A

o o o o o o o

4

þ 4 ð 4 .

EBCD
E
B EBCD

E
B

B
A

ABCD

B C D B
B
A

ABCD
B C D B

B
A

ABCD
�

(5.22)

Now we just have to put in GHP form the spinor terms in the last expression, for which we 
use (2.28), and then use the same arguments as in [1] in order to arrive to the decoupled equa-
tion (we repeat them here for completeness). Reordering terms in Ψ0, Ψ1 and Ψ2, we have

[ ( ¯)( ) ( ¯ )( )]
[( ¯)( ) ( ¯ )( )]
( ¯)[ ] ( ¯ )[ ]

ψ

ρ ρ ρ τ τ τ
ρ ρ τ τ τ ρ
ρ ρ σ τ τ κ

∇ + ∇

= − − − ′ − + − − ′− Ψ
+ − − − − − − − Ψ
+ − − Ψ − − − Ψ

′ ′ ′
′
′

′ ′
′

⎡
⎣

⎤
⎦o o A4

þ 4 þ ð 4 ð

þ 4 ð 4 ð 4 þ 4

3 þ 4 3 ð 4 .

EBCD
E
B EBCD

E
B

B
A

ABCD

0

1

2 2

Using (2.32), we see that the term involving Ψ0 is just

[ ( ¯)( ) ( ¯ )( )]

( ) ( )

ρ ρ ρ τ τ τ

κκ σσ

− − − ′ − + − − ′− Ψ

= − − Ψ + Ψ − − Ψ

′ ′ ′

′ ′
R

þ 4 þ ð 4 ð
1

2
10

6
3 .

0

T 4 2 0 0
�

(5.23)

On the other hand, for the Ψ1 term we use the commutation relation (2.24) applied to Ψ1, with 
a  =  4 and p  =  2:

[( ¯)( ) ( ¯ )( )]ρ ρ τ τ τ ρ− − − − − − − Ψ′þ 4 ð 4 ð 4 þ 4 1� (5.24)

[ ] ¯( ) ¯ ( )ρ τ ρ τ τ ρ= − − Ψ − − Ψ + − Ψ′þ 4 , ð 4 ð 4 þ 41 1 1� (5.25)

τ τ τ σ
ρ ρ ρ κ

= − Ψ + ′Ψ + Ψ + Ψ − +
− ′Ψ + Ψ + Ψ ′ − +

′ ′
′ ′ ′

10 ð 2 4 ð

þ 2 4 þ .
1
2

1 1 1

1 1 1

( ( ¯ ))
( ( ¯ ))

�
(5.26)

For the Ψ2 term, we only need to use the Ricci identities (2.16):

ρ ρ σ τ τ κ
σ κ σ κ τκ τ κ ρσ ρσ

σ ρ κ τ

− − Ψ − − − Ψ
= − Ψ + Ψ − Ψ + + − − Ψ
= Ψ Ψ + − Ψ − − Ψ

′
′

3 þ 4 3 ð 4

3 þ ð þ ð 4 4
3 3 þ 3 3 ð 3 .

2 2

2 2 2 2

2 0 2 2

( ¯)[ ] ( ¯ )[ ]
{( ) ( ¯ ¯ ) }

( ) ( )

Then, recalling (5.19) we get

( ) ( ) [ ]ψ κ σ= − − Ψ + Ψ + Ψ ΨS E
R

B
1

2
16

6
, , ,G G ABCD,2 T 4 2 0 0 1

where
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[ ] ( )
( ( ¯ ))
( ( ¯ ))

( ) ( )

κ σ κκ σσ
τ τ τ σ
ρ ρ ρ κ

σ ρ κ τ

Ψ Ψ = − − Ψ − Ψ
+ ′Ψ + Ψ + Ψ − +
− ′Ψ + Ψ + Ψ ′ − +
+ − Ψ − − Ψ

′ ′
′ ′
′ ′ ′

B , , , : 3 10

ð 2 4 ð
þ 2 4 þ

3 þ 3 3 ð 3 .

0 1 0 1
2

1 1 1

1 1 1

2 2

�

(5.27)

Linearizing this expression (in the sense described at the beginning of this section) around a 
type D background spacetime, and using the Bianchi identities (2.38), we get

[ ]κ σΨ Ψ =
=ε ε

B
d

d
, , , 0

0
0 1� (5.28)

(because all terms in [ ]κ σΨ ΨB , , ,0 1  are at least order ε 2) and therefore, recalling that Ψ | ==ε 00 0 ,

[ ( )] ( )ψ λ= − − Ψ + Ψ
=ε
S E

ε

d

d

1

2
16

2

3
˙ ,G G ABCD

0
,2 T 4 2 0� (5.29)

which is what we wanted to prove8.

For spin weight s  =  −2, as observed in [1], this case follows from the previous one by 
simply applying the prime operation and using the transformation law (2.34).

Consider now the spin weight s  =  0 case. The proof of this case goes along similar lines as 
those of the previous one: we start by

( ) [ ]ψ ψ

ψ ψ

= ∇ + ∇

= ∇ ∇ + ∇

′ ′
′

′
′

′
′

S E L L A

L L A

4

4 ,

G G ABCD
EBCD

E
B EBCD

E
B

B
A

ABCD

EBCD
E
B

B
A

ABCD
EBCD

E
B

B
A

ABCD

,0
�

(5.30)

and use Leibniz rule for the term with second derivatives of ψABCD:

( ) ( )( )ψ ψ ψ∇ ∇ = ∇ ∇ − ∇ ∇′
′

′
′

′
′L L L .EBCD

E
B

B
A

ABCD E
B EBCD

B
A

ABCD E
B EBCD

B
A

ABCD� (5.31)

Now, the second term in this equation is more easily calculated taking into account that in 
the end we want to linearize around a λ-vacuum solution, such that ( )ψ∇ | ==′ ε 0

B
A

ABCD 0 ; then

[ ( )( )]

( ) [ ]

ψ

ψ

− ∇ ∇

= − ∇ | ∇

=

=
=

′
′

′
′

ε

ε

ε

ε
ε

L

L

d

d

d

d

E
B EBCD

B
A

ABCD

E
B EBCD

B
A

ABCD

0

0
0

�

(5.32)

This implies that we can use identities from the unperturbed spacetime. From the defini-
tion of LABCD, equation (5.12), we see that it is propotional to the Weyl spinor of the type D 
background: / ψ= Ψ−L ˚

ABCD ABCD2
5 3 , where ( )ψ ψ= | =εÅBCD ABCD 0. Using the background Bianchi 

identities, we then have

∇ | = |= =
′ ′

ε εL L A5 ,E
B EBCD EBCD

E
B

0 0( ) ( )� (5.33)

8 The linearization of the spinor expression G G ABCD,2 ( )ψS E  in the LHS of (5.29) is an  
example of what we mean by ‘understood in a tensor sense’, since one uses the equality 

ψΨ ∇ Ψ ∇ = − Ψ ∇ Ψ ∇
∼′

′
αβγ δ

αβγδ
− −ε

εo W CEBCD
E
B

B
A

ABCD2
4 3

2
4 3 1

2 2
4 3

0

2
4 3[ ] [ ]/ / / /  .
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where we have used expression (2.39). Therefore,

[ ( )( )] [ ]ψ ψ− ∇ ∇ = − ∇
= =

′
′

′
′ε εε ε

L L A
d

d

d

d
5 ,E

B EBCD
B
A

ABCD
EBCD

E
B

B
A

ABCD
0 0

� (5.34)

and then

ψ

ψ ψ= ∇ ∇ − ∇

=

=

′
′

′
′

⎡
⎣

⎤
⎦

ε

ε

S E
ε

ε
L L A

d

d

d

d
.

G G ABCD

E
B EBCD

B
A

ABCD
EBCD

E
B

B
A

ABCD

0
,0

0

[ ( )]

( )

�

(5.35)

The term inside the bracket in (5.35) can be calculated without linearizing, following similar 
manipulations as in previous cases and using the explicit expressions (2.40) and (5.12). The 
result is

( )

( ¯)[ ¯ ]

( ¯)[ ¯ ]

( ¯ )[ ¯ ]

( ¯ )[ ¯ ]

/

/

/

/

ψ ψ

ρ ι ι ι ψ

τ ι ι ψ

τ ι ι ψ

ρ ι ψ

∇ ∇ − ∇

= − − Ψ ∇

− ′− Ψ ∇

+ − Ψ ∇

+ ′ − Ψ ∇

′

′

−

−

−

−

′
′

′
′

′
′

′
′

′
′

′
′

L L A

o

o o

o o

o o o

3 þ

3 ð

3 ð

3 þ .

E
B EBCD

B
A

ABCD
EBCD

E
B

B
A

ABCD

B C D B
B
A

ABCD

B C D B
B
A

ABCD

B C D B
B
A

ABCD

B C D B
B
A

ABCD

2
2 3

2
2 3

2
2 3

2
2 3

Now we just have to use (2.28) for the corresponding components of ψ∇ ′B
A

ABCD (note that 
we need the second, third, sixth and seventh equations in (2.28)), and the fact that

( ) ( )/ /ρ ρΨ ′ − Ψ = ′ − Ψ′ ′− þ 3 3 þ2
2 3

2 2
1 3� (5.36)

and similarly for the other derivatives. This gives

( )

( ¯) [ ( ) [ ( ) ]]
( ¯) [ ( ) [( ) ]]
( ¯ ) [ ( ) [ ( ) ]]
( ¯ ) [ ( ) [( ) ]]

/ /

/ /

/ /

/ /

ψ ψ

ρ ρ τ κ σ

τ τ ρ σ κ

τ τ ρ σ κ

ρ ρ τ κ σ

∇ ∇ − ∇

= − − ′ − Ψ + Ψ − − Ψ + Ψ − Ψ

− ′− − − Ψ + Ψ ′ − Ψ − Ψ + Ψ

+ − ′− Ψ + Ψ − − Ψ + Ψ − Ψ

+ ′ − − − Ψ + Ψ ′− Ψ − Ψ + Ψ

′ ′

′ ′

′ ′ ′

′ ′ ′

−

−

−

−

′
′

′
′L L A

3 þ 3 þ ð 2 2

3 ð 3 ð þ 2 2

3 ð 3 ð þ 2 2

3 þ 3 þ ð 2 2

E
B EBCD

B
A

ABCD
EBCD

E
B

B
A

ABCD

2
1 3

2
2 3

3 1 4

2
1 3

2
2 3

1 3 0

2
1 3

2
2 3

3 1 4

2
1 3

2
2 3

1 3 0

Note that the sum of the second and fourth lines is just the primed version of the sum of the 
first and third ones, and then we only calculate the latter:

( ¯) [ ( ) [ ( ) ]]
( ¯ ) [ ( ) [ ( ) ]]

[( ¯)( ) ( ¯ )( )]
( ¯)[ ( ) ] ( ¯ )[ ( ) ]
( ¯)[ ( )] ( ¯ )[ ( )]

/ /

/ /

/

/ /

/ /

ρ ρ τ κ σ

τ τ ρ σ κ

ρ ρ τ τ

ρ τ τ ρ

ρ κ σ τ σ κ

− − ′ − Ψ + Ψ − − Ψ + Ψ − Ψ

+ − ′− Ψ + Ψ − − Ψ + Ψ − Ψ

= − − ′ − − − ′− Ψ

+ − Ψ − Ψ − − Ψ − Ψ

− − Ψ Ψ − Ψ + − Ψ Ψ − Ψ

′ ′

′ ′ ′

′ ′ ′

′

′ ′ ′

−

−

− −

− −

3 þ 3 þ ð 2 2

3 ð 3 ð þ 2 2

9 þ þ ð ð

3 þ ð 2 3 ð þ 2

3 þ 2 3 ð 2 .

2
1 3

2
2 3

3 1 4

2
1 3

2
2 3

3 1 4

2
1 3

2
2 3

3 2
2 3

3

2
2 3

1 4 2
2 3

1 4

�

(5.37)
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Recalling the explicit expression (2.32) of the weighted wave operator pT  (and taking into 
account that Ψ2 is type {0, 0}), we see that the term with /Ψ2

1 3 is just

ρ ρ τ τ

κκ σσ

− ′ − − − ′− Ψ

= + Ψ + Ψ + − Ψ

′ ′ ′

′ ′�
R

þ þ ð ð
1

2
2

6

2
1 3

2 2
1 3

2
1 3

[( ¯)( ) ( ¯ )( )]

( ) ( )

/

/ /

�

(5.38)

The second term in the bottom line of the last equation will vanish when we linearize around 
a type D spacetime (because of (2.35)), and so will the terms with Ψ3 and with Ψ Ψ,1 4 in (5.37); 
for the term with Ψ3 we need first reorder as

( ¯)[ ( ) ] ( ¯ )[ ( ) ]

( )( ) ( ¯)( )

( )( ) ( ¯ )( )

/ /

/ /

/ /

ρ τ τ ρ

τ ρ τ

ρ τ ρ

− Ψ − Ψ − − Ψ − Ψ

= Ψ Ψ − Ψ − Ψ − − Ψ

− Ψ Ψ − Ψ + Ψ − − Ψ

′

′

− −

− −

− −

þ ð 2 ð þ 2
2

3
þ ð 2 þ ð 2

2

3
ð þ 2 þ þ 2 ,

2
2 3

3 2
2 3

3

2
5 3

2 3 2
2 3

3

2
5 3

2 3 2
2 3

3

and recall the background Bianchi identities (2.38) and the commutation relation (2.25). 
Linearizing and taking into account the vanishing of the terms just mentioned, we finally get

[ ( )]

[ ( ) ]

( ) /⎡
⎣⎢

⎤
⎦⎥

ψ

ψ ψ= ∇ ∇ − ∇

= − + Ψ + Ψ

=

=

=

′
′

′
′

ε

ε

ε

S E

�

ε

ε

ε

L L A
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d

d

d

d

9
d
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6
,

G G ABCD

E
B EBCD

B
A

ABCD
EBCD

E
B

B
A

ABCD

0
,0

0

0
2 2

1 3

which gives the desired result.� □

5.3. Tensor expressions and Einstein equations

Using the idea we described in section 5.1, we now give the identities that combine the previ-
ous decoupled equations with the linearized Ricci tensor. First, we recall the definition of the 
anti-self-dual 2-forms given in the introduction

= = + =αβ α β αβ α β α β αβ α βM l m M l n m m M m n: 2 , : 2 2 , : 2 ,
0 1 2

¯ ¯[ ] [ ] [ ] [ ]� (5.39)

and the anti-self-dual tensors with the symmetries of the Weyl tensor:

=αβγδ αβ γδW M M: ,
0 0 0

� (5.40)

= + +αβγδ αβ γδ αβ γδ αβ γδW M M M M M M: ,
2 0 2 2 0 1 1

� (5.41)

=αβγδ αβ γδW M M: .
4 2 2

� (5.42)

We also recall the expression of the linearized Einstein tensor in terms of the metric 
perturbation:
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[ ] ( )( )= − − ∇∇ +∇ ∇ + −∇ ∇αβ αβ α β
γ
α β γ αβ

γ δ
γδ� �G h h h h g h h˙ 1

2

1

2

1

2
,� (5.43)

where = γδ
γδh g h . The combination of theorem 5.1 with the analysis of section 5.1 then leads 

to the following corollary (which is just theorem 3):

Corollary 5.2.  Let ( ( ))αβ εMε g,  be a monoparametric family of pseudo-Riemannian mani-
folds, analytic around =ε 0, such that ( )αβg 0  is of Petrov type D and satisfies the vacuum 
Einstein equations with cosmological constant λ. Denoting the linearization of a quantity T 

by ( )= | = ε
ε ε

T T˙ : d

d 0 , we have the following equalities:

[ ( [ ] )] ( ) [ ]/ / λ λΨ ∇ Ψ ∇ + = − Ψ + Ψαγβδ
δ γ αβ αβ

−
+W G h h h

0 ˙ 16
2

3
˙ ,2

4 3
2

4 3
T 4 2 0� (5.44)

λ

λ

Ψ ∇ Ψ ∇ +

= + Ψ + Ψ Ψ + + Ψ

αγβδ
δ γ αβ αβ

−

−

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

� �

W G h h

h
R

2 ˙

6 8
2

3
˙ 3 ˙

˙

6
,h

h

2
2 3

2
4 3

2 2
2 3

2 2
1 3

( [ ] )

( )[ [ ]] ( )

/ /

/ /
�

(5.45)

[ ( [ ] )] ( )[ [ ]]/ /λ λ∇ Ψ ∇ + = − Ψ + Ψ Ψαγβδ
δ γ αβ αβ

−
−

−W G h h h
4 ˙ 16

2

3
˙ .2

4 3
T 4 2 2

4 3
4� (5.46)

The previous equations show that if the linearized Einstein equations  [ ] λ+ =αβ αβG h h˙ 0 
are satisfied, then we have decoupled equations for the perturbed Weyl scalars. On the other 
hand, in order to see whether we can construct solutions of the linearized Einstein equa-
tions from solutions of the decoupled equations, we can put these identities in an operator 
equality form such as (5.14). We separate cases according to extreme and zero spin weight, 
since there are important differences between them.

5.3.1.  Extreme spin weight.  For =±s 2 we define new operators Ss and E such that equa-
tions (5.44) and (5.46) adopt the form

( ) ( )=αβ αβS E OTh hs s s� (5.47)

for all symmetric tensor field ( )=αβ αβh h , where

( ) [ ]( )/ /= Ψ ∇ Ψ ∇αβ
αγβδ

δ γ αβ
+

−
−S H W H: ,s

s
s

2
2 3

2

2
4 3� (5.48)

( ) [ ] λ= +αβ αβ αβE h G h h: ˙ ,� (5.49)

( ) ( )λΦ = − Ψ + ΦO : 16
2

3
,s sT 2 2� (5.50)

( ) [ ]( )/= Ψ Ψαβ
−

−T h h: ˙ .s
s

s2
2 3

2� (5.51)

Since E is self-adjoint, and ¯† = −O Os s (equation (2.58)), the adjoint equation  ( ) ( )† † †Φ = ΦES T Os s s  
leads immediately to the following corollary:

Corollary 5.3.  Consider a vacuum type D spacetime with cosmological constant, and let Φs 
be a solution of the spin-weight =±s 2 Teukolsky equation. Then
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( ) [ ( )]/
( )

( )/Φ = ∇ Ψ ∇ Ψ Φαβ γ δ α
γδ
β

−
+

−h
s

W
s

s
s2

4 3
2

2
2 3� (5.52)

is a complex solution of the linearized Einstein equations.
It can be shown that (5.52) for s  =  −2 coincides with the Kegeles &; Cohen ansatz [24, 

equation (5.4)] (in that work αβh  is given in spinor form and in terms of a Hertz spinor and a 
gauge spinor). We also note that the difference between the metric perturbations constructed 
in the form (5.52) for s  =  +2 and s  =  −2 is described in the recent work [3], and that further 
symmetry operators for extreme spin weight are constructed in [2].

5.3.2.  Spin weight zero, real Ψ2 case.  The ‘inhomogeneous’ term in the right hand side of 

(5.45), namely ( ) /+ Ψ�̇h
Ṙ

6 2
1 3h , makes it more difficult to formulate an operator equality like 

(5.47) for the spin weight zero case. The simplest possibility is in the case in which Ψ2 is a 
real field, since then we can take the imaginary part in (5.45) and get ( ) ( )=αβ αβS E O Th h0 0 0  
for all ( )=αβ αβh h , where

= Ψ ∇ Ψ ∇αβ
αγβδ

δ γ αβ
∗ −S H W H

1

2
,0 2

2 3
2

2
4 3( ) [ ]/ /� (5.53)

( ) [ ] λ= +αβ αβ αβE h G h h˙ ,� (5.54)

( ) ( )λΦ = + Ψ + ΦO �6 8
2

3
,0 2� (5.55)

( ) { [ ]}/ Im= Ψ Ψαβ
−T h h˙ ,0 2

2 3
2� (5.56)

with { }Im= −
αβγδ

αβγδ
∗W W2

2 2
. Taking the adjoint equation, and using the fact that E and O0 are 

both self-adjoint, we obtain that if Φ is a solution to ( )λ+ Ψ + Φ =� 8 02
2

3
, then the tensor field

Φ = ∇ Ψ ∇ Ψ Φαβ γ δ
α

γδ
β

− ∗h W
1

2 2
4 3

2

2
2 3( ) [ ( )]/

(
)

/� (5.57)

is a solution to the linearized Einstein equations, [ ] λ+ =αβ αβG h h˙ 0. As we show in section 6.2 
below, this applies to the odd sector of gravitational perturbations of the Schwarzschild-(A)
dS solution.

Note that, since we are working on a background type D spacetime, we have

≡ Ψ
∼

αβγδ αβγδ
−W C ,

2

2
1� (5.58)

hence we can replace the corresponding expressions with the background Weyl tensor.
On the other hand, we also note that the field /Ψ Ψ− ˙

2
2 3

2 can be put in terms of the Killing–Yano 
tensors in the following way. In a generic spacetime, we have the identity [26, equations (8.3.8) 
and (8.3.10)]

ψ ψ = Ψ + Ψ Ψ − ΨΨ6 2 8 ,AB
CD

CD
AB

2
2

0 4 1 3� (5.59)

or equivalently

Ψ = − Ψ Ψ + ΨΨ
∼ ∼
αβ
γδ
γδ
αβC C6

1

4
2 8 .2

2
0 4 1 3� (5.60)
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Linearizing this equation around a type D background, we get

Ψ = Ψ
∼ ∼
γδ
αβ

αβ
γδ− C C˙ 1

24
˙ .2 2

1� (5.61)

Now, using the expression (2.47) for 
∼
αβ
γδC  and the symmetries of the Weyl tensor, we obtain

/Ψ Ψ = −
∼

γδ
αβ

αβ
γδ− � �

k
Y Y C˙ 1

4
˙ .2

2 3
2 2� (5.62)

We will work further this expression below, when we apply our results to the Schwarzschild-(A)
dS solution.

6.  Spherically symmetric spacetimes

In this section we show the relation of our results, particularized to the Schwarzschild-(A)
dS case, with the so-called 2  +  2 decomposition valid in spherically symmetric spacetimes. 
For the latter formalism, we follow closely [13] (note however that we take the metric to have 
signature (+−−−)). This approach takes advantage of the warped product structure of the 

background manifold = ×
∼

M M Sr
2

2 , with coordinates ( )=αz x y,a i  and metric

( ) ( ) ( )= +αβ
α β � �g z z z g x x x r g y y yd d d d d d .ab

a b
ij

i j2� (6.1)

Lowercase latin indices a, b, c,... denote quantities in the orbit space / ( )=
∼
M M SO 3 , while 

indices i, j, k,... refer to quantities on the sphere S2. The metric, covariant derivative and vol-
ume form of 

∼
M are respectively �gab, 

∼
Da and �εab; whereas those of S2 are �gij, �Di and �εij. The wave 

operators in 
∼
M and S2 are then ∆ =

∼∼∼
�g D D: ab

a b and ∆ = � � �� g D D: ij
i j, respectively. The relation 

between the Christoffel symbols of αβg  and those of �gab and �gij is

Γ = Γ Γ = Γ = − �� rr g, 0, ,d
ab

d
ab

d
ai

d
ij

d
ij� (6.2)

δΓ = Γ = Γ = Γ�
r

r
0, , .i

ab
i
aj

a
j
i k

ij
k

ij� (6.3)

For further relations we refer the reader to [13].
In the Schwarzschild-(A)dS spacetime, we have /Ψ = −M r2

3. We take the constant k in the 
definition (2.42) of the Killing spinor to be real, and for convenience we define b:  =  −kM−1/3. 
The Killing–Yano tensor (2.43) and its dual (2.44) are then

∧ ≡ ∧αβ
α β �εY z z br y yd d d d ,ij

i j3� (6.4)

∧ ≡ ∧αβ
α β∗ �εY z z br x xd d d d ,ab

a b� (6.5)

where in Schwarzschild coordinates { }θ ϕt r, , , , θ θ ϕ= ∧�ε sin d d  and = ∧�ε t rd d . The Weyl 
tensor and its dual can be deduced from (2.47) and (2.49):

( ) [ ]= − −αβγδ αβ γδ αβ γδ α γ δ β
∗ ∗C

M

b r
Y Y Y Y

M

r
g g

3 2
,

2 5 3� (6.6)

( )= + +αβγδ αβ γδ αβ γδ αβγδ
∗ ∗ ∗ εC

M

b r
Y Y Y Y

M

r

3
.

2 5 3� (6.7)
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With our signature conventions, the Schwarzschild-(A)dS metric (6.1) in coordinates 
{ }θ ϕt r, , ,  has the form

( )
( )

( )θ θ ϕ= − − +s f r t
r

f r
rd d

d
d sin d ,2 2

2
2 2 2 2� (6.8)

where

( ) λ
= − −f r

M

r
r1

2

3
.2� (6.9)

The Ricci tensor of (6.8) solves9

λ− =αβ αβR g 0.� (6.10)

6.1.  Maxwell fields

According to the 2  +  2 decomposition of the Maxwell field performed in [13], the informa-
tion of the field is contained in two master scalar variables, φ− and φ+, codifying respec-
tively the odd and even parity sectors of the electromagnetic perturbation. It can be shown 
that spherically symmetric Maxwell fields (i.e. with =� 0 in a decomposition into spherical 
harmonics) are static (see e.g. [29], also [10, appendix A]), therefore they are not interesting 
for the stability problem and we can then take ⩾� 1, which implies that the laplacian ∆� is 
invertible. Assuming vacuum Maxwell equations hold, the reconstruction of the field from 
the variables φ− and φ+ is:

φ φ φ φ= − = + ∆ = − ∆
∼ ∼+ − − + −� �� �� � � �ε ε ε εF

r
F D D D D F

1
, , .ab ab ai i

j
j a i a

b
b ij ij2

1

�

(6.11)

The wave equations satisfied by φ± (see [13] and the decomposition (6.36) of the wave opera-
tor below) are equivalent to

( )[ ]λ
φ φ

+ Ψ + + =
+ −

�
r r

2
2

3
i 0.2� (6.12)

The scalar field Φ = +φ φ+ −

: i
r r

 satisfies then the Fackerell–Ipser equation, thus we can con-

struct a new electromagnetic field using corollary 4.3. In order to see the relation between this 
new field and the original one (6.11), we need calculate the components of the tensors ( )αβE u  
and ( )αβ

∗E v  of formula (4.40) according to the 2  +  2 decomposition. Using the explicit form 
of the Killing–Yano tensor, and the fact that ( )Im Ψ = 02 , we get:

( ) ( ) ( ) ( ) ( )= = − = ∆
∼∗ ∗ ∗� �� �ε εE v E v b D D rv E v b rv0, 2 , 2 ,ab ai i

j
j a ij ij� (6.13)

( ) ( ) ( ) ( ) ( )= − ∆ = =
∼

� ���ε εE u
b

r
ru E u bD D ru E u

2
, 2 , 0.ab ab ai i a

b
b ij2� (6.14)

Furthermore, if (6.12) holds, then using that [ / ]∆ + Ψ + =
−� � l, 2 2 3 0

1
2 , it also holds

( )[ ( ) ]λ
φ φ

+ Ψ + ∆ − =
− + −
��

br br
2

2

3 2
i
2

0,2
1

� (6.15)

9 The Ricci tensor we use has the opposite sign to the conventional one [35], see appendix A.1.
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and therefore the electromagnetic field constructed from this solution in the form (6.13)–(6.14) 

(i.e. replacing ( )≡∆ φ− +�u
br

1

2
 and ≡− φ

−

v
br2

 in those expressions) coincides exactly with the 

original field.
Recalling that ∆ =� AM,0 (see equation  (4.44)), we summarize the previous results as 

follows:

Theorem 6.1.  The dynamics of the Maxwell field on the Schwarzschild-(A)dS spacetime is 
governed by solutions Φ = +u vi  of the Fackerell–Ipser equation,

λ− + Φ =⎜ ⎟
⎛
⎝

⎞
⎠�

M

r

2 2

3
0,

3� (6.16)

where the real and imaginary parts of Φ codify respectively the information of the even and 
odd parity sectors, and the covariant four-dimensional reconstruction of the electromagnetic 
field is

( ) ( ( ))[ ]= − ∇ ∇ + ∇ ∇αβ α β
γ
γ αβ

γδ
γ δ

−ε Aε
εF

b
Y v

b
Y u

2 1
.M,0

1� (6.17)

Using this result, the linear stability of the Maxwell field on Schwarzschild-dS can be proved 
along similar lines as those used in [15] for spin 2 (the problem for the Anti-de Sitter case 
is more delicate because of the boundary conditions [6]). This is the spin 1 analogue of the 
results of [15].

6.2.  Gravitational perturbations

In this section we apply the general results of section 5 to linearized gravity on Schwarzschild-(A)
dS. We will only work on the odd sector of gravitational perturbations, where the perturbed 
metric is [13]

= = =− − −� �εh h D h h0, , 0.ab ai i
j

j a ij� (6.18)

The corresponding linearized Ricci tensor is10

=−Ṙ 0,ab� (6.19)

( ) [ ( )]
⎡
⎣⎢

⎤
⎦⎥= + + ∆+ ∆

∼ ∼−
�� � �ε ε FR D

r
D r

r
r h˙ 1

2

1 1
,ai i

j
j a

c
c a2

2
2

2� (6.20)

( )= −
∼− � � �εR D D D h˙ ,ij i

k
j k

a
a� (6.21)

where

( )=
∼ −�εF r D r h: .ab

a b
2 2� (6.22)

We will only need the ai component of the Einstein tensor:

λ= −
− −

G R h˙ ˙ 2 .ai ai ai� (6.23)

Using the form (6.8) of the metric, we have

λ∆ = − +
∼

r r2 2 ,2 2� (6.24)

10 Recall that our Ricci tensor has the opposite sign to the one of [13].
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whereby

( ) ( )
⎡
⎣⎢

⎤
⎦⎥λ+ = + + ∆−

∼− − �� � �ε ε FG h D
r

D r
r

h˙ 1

2

1 1
2 .ai ai i

j
j a

c
c a2

2
2� (6.25)

The Einstein equations  λ+ =
− −G h˙ 0ai ai  together with the fact that ( )∆−� 2  is invertible in the 

space of interest (that is, with ⩾� 2 in a decomposition into spherical harmonics, see [13, 16]), 
imply that the original metric perturbation can be recovered from F :

[ ( ) ]= − ∆−
∼− −�� � �ε ε Fh D D r 2 .ai i

j
j a

b
b

2 1� (6.26)

We will see now the relation of this formalism with our four-dimensional approach in this 
paper.

Using the explicit expression (6.25), the general formula (5.45) can be checked directly in 
this case, as the following lemma shows:

Lemma 6.1.  In the odd sector (6.18) of linearized gravity on the Schwarzschild-(A)dS spa-
cetime, we have the equality

[ ( [ ] )]/ /
/λ λΨ ∇ Ψ ∇ + = − + ∆αγβδ

δ γ αβ αβ
− ∗ − − − ⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥� F�C G h h

M

M

r
˙ 3 8 2

3
.2

1 3
2

4 3
2 3 3

�

(6.27)

Proof.  Define [ ] λ= +αβ αβ αβ
− −E G h h: ˙ . We will first prove that

[ ]/ /
/Ψ ∇ Ψ ∇ = −

∼αγβδ
δ γ αβ

− ∗ − �� �ε εC E
M

D D E
6

,ij
j

ab
b ai2

1 3
2

4 3
2 3� (6.28)

this is actually true for any symmetric tensor αβE . The calculation is done by using the explicit 
expression (6.7) for the dual Weyl tensor. The term with the volume form vanishes in the con-
traction with a symmetric tensor. Using that ∇ =δ

αβγδ
∗C 0, we have

[ ]

[ ( )] [ ( )]

/ /Ψ ∇ Ψ ∇

= − ∇ ∇ − ∇ ∇

αγβδ
δ γ αβ

δ γ
αγ βδ

αβ δ γ
αγ βδ

αβ

− ∗ −

∗ ∗

C E

k
r r

r
Y Y E

k
r r

r
Y Y E

3 1 3 1
.

2
1 3

2
4 3

2
4

5 2
4

5

�

(6.29)

Let us focus on the first term of the last expression, the calculations for the second one are 
similar. We find

[ ( )]

( )
⎡
⎣⎢

⎤
⎦⎥

∇ ∇

= ∇ − + ∇

δ γ
αγ βδ

αβ

δ γ
αγ βδ

αβ γ
αγ βδ

αβ

∗

∗ ∗

k
r r

r
Y Y E

k
r

r
r Y Y E

r
Y Y E

3 1

3 5 1
,

2
4

5

2 2

�
(6.30)

where = ∇α αr r: . Note that =γ
αγr Y 0 because of the explicit form (6.4). Using (6.4)–(6.5) and 

the relation between the covariant derivatives of the different spaces, we find

( ) ( )∇ = +γ
αγ βδ

αβ
α βδ

αβ
αδ β

αβ
∗ ∗ ∗�Y Y E D Y Y E

r
r Y Y E

1
,i

i
b

b� (6.31)

which implies
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[ ( )]

[ ( ) ]

∇ ∇

= ∇ +

δ γ
αγ βδ

αβ

δ
α βδ

αβ
αδ β

αβ

∗

∗ ∗�

k
r r

r
Y Y E

k
r

r
D Y Y E

r
r Y Y E

3 1

3 1 1
.i

i
b

b

2
4

5

2 2

�
(6.32)

Once more, we use the relation between covariant derivatives, and find that

[ ( )] ( ) ( )

( ) ( )

∇ = +

∇ =

∼
δ

α βδ
αβ

α β
αβ

α β
αβ

δ
αδ β

αβ
α β

αβ

∗ ∗ ∗

∗ ∗

� � �

�

r
D Y Y E

r
D D Y Y E

r
r D Y Y E

r
r Y Y E

r
D r Y Y E

1 1 1

1 1
;

i
i

b i
i b

b i
i b

b
b

i b
i b

2

2 2

therefore

[ ( )]

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

∇ ∇

= +
∼

δ γ
αγ βδ

αβ

α β
αβ

α β
αβ

∗

∗ ∗� �

k
r r

r
Y Y E

k
D D Y Y E

r
r D Y Y E

3 1

3 2
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b i

i b

2
4

5

2

�
(6.33)

The calculation for the second term in (6.29) is performed along the same lines, the result is

[ ( )]

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

∇ ∇

= −
∼

δ γ
αγ βδ

αβ

α β
αβ

α β
αβ

∗

∗ ∗� �

k
r r

r
Y Y E

k
D D Y Y E

r
r D Y Y E

3 1

3 2
.i b

b i
b i

b i

2
4

5

2

�
(6.34)

Putting together (6.33) and (6.34), using the explicit forms (6.4)–(6.5) of the Killing–Yano 
tensors and [ ] λ= +αβ αβ αβ

− −E G h h˙ , we obtain

[ ( [ ] )] ( [ ] )/ /
/λ λΨ ∇ Ψ ∇ + = − +

∼αγβδ
δ γ αβ αβ

− ∗ − − − − −�� �ε εC G h h
M

D D G h h˙ 6 ˙ .ij
j

ab
b ai ai2

1 3
2

4 3
2 3

�

(6.35)

Next, we calculate ( )λ+∼ − −ε� D G h˙ab
b ai a i  using the explicit expression (6.25), the background 

equations  ( )= −r r f ra
a , ( )∆ = −∂

∼
r f rr , and the decomposition of the wave operator

= ∆+ ∆+
∼∼

� �
r r

r D
1 2

.a
a2� (6.36)

We find

λ λ+ = − − +
∼ − − ⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥ε ε � F� � �D G h D

M

r
˙ 1

2

8 2

3
.ab

b ai ai i
j

j 3
( )� (6.37)

Finally, using the fact that λ∆ − + =��, 0M

r

8 2

33[ ]  on scalar fields, we obtain

λ λΨ ∇ Ψ ∇ + = − + ∆αγβδ
δ γ αβ αβ

− ∗ − − − ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥� F�C G h h

M
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r
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3
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1 3
2
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2 3 3

[ ( [ ] )]/ /
/

�

(6.38)

� □
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6.2.1.  Metric reconstruction.  We now explain how to recover the original metric perturbation 
(6.18) from a solution to the scalar equation. From section 5.3.2 we know that in case Ψ2 is 
real, if Φ is a solution to

( )λ+ Ψ + Φ =� 8
2

3
0,2� (6.39)

then the tensor field

( ) [ ( )]( )
/ /Φ = − ∇ Ψ ∇ Ψ Φαβ α

γδ
β γ δ

∗ − −h C 2
4 3

2
1 3� (6.40)

is a solution to the linearized Einstein equations. First, let us show that in the Schwarzschild-(A)

dS solution, this expression reproduces formula (25) in [15]. Using Ψ = −M

r2 3 and the explicit 

form of the dual Weyl tensor (6.7), we have:

( )
( ) [ ( )]

[ ( )]

/ ( )

/ ( ) ( )

Φ = ∇ ∇ Φ

= + ∇ ∇ Φ

αβ α
γδ
β γ δ

α
γ δ

β α
γ δ

β γ δ

∗

∗ ∗

h
M

C r r

b M r
Y Y Y Y r r

1

3

5 3
4

2 2 3 5
4

Now, using (6.4), (6.5) it is easy to see that

[ ( )] ( )( ) ( )∇ ∇ Φ = ∇∇ Φα
γ δ

β γ δ α
γ δ

β γ δ
∗ ∗Y Y r r Y Y r ,4 5� (6.41)

therefore:

( ) ( ( ) [ ( )])

[ ( ) ( )]

( )

/ ( ) ( )

/ ( )

/ ( )

Φ = ∇∇ Φ + ∇ ∇ Φ

= ∇ ∇ Φ + ∇ Φ

= ∇∇ Φ

αβ α
γ δ

β γ δ α
γ δ

β γ δ

α
γ δ

β γ δ δ

α
γ δ

β γ δ
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∗

∗

h
b M r

Y Y r Y Y r r

b M r
Y Y r r r

b M r
Y Y r r

3

3

3
2 ,

2 2 3 5
5 4

2 2 3 5
5 4

2 2 3 5
2 3

where we have used the identity ( ) ( ) ( )∇ Φ + ∇ Φ = ∇ Φδ δ δr r r r r25 4 2 3  and the fact that =α
γ
γY r 0. 

Thus,

( ) ( )/Φ = ∇∇ Φαβ α
γδ
β γ δ

∗h
M

r C r
1

.
5 3

2 3� (6.42)

Now, using that on scalar fields we have the commutator

[( ) ]λ∆− + Ψ + =− �� 2 , 8
2

3
0,1

2� (6.43)

if Φ is a solution to ( )λ+ Ψ + Φ =� 8 02
2

3
, so is the field ( )

/
∆− Φ−� 2M

3
1

2 3

. Defining 

( )Φ = ∆− Φ−�: 2o
1 , the metric perturbation (6.42) constructed from ( )

/
∆− Φ−� 2M

3
1

2 3

 is

( )= ∇∇ Φαβ α
γδ
β γ δ

∗h
r

M
C r

3
,o

2
3� (6.44)

which coincides with [15, equation (25)], and is the original perturbation (6.26) (with Φ≡F ). 
Our general results (5.45) thus explain the mechanism behind (1.1)–(1.2) (and extend it to the 
cosmological setting).
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6.2.2.  Killing–Yano tensors.  Finally, we want to derive the formula (1.3) from our 
general formalism. For this we will use (5.62) in a slighty different form. Using that 

=
∼ ∼ ∼
αβ
γδ
γδ
αβ

αβ
γδ
γδ
αβC C C C , an alternative expression to (5.62) is

( )Ψ Ψ = +
∼ ∼
αβ
γδ
γδ
αβ

αβ
γδ
γδ
αβC C C C12 ˙ 1

4
˙ ˙2 2� (6.45)

The linearization of 
∼
αβ
γδC  is delicate because we have to take into account that when we per-

turb the dual αβ
γδ∗C  there are two terms: the perturbed volume form αβ µνε̇  and the perturbed 

Weyl tensor µν γδĊ . A straightforward calculation shows that

( )| = + +αβ
γδ

αβ
γδ

αβρ
µ νρ

µν
γδ

αβ
µν
µν
γδ

=
∗ ∗

ε
ε εε C

h
C h C C

d

d 2

1

2
˙ ,0� (6.46)

where we recall that = = −αβ
αβ αβ

αβh g h g h ; then

( )Ψ Ψ = + −
∼
γδ
αβ

αβ
γδ

αβ
γδ
γδ
αβ µν

µβγδ ν
βγδ∗ ∗C C

h
C C h C C12 ˙ 1

2
˙ i

8 2
2 .2 2� (6.47)

Now, using the identities

( )Im= Ψαβ
γδ
γδ
αβ∗C C 48 ,2

2� (6.48)

( )Im= Ψµβγδ ν
βγδ

µν
∗C C g12 ,2

2� (6.49)

we get

( )ImΨ Ψ = + Ψ
∼
γδ
αβ

αβ
γδC C h12 ˙ 1

2
˙ 6i2 2 2

2� (6.50)

As we are interested in the case in which Ψ2 is real, we take the imaginary part in the last equa-
tion and, using the explicit form (2.47), we obtain

( ) ( )/ ImΨ Ψ = − +γδ
αβ

γδ
αβ

αβ
γδ− ∗ ∗

k
Y Y Y Y C˙ 1

16
˙ .2

2 3
2 2� (6.51)

The two terms on the RHS turn out to be equal, therefore:

( )/ ImΨ Ψ = − αβ
γδ αβ

γδ− ∗

k
Y Y C˙ 1

8
˙ ,2

2 3
2 2� (6.52)

which demonstrates (1.3).

7.  Conclusions

Working in the class of vacuum Petrov type D spacetimes with cosmological constant, we 
have presented the general form of linear, four-dimensional differential operators mapping off-

shell the equations for linear fields of spin s = 1

2
, 1 and 2 into a system of scalar equations for 

spin weighted s components of these linear fields that decouple on shell. By using the Bianchi 
identities linearized around λ-vacuum solutions, we were able to relate off-shell the decou-
pled equations for Weyl scalars to the linearized Einstein equations. Applying transposition of 
operators we obtained a way to reconstruct solutions of the original field equations from solu-
tions of the decoupled equations. This mechanism works well for extreme spin weight =±s s 
in the Dirac, Maxwell and linearized gravity cases. For spin weight s  =  0, the reconstruction 
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formula works for Maxwell fields, but for gravitational perturbations the ‘inhomogeneous’ 
term in the RHS of (5.45) (namely + Ψ�̇h

Ṙ

6 2
1 3h( ) / ) spoils the transposition of operators that 

would lead to a reconstruction formula. One can get rid of this term whenever Ψ2 is a real 
field, the Schwarzschild-(A)dS solution being the most significant example in the present 
work. Applying our general results to this case, we explained the mechanisms behind the 
equations presented in [15, 16] corresponding to the odd sector of linearized gravity around 
the Schwarzschild-(A)dS black hole. In particular, we corroborate our general formulae 
by translating the four-dimensional expressions of our formalism into the traditional 2  +  2 
decomposition of warped product spacetimes, setting in this way the connection between both 
approaches.

Our off-shell formulation is also useful for obtaining symmetry operators for the field 
equations, both for the higher spin (Dirac, Maxwell, linear gravity) field equations and for 
the scalar (Teukolsky, Fackerell–Ipser, etc.) equations. For further results about symmetry 
operators in the literature, we note that a comprehensive analysis of the second order sym-

metry operators for the field equations of massless test fields of spin 0, 1

2
 and 1 is performed 

in [4], and that higher order symmetry operators for spin 1 and 2 and extreme spin weight are 
obtained in [2].

We have also analyzed the role that Killing spinors (and its tensor analogues, Killing–Yano 
forms) have in the description of the spin weight zero scalar equations for linear fields. Killing 
spinors are certainly very used in the literature. They are the main object in Penrose’s spin 
lowering process for massless fields in Minkowski spacetime. For Petrov type D spaces, the 
2-index Killing spinor encodes all the information about the symmetries and hidden symme-
tries of the Kerr solution. They are also central for the existence of symmetry operators for 
massless fields of spin 1/2 and 1 in curved spacetimes, as was proved in [4], see e.g. theorems 
4 and 6 there. However, in this work we found that, although some proofs are somewhat 
simplified by the Killing spinor equation, and the general object (2.54) used in the theorems 
turns out to be a Killing spinor for spins 1 and 2 and spin weight zero, the final results do not 
depend on this condition. Thus, regarding the Maxwell and linearized gravity systems consid-
ered in this work, we may consider the appearance of these objects as merely ‘accidental’, in 
the sense that the proof of the theorems can be done without use of the Killing spinor equa-
tion. (We mention that, although in the proof of the spin weight zero case of theorem 4.1 for 
Maxwell we do use the Killing spinor equation to simplify the calculations, this proof can be 
performed without using this equation.)

There is a vast literature about the subject of symmetry operators and Debye potentials for 
higher spin fields. We particularly mention references [1–4, 14, 15, 18, 24, 28, 31, 34], whose 
connections with this work have been described throughout the text. The results in this paper 
encompass a number of previously known results in the mentioned works (and extend them to 
the cosmological setting), in particular:

	 •	For extreme spin weight, the Teukolsky equations  [31] are the on-shell version of the 
equations presented in this work: [31, equations (B4) and (B5)] for the Dirac field are the 
on-shell case of (1.10) and (1.11); [31, equations (3.5) and (3.7)] for the Maxwell fields 
correspond to the on-shell case of equations (1.15) and (1.17); and [31, equations (2.12) 
and (2.14)] for linear gravity are the on-shell case of equations (1.24) and (1.26).

	 •	For spin weight zero, the on-shell case of (1.16) for Maxwell fields is the Fackerell–Ipser 
equation [18, equation (20)], and the on-shell case of (1.25) for linear gravity is the lin-
earized equation [1, equation (3.10)] of Aksteiner &; Andersson.
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	 •	The reconstruction formula (5.52) for spin weight s  =  −2 can be checked to agree with 
Kegeles &; Cohen ansatz [24, equation (5.4)].

	 •	For a Schwarzschild background, the on-shell case of (1.25) is [15, equation (24)] (or [16, 
equation (4DRWE)] in the cosmological setting), and the reconstruction equation (5.57) 
is Dotti’s formula [15, equation (25)].
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Appendix.  Useful formulae

In this appendix we collect some useful formulae we have made use of in the proofs of the 
results in the main text.

A.1.  Curvature spinors

For completeness we recall the definition of spinor curvature operations used in this paper 
(we simply repeat the formulae of [26, section 4.9] relevant for this work). Our convention 
for the definition of the Riemann curvature tensor (in the absence of torsion) is (see [26, 
equation (4.2.31)])

( )∇∇ −∇∇ = +α β β α
γ

αβδγ
δV R V .

�
(A.1)

Note that the RHS of this equation has the opposite sign to the more commonly used defini-
tion, compare e.g. with [35, equation (3.2.11)]. This implies that our Riemann and Ricci ten-
sors have the opposite signs to those of this reference (note however that the curvature scalar 
and cosmological constant are the same).

The commutator of two covariant derivatives gives the curvature spinor operators �AB and 
′ ′�A B  in the form

∇∇ −∇∇ = +α β β α ′ ′ ′ ′ε ε� � ,A B AB AB A B� (A.2)

where ( )= ∇ ∇′
′

�AB A A B
A , and its action on, for example, a spinor θ ′

′
C

D
E

F , is

θ θ θ

θ θ

= −

+Φ − Φ

′
′

′
′

′
′

′
′ ′

′ ′
′ ′

′

� X X

;

AB
C

D
E

F ABQ
C Q

D
E

F ABD
Q C

Q
E

F

ABQ
E C

D
Q

D ABF
Q C

D
E

Q
� (A.3)

a similar formula holds for ′ ′�A B  (see [26, equation (4.9.14)]). The curvature spinor XABCD is 
decomposed as

( )ψ= + +ε ε ε εX
R

24
,ABCD ABCD AC BD AD BC� (A.4)
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where ψABCD is the Weyl conformal curvature spinor. This implies in particular that

= εX
R

8
.ABC

B
AC� (A.5)

A.2.  Derivatives of the dyad spinors

Using expressions for the directional derivatives of the dyad { }ιo ,A A  along the tetrad vectors 
(equation (4.5.26) in [26]), it is easy to see that

( ) ¯ ( ) ¯
( ) ¯ ( ) ¯
κι ι ι τι

β ρι ι β σι ι

∇ = − − +

+ + − −

′

′

′ ′ ′

′ ′

ε εo o o o o

o o o o ,
M
M A A A

M
M A A

M
M

A A
M

M A A
M

M
� (A.6)

( ) ¯ ( ) ¯
( ) ¯ ( ) ¯

ι ι τ ι ι ι κ

β ι σ ι βι ρ ι

∇ = − + + −

− − + +

′ ′ ′

′ ′ ′

′ ′ ′

′ ′

ε εo o o o

o o o o .
M
M A A A

M
M A A

M
M

A A
M

M A A
M

M
� (A.7)

Contracting with oM, ιM and εA
M, we obtain the following useful formulae:

( ) ¯ ( ) ¯κι ι β σι∇ = − + + −′ ′ ′εo o o o o ,M
M
M A A A M A A M� (A.8)

( ) ¯ ( ) ¯ι τι β ρι ι∇ = − + + +′ ′′ ′ ′εo o o o ,M
M
M A A A M A A M� (A.9)

( ) ¯ ( ) ¯ρ ι β τ∇ = − + −′ ′ ′εo o ,A
M A M M� (A.10)

( ) ¯ ( ) ¯ι ι τ ι βι ρ∇ = + − +′ ′′ ′ ′εo o o o ,M
M
M A A A M A A M� (A.11)

( ) ¯ ( ) ¯ι ι ι κ β ι σ ι∇ = − − − −′ ′ ′′ ′ ′ε o o o ,M
M
M A A A M A A M� (A.12)

( ) ¯ ( ) ¯ι τ β ι ρ∇ = − + −′ ′ ′ ′′ ′ ′ε o .A
M A M M� (A.13)

For the proofs of the theorems in the text we also need expressions for the divergence of 
the tetrad vectors:

¯ ¯ρ ρ∇ = + − −α
α ε εl ,� (A.14)

¯ ¯ρ ρ∇ = + − −′ ′ ′ ′α
α ε εn ,� (A.15)

¯ ¯β β τ τ∇ = + − −′ ′α
αm ,� (A.16)

¯ ¯ ¯β β τ τ∇ = + − −′ ′α
αm .� (A.17)

A.3.  Killing spinors

In the following proposition we gather useful identities involving the Killing spinor of type 
D solutions:
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Proposition A.1.  Consider the Killing spinor KAB of a λ-vacuum type D spacetime, and let 
ξ = ∇′ ′ KAA A B

B
A be the associated Killing vector. We have:

( )∇ = ∇′ ′ εK K
2

3
,C C AB C

D
D A B C� (A.18)

ψ = − ΨK K2 ,ABCD
CD

AB2� (A.19)

( )λ= Ψ +�K K2
2

3
,AB AB2� (A.20)

( )∇ Ψ =′ K 0,A A
AB2� (A.21)

( )ξ λ∇ = Ψ +′
′

K3 .B A B
B

AB2� (A.22)

Proof.  (A.18) follows immediately after using the Killing spinor condition ( )∇ =′ K 0C C AB  
and [26, equation (3.3.55)],

∇ = − ∇ − ∇′ ′ ′ε εK K K
1

3

1

3
.C C AB CA C

D
DB C

D
DA CB

For (A.19) we just have to use the expressions (2.46) for the Weyl spinor and (2.42) for KAB, 
together with the identity

/= − Ψ−K K
k

2
.AB

AB
2

2
2 3� (A.23)

For (A.20), we take an additional derivative in ( )= ∇ ′
K0 C

C
AB  and use the decomposition (A.4) 

of XABCD:

( )

( ) ( ) ( )ψ

= ∇ ∇

= − −

′
′

ε ε�

K

K K
R

K

0

1

2
2

12
.

C D C
C

AB

D C AB D CA
E

B E D A BC

Expanding in CAB and contracting with εCD, we get

ψ= + −�K K
R

K0
6

AB ABCD
CD

AB

which, after using (A.19) and replacing λ=R 4 , reduces to (A.20).

Formula (A.21) follows after applying a derivative ∇ ′A A to both sides of (A.19) and using 
the Bianchi identities ψ∇ =′ 0A A

ABCD  and the Killing spinor condition ( )∇ =′ K 0A A CD  (togeth-
er with the fact that ψABCD is totally symmetric).

Finally, for (A.22) we use the definition ξ = ∇′ ′ KB
B B C

CB:

ξ ψ∇ = ∇ ∇ = − +′
′

′
′ �K K K

R
K

1

2 6
.B A B

B
B A

B C
CB AB ABCD

CD
AB

Then, using (A.20), (A.19) and λ=R 4  we easily obtain (A.22).� □
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