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� Fluid mechanics of foam fractiona-
tion in reflux and/or stripping mode
is modelled.

� Surfactant transfers from surfactant-
rich Plateau borders to surfactant-
lean films.

� Effect of surfactant surface viscosity
on flow in Plateau border is ana-
lysed.

� High surface viscosity strongly sup-
presses border to film mass transfer.

� Even low surface viscosities can
reduce surfactant mass transfer onto
foam films.
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A fluid mechanics problem relevant to foam fractionation processes is analysed. Specifically the fluid flow
field transporting surfactant from foam Plateau borders (fed with surfactant-rich material) towards
comparatively surfactant-lean foam films is considered. The extent to which this surfactant mass transfer
is limited by surface viscous effects is studied. Previous work (Vitasari et al., 2016) made assumptions
about the likely flow field along the Plateau border surface. These assumptions suggested that ‘high’
surface viscosity (measured by a suitable dimensionless parameter) led to strong suppression of the rate
of surfactant mass transfer from Plateau border to film, whereas ‘low’ surface viscosity did not suppress
this mass transfer rate in any significant way. More detailed fluid mechanical calculations which are
carried out here corroborate the aforementioned assumptions in the ‘high’ surface viscosity regime.
However the calculations suggest that in the ‘low’ surface viscosity regime, in contrast to the findings
from the previous assumptions, moderate reductions in the rate of surfactant mass transfer are also
possible. Counterintuitively these moderate reductions in mass transfer rate potentially have more
negative impact on fractionation processes than the aforementioned strong suppression. This is because
they tend to arise under conditions for which the efficiency of the fractionation system is particularly
sensitive to any reduction whatsoever in the surfactant mass transfer rate.
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1. Introduction

The purpose of foam fractionation is to enrich surfactants or
surface active materials by allowing them to accumulate on foam
films (Lemlich, 1968a,b). During this process, whilst surfactant can
be transported to foam film surfaces diffusively (Vitasari et al.,
2013a), transport rates can be enhanced by exploiting the so-called
Marangoni flows (Vitasari et al., 2013b), which rely on surface
tension differences driving convection. There are various foam
fractionation scenarios (described more fully below) where such
convective Marangoni flows are likely to arise. These all involve
comparatively surfactant-lean films being surrounded by
surfactant-rich Plateau borders (tricuspid channels along which
three films meet). The Plateau borders typically contain rather
more liquid (and thus potentially more surfactant) than the foam
films, and so can feed surfactant to those films via convective
Marangoni flows.

One relevant scenario is that of foam fractionation with reflux
(Lemlich and Lavi, 1961; Brunner and Lemlich, 1963; Stevenson
and Jameson, 2007; Martin et al., 2010). During this process, which
can be operated either batchwise or continuously, foam collected
from the top of a fractionation column is collapsed and the liquid
recovered is poured back onto the column. This liquid then flows
downward through the Plateau borders which form a network of
channels. The cross sectional area of the channels is set by the
liquid flux through them (Weaire and Hutzler, 1999), with the
dominant force balance (Grassia et al., 2001) in these channels
being between gravity (acting downwards) and viscous drag at the
Plateau border walls (the drag acting upwards on the downward
flowing liquid). This downward flowing liquid added back to the
column provides an additional opportunity to increase the sur-
factant content in the foam. Various mass exchange mechanisms
are expected to take place, including the surfactant-rich reflux
liquid mixing with less surfactant-rich liquid already in the Plateau
borders lower down in the column, in addition to the mechanism
of main interest here, namely Marangoni flows pulling surfactant-
rich material onto surfactant-lean films.

How effective the Marangoni mechanism is in this context
depends on the concentration regime in which the fractionation
process is being operated. Surface tension loses sensitivity to
surfactant concentration at a critical surfactant concentration (the
critical micelle concentration or CMC, Chang and Franses, 1995)
considered to be the point at which the surface is sufficiently
crowded with surfactant that excess surfactant begins to form
aggregates (or micelles) in the bulk. Marangoni mechanisms are
unlikely to be effective at increasing surfactant coverage on an
already crowded surface, but should be effective at concentrations
below the CMC. Exceedingly low concentration operation (with
barely any surface coverage of surfactant) will be problematic for
foam stability: in such a situation, however, reflux (and the
Marangoni-driven surfactant mass transfer it induces) will help to
stabilise the foam films.

Another scenario of relevance here is fractionation in stripping
mode (Lemlich, 1968a). During a continuous stripping operation,
liquid feed is introduced part-way up the column (instead of to a
liquid pool underneath the foam) and (as with fractionation
employing reflux) drains downward through the Plateau border
network, again with the channel cross sections being determined
by the liquid flux. Given that the purpose of the process is to strip
as much surfactant as possible from the feed stream, even if the
feed concentration is above the CMC, at some point lower down in
the column it should fall below the CMC. The Marangoni-driven
mass transfer processes described above will then become active
pulling material onto (comparatively uncrowded) foam films.

Yet another potentially relevant scenario is multicomponent
foam fractionation (Brown et al., 1999). Such a system involves two
surfactants: a more surface active one and a less surface active
one. Marangoni flows onto films are expected if a more surface
active species in a Plateau border contacts a film covered with less
active species (but not the other way round). If (as could happen in
stripping mode multicomponent operation) the feed to the Plateau
border network contains a mixture of two surface active species,
the Marangoni flows themselves are unlikely to be selective, car-
rying both species of the mixture onto the film. However the less
active species is more likely to desorb to the interior of the film
(Vitasari et al., 2013a). Drainage flows in the film interior might
then carry that species back towards the Plateau border (Vitasari
et al., 2013b) and after that downwards to the liquid pool under-
neath the foam.

In view of the importance of Marangoni flows to the above
mentioned fractionation scenarios, recently a model has been
developed (Vitasari et al., 2013b) for the Marangoni-driven sur-
factant accumulation on foam films. It is expected however that
(over and above Marangoni mechanisms) additional interfacial
rheology effects (e.g. surface viscosity, Scriven, 1960) should affect
surfactant convection onto foam films. Hence the surfactant
accumulation model of Vitasari et al. (2013b) was extended
(Vitasari et al., 2016) to incorporate the surface viscosity (in
addition to the viscous effects in the bulk of the films which were
included in the models from the outset). The basic finding was that
(unsurprisingly) the presence of surface viscosity tends to limit the
surfactant movement and hence can reduce the rate of surfactant
accumulation on the films.

It is important to note that the model of Vitasari et al. (2013b,
2016) is mathematically very simple. As explained in Vitasari et al.
(2016), it consists of a 1-d ordinary differential equation for the
surface velocity on the foam film surface, coupled to a partial
differential equation (in terms of time and one spatial dimension)
for the evolution of the surfactant concentration. The model was
therefore sufficiently simple (and hence sufficiently quick to solve,
typical run times being just a few minutes) that it is feasible to
incorporate it into design algorithms for fractionation columns.

In order to solve the model, it was necessary (Vitasari et al.,
2016) to make assumptions (described in more detail later) about
how the flow on the film matched onto that in the Plateau border.
The assumptions made were plausible, but nevertheless need to be
checked by more detailed fluid mechanical calculations. The
objective of the present work then is to perform fluid mechanical
calculations to check the modelling assumptions of Vitasari et al.
(2016) and if necessary indicate how to modify these assumptions.

The remainder of this discussion is laid out as follows. Section 2
sets up governing equations for the fluid flow field on a film
employing simple lubrication theory approximations. Section 3
then sets up corresponding governing equations for the fluid flow
in the Plateau border (considering both a 2-d flow field and a
quasi-1-d asymptotic approach) whilst Section 4 considers
matching between the film and the border. Section 5 identifies and
estimates the values of a number of key dimensionless groups.
This section also includes a discussion of how the values of these
dimensionless groups are believed to affect the solution for the
flow field. Section 6 considers a special case where we are able to
solve analytically for the flow field in the film: this shows directly
how the nature of the film–Plateau border coupling influences the
film flow field (and thereby the surfactant mass transfer rate from
border to film). Next Section 7 describes the numerical metho-
dology for solving the Plateau border flow fields with results
presented in Section 8. Section 9 discusses and summarises the
results. Finally overall conclusions are given in Section 10.



Fig. 1. (a) Sketch of a film joining up with a Plateau border during foam fractio-
nation, idealising the film as flat and the Plateau borders as uniform curvature arcs.
We are interested in the surfactant flow between the border (higher surfactant
coverage and hence lower surface tension) and the film (lower surfactant coverage
and hence higher surface tension). The border also has a symmetry point at which
no flow may occur. (b) Close up zoomed view of the entrance region of a Plateau
border, near the junction between the film and the Plateau border.

1 For a stable foam, the films, when they eventually become thin enough, are
stabilised by colloidal disjoining pressures and film drainage then stops.
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2. Model for film flow

Fig. 1(a) shows a sketch of a film joining up to a Plateau border.
In the first instance we focus on the flow in the film. We adopt the
model already considered by Vitasari et al. (2016) in which the film
is taken to be perfectly flat (i.e. we ignore the complications
associated with possible dimpled shapes of the film near its
junction with the Plateau border, Frankel and Mysels, 1962; Joye et
al., 1992, 1994, 1996). The film is also assumed not to drain so its
thickness is taken to be constant as well as uniform (although
effects of film drainage causing thickness to vary with time could
be incorporated into the model if desired, Vitasari et al., 2013b;
film Marangoni flows tend to start off dominating film drainage
flows, but the Marangoni flows also decay more rapidly as sur-
factant is transported onto the film surface, and film drainage
might then be a significant contributor to any remaining transport,
Vitasari et al., 2013b). Moreover the film thickness is much smaller
than its length (the half-thickness being denoted δ0 and the half-
length being denoted L with δ0⪡L): lubrication theory approx-
imations apply. These give a parabolic flow profile across the film
thickness as sketched in Fig. 1(b)

u¼ usðxÞ
3
2
y2

δ20
�1
2

 !
ð1Þ

where x is a coordinate along the film (with x¼0 corresponding to
the point where the film meets the Plateau border, and defined
such that xo0 on the film), y is a coordinate across the film (with
y¼0 midway across), u is the velocity in the film, us is the velocity
on the film surface, and δ0 is the film half-thickness.

This profile implies a viscous shear stress at the film surface

μ ∂u=∂yj y ¼ δ0 ¼ 3μus=δ0 ð2Þ

where μ is viscosity of the liquid in the film. On the gas–liquid
surface we then have (matching the shear stress to Marangoni and
surface viscous stresses)

μ ∂u=∂yj y ¼ δ0 ¼ ∂γ=∂xþμs∂
2us=∂x2 ð3Þ

where γ is surface tension and μs is surface viscosity. Substituting
(2) into (3) gives

3μus=δ0 ¼ ∂γ=∂xþμs∂
2us=∂x2: ð4Þ

The question of interest here is, given an instantaneous dis-
tribution of γ vs. x, what is the value of us j x ¼ 0? This quantity is of
interest because us j x ¼ 0 governs the flow and hence mass transfer
between Plateau border and film (and hence the time evolution of
γ).

In order to determine us j x ¼ 0, Eq. (4) needs to be solved subject
to suitable boundary conditions. On symmetry grounds, us van-
ishes at the centre of the surface of the film. Again on symmetry
grounds, us vanishes at the centre of the surface of the Plateau
border: see Fig. 1(a). Given that we have one condition on the film,
and one condition on the border (with Eq. (4), as formulated
above, applying only to the film), we need somehow to match the
film flow to the border flow in order to solve for us.

The approach of Vitasari et al. (2016) was to assume that the
velocity field us(x) on the film could be ‘extrapolated’ onto the
border. Matching was achieved by ‘unfolding’ the surface of the
border onto a straight line, taking a uniform surface strain rate
(and hence a uniform ∂us=∂x equal to the value ∂us=∂xj x ¼ 0 at the
junction with the film) on the now ‘unfolded’ border. The question
we plan to address is whether or not this assumption used by
Vitasari et al. (2016) to achieve matching was appropriate or not.
3. Flow in a Plateau border

The complete set of fluid mechanical calculations required to
check the aforementioned assumptions of Vitasari et al. (2016)
turn out to be rather detailed and complicated ones. The reasons
for these complications (and a possible way around them, which
we employ in this work) are outlined below.

Conventionally one thinks of the surface of a Plateau border as
being highly curved by comparison with the films (see e.g. Fig. 1
(a)). Films must meet threefold at Plateau borders at 2π=3 angles,
but since cross-sections of Plateau borders (for a dry foam at least)
are much smaller than lengths of films, sharp curvatures at the
borders are required so as to turn through these 2π=3 angles over
a comparatively small length scale.

Idealising, the curved Plateau border surfaces are treated as
being arcs of circles, whilst films are treated as flat. In a foam, the
pressure difference (Weaire and Hutzler, 1999) (or more correctly,
the normal stress difference) between the gas in the bubbles and
the liquid in either Plateau borders or films depends on curvature
of the gas–liquid interface (the Young–Laplace law). Since the
borders are highly curved, they tend to have lower pressure than
the films, meaning that liquid can drain from the films into the
borders. Over and above this, in the application of interest here (a
fractionation column operated e.g. with reflux and/or in stripping
mode) there is a flux of liquid added to the foam, which flows
through the Plateau borders swelling them. The result of all of this
is that borders tend to contain rather more liquid than films: even
though the border cross-section is smaller than the lengths of the
films, the film thicknesses can be very tiny indeed, and hence the
total amount of liquid in the films can be small.1

In fluid flow problems involving films joining up with Plateau
borders, pressure must change continuously with position moving
from the films into the borders. The complication of course is that
the curvature of the liquid–gas interfaces is tied to pressure dif-
ference: the picture whereby borders are uniformly curved and
films are flat is not strictly valid. What one can observe in the
neighbourhood of where the film meets the border is a so-called
‘transition region’ (a concept introduced by Bretherton, 1961 and
discussed also by Schwartz and Princen, 1987; Reinelt and Kraynik,
1989, 1990), with pressures and curvatures varying significantly
over a comparatively small distance near that film–Plateau border
junction. Away from the transition region, the film can be thought
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Fig. 2. The polar coordinate solution domain corresponding to one sixth of the
tricuspid Plateau border (the solution throughout the remainder of the Plateau
border being deduced via symmetry). As drawn, the Plateau border radius of cur-
vature is a, but coordinates can also be made dimensionless such that the Plateau
border curvature radius is scaled to unity, and the film half-thickness is Δ0. The
origin is placed outside the Plateau border itself (at the centre of curvature of the
Plateau border arc). The domain of interest is 0rθr π

6 and 1rr=arð1þΔ0Þ= cos θ.
Dimensionless Cartesian coordinates x ¼ a�1r cos θ and y ¼ a�1r sin θ can also be
defined.
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of as comparatively flat (i.e. zero curvature) and likewise, the
border can be thought of as a circular arc of uniform curvature. In
the transition region neither of these two situations applies. The
distribution of curvature along the interfaces determines their
position, which in turn defines the solution domain where liquid is
present. This domain itself must strictly speaking be obtained as a
part of the solution of a free boundary problem, alongside the fluid
flow fields themselves. Fluid flows between films and Plateau
borders can produce complex interface shapes (e.g. dimpled
shapes2 as referred to earlier, Frankel and Mysels, 1962; Joye et al.,
1992, 1994, 1996). Adding surface rheological effects (Marangoni
and surface viscous forces) to the above description complicates
matters even further. Compared to the simple and quick-to-solve
models studied by Vitasari et al. (2013b, 2016) (as already alluded
to above), such complex fluid mechanical calculations are less
readily incorporated into design algorithms for fractionation
columns.

The question we wish to ask here is whether there might be
some way to explore the validity (or otherwise) of the aforemen-
tioned ‘extrapolation’ and ‘unfolding’ assumptions used by Vitasari
et al. (2016) for flow fields on Plateau border surfaces without
resorting to the full complexity of a free boundary problem.

The suggestion (analogous to what has been done in some
other surface rheology driven flows, Smith and Davis, 1983;
Grassia and Homsy, 1998a,b) is to solve a fluid flow problem in a
known domain, in this particular case where the entirety of the
surfaces of the Plateau borders are treated as uniform curvature
arcs (see Fig. 1(a)), ignoring transition regions, dimpling, etc. We
permit tangential motion along the Plateau border surfaces (tan-
gential motion is essential to permit mass exchange between
border and film) but no normal motion. The shape of the flow
domain is then not only specified, but also is constant over time.
The shape of the flow domain is by assumption unaffected by
dynamic parameters such as e.g. capillary number which other-
wise would govern the surface shape in systems of this type
Bretherton (1961). With the aid of computational fluid dynamics
simulations, it is now possible to determine the flow fields
throughout the border and, specifically at the point where the
border meets the film, check for consistency with the assumptions
employed by Vitasari et al. (2016).

In addition to flow fields, these computational fluid dynamics
calculations can also access pressure fields. Note that the com-
puted pressure (more correctly the computed normal stress) will
in general be non-uniform along the border surface whereas cur-
vature is (by assumption) uniform. Such a situation violates the
Young–Laplace law, but the level of non-uniformity in the com-
puted pressure profile is informative: zones where the pressure
deviates most strongly from uniformity are also zones where the
assumption of constant border curvature is least tenable.

The remainder of this section is laid out as follows. Section 3.1
gives the governing equations for the Plateau border flow field
with boundary conditions given in Sections 3.2–3.4. Following
that, Section 3.5 contains an asymptotic ‘quasi-1-dimensional’
description of the flow fields as an alternative to the fully 2-d
formulation of Sections 3.1–3.4.

3.1. Governing equations for the 2-D flow field in the Plateau border

The flow domain for the tricuspid Plateau border is shown in
Fig. 2. We only need to describe one sixth of the tricuspid domain,
the rest following on symmetry grounds. As noted by Leonard and
Lemlich (1965) the domain is most conveniently described in polar
2 Note that colloidal disjoining forces are also neglected here, but these can
become relevant in exceedingly thin films, and might tend to counteract dimpling.
coordinates. The angular coordinate θ satisfies 0rθrπ
6, and the

radial coordinate r satisfies arrrað1þΔ0Þ= cos θ, where a is the
curvature radius of the Plateau border and Δ0 is the ratio between
film half-thickness δ0 and Plateau border curvature radius a. Note
that Δ0 is a small parameter on the grounds that the film is
exceedingly thin.

We assume incompressible Stokes flow in the Plateau border
with a pressure field P, a velocity field u, and a liquid viscosity μ.
Hence the Plateau border flow satisfies

∇ � u¼ 0 ð5Þ

0¼ �∇Pþμ∇2u: ð6Þ
Note that even though we are considering a Stokes flow with

the same flow domain as Leonard and Lemlich (1965), we are
dealing with quite distinct flows. The work of Leonard and Lemlich
(1965) treated unidirectional flow directed normal to the plane of
Fig. 2. Here we consider flow in the plane of Fig. 2. We now pro-
ceed to consider boundary conditions on the various domain
boundaries.

3.2. Plateau border surface

As we are dealing with a system involving interfacial rheology,
the most important boundary is the gas–liquid surface of the
Plateau border, r¼a in our coordinate system.

As was mentioned earlier (see Section 3) in the interests of
simplicity, we focus on a problem where the solution domain is
fixed. Hence the radial velocity component ur on the gas–liquid
boundary is assumed to vanish.

Regarding tangential velocities, we use the symbol us to denote
the velocity component uθ evaluated at the Plateau border surface.



3 We use the expression, ‘effective Henry constant’, rather than simply ‘Henry
constant’, to recognise that adsorbed surfactant might be a non-linear function of
bulk surfactant concentration.
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We also use the variable s to denote the distance measured along
the Plateau border surface, defined by s¼ aθ. Ultimately us is
determined via a tangential boundary condition (incorporating
surface viscosity on the gas–liquid surface) which is as follows:

�μr
∂
∂r

uθ
r

� �
¼ ∂γ

∂s
þμs

∂2us

∂s2
; ð7Þ

the notation here recognising that uθ depends on r as well as upon
θ, whereas us depends on s (but not upon r). This is a general-
isation of Eq. (3) given previously, the sign of the first term
recognising that the outward normal to the Plateau border points
here in the direction of decreasing r.

3.3. Plateau border entrance

We now specify the boundary condition across the thickness at
the Plateau border entrance θ¼0. The tangential velocity profile uθ
vs. r across the entrance is inherited from the film. Analogously to
Eq. (1) a parabolic profile is assumed

uθ ¼ �3
2
ð1þΔ0�a�1rÞ2

Δ2
0

þ1
2

 !
us j s ¼ 0j j: ð8Þ

Note the use of an absolute value on the right hand side of (8): we
anticipate that the sign of uθ j r ¼ a;θ ¼ 0 (which by definition is equal
to us j s ¼ 0 and equivalently to us j x ¼ 0) is negative, implying sur-
factant transfer from Plateau border to film (the direction of
transfer expected in a fractionation column when film surfaces are
fed by Marangoni flows).

To solve for the Plateau border flow field, a second boundary
condition is however required on θ¼0. Identifying an appropriate
condition that matches the Plateau border onto the film in a
sensible fashion is subtle for reasons explained in the appendix:
we elected to adopt a tangential stress condition, setting the r;θ
component of the stress equal to μ ∂uθ=∂r, the value of ∂uθ=∂r
being determined from Eq. (8).

3.4. Symmetry lines

In addition to the boundary conditions discussed in Sections
3.2–3.3, we also need to impose boundary conditions on two
symmetry lines represented in polar coordinates by θ¼ π=6 (with
varying r) and r¼ að1þΔ0Þ= cos θ (with varying θ).

We use n and t to represent the unit outward normal vector
and unit tangent, and un and ut to represent normal and tangential
velocity components. The boundary conditions required here are
u � n¼ 0 and n �∇ðu � tÞ ¼ 0, or expressed more simply un ¼ 0 and
n � ∇ut ¼ 0.

3.5. Quasi-1-d asymptotic approach for the Plateau border

In addition to the 2-d formulation alluded to above, there is
also a comparatively simple ‘quasi-1-d’ asymptotic approach. This
describes the region of the Plateau border that is close to the film
as sketched in Fig. 1(b).

We have Cartesian coordinate x¼0 at the junction between the
film and the Plateau border and x40 in the border itself.
Restricting attention to the region x⪡a we can employ a lubrica-
tion theory entirely analogous to that in Section 2 for the film. The
velocity profile across the border is

u� usðxÞ 3
2

y2

ðδðxÞÞ2
�1
2

 !
ð9Þ

where δ is now the half border thickness (which in the border
varies with longitudinal position x). Near the entrance to the
border we have

δ� δ0þ
1
2
x2

a
; ð10Þ

which upon defining Δ¼ δ=a becomes Δ�Δ0þ1
2x

2=a2. It is clear
that for x⪡a, both Δ⪡1 and dδ=dx⪡1 (which are necessary condi-
tions for lubrication theory to apply).

The analysis for this quasi-1-d formulation proceeds entirely
analogously to Section 2, and indeed analogously to Eq. (4) we
deduce

3μus=δ¼ ∂γ=∂xþμs∂
2us=∂x2: ð11Þ

Eq. (11) must be solved with suitable boundary conditions. At
x¼0, the values of us and ∂us=∂x must match up with those on the
film. The other boundary condition that us must vanish at the
symmetry point at the centre of the Plateau border surface is
slightly more problematic, because it is strictly speaking outside
the domain x⪡a for which Eqs. (9)–(11) apply, a complication we
will discuss in due course. Provided this complication can be
overcome, Eq. (11) provides an alternative way to determine the
surface velocity distribution us vs. x or equivalently us vs. s (s being
arc length along the surface), instead of using the 2-d approach of
Sections 3.1–3.4.

Regardless of which of the two approaches we adopt, we now
introduce a simplification. We admit Marangoni stresses on the
film (i.e. non-zero ∂γ=∂x on the film) but not on the Plateau border.
Thus we set γ to equal a constant value γ0 on the Plateau border, so
that ∂γ=∂x vanishes in Eq. (11) or equivalently ∂γ=∂s vanishes in Eq.
(7).

The justification is that the Plateau border is typically much
thicker than the (exceedingly thin) film, so its interior can act as a
reservoir of surfactant. Even if the surfactant-rich border loses
material to the surfactant-lean film, the Plateau border's surface
can be replenished by new surfactant arriving from its interior,
provided this new surfactant manages to arrive at the Plateau
border surface more quickly than it is lost, implying in turn
assumptions about the kinetics of surface adsorption. Under cir-
cumstances whereby the Plateau border can act as a reservoir,
there must be a physicochemical length scale, an ‘effective Henry
constant’ (defined as the ratio between the concentration of sur-
factant adsorbed at interfaces and the concentration of surfactant
in the bulk3) which we assume to be much larger than the film
thickness, but smaller than the typical Plateau border thickness
(which is comparable with the curvature radius of the Plateau
border). Hence, despite there being negligible amounts of surfac-
tant in solution within films, there are nevertheless significant
amounts of surfactant in solution within the Plateau border.

Note that based on Eq. (10), the border is only substantially
thicker than the film for x⪢Oð

ffiffiffiffiffiffiffiffi
δ0a

p
Þ or equivalently for x⪢OðΔ1=2

0 aÞ.
Since Δ0⪡1, this applies to the overwhelming majority of the
border. For x values up to order Oð

ffiffiffiffiffiffiffiffi
δ0a

p
Þ, however, the border is

only marginally thicker than the film, and strictly speaking we
should continue to account for Marangoni stresses there, even if
they are neglected over the rest of the border. If however both us
and ∂us=∂x vary comparatively little between x¼0 and
x¼OðΔ1=2

0 aÞ, it is permissible to compute flow fields over the
entire Plateau border ignoring Marangoni stresses once again over
the entire border surface.

Neglecting Marangoni stresses on the border surface, implies
that the flow in the border is wholly driven by non-zero flow at
the junction between the Plateau border and the film, i.e. due to
us j x ¼ 0 (or equivalently us j s ¼ 0) being non-zero. Moreover we are
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dealing with a linear system of equations so that the ratio between
∂us=∂xj x ¼ 0 and us j x ¼ 0 is independent of the value of us j x ¼ 0: the
ratio can be obtained even if us j x ¼ 0 is a priori unknown.

Both ∂us=∂x and us are continuous at x¼0 moving from the
Plateau border to the film: hence, if we can determine their ratio
on the Plateau border side of x¼0 (without needing to compute
the film flow), we immediately know their ratio on the film side
also. Thus we have a ‘matching condition’ joining the Plateau
border and film flows. Once this ratio or ‘matching condition’ is
determined, the film flow can be solved without further details of
the flow in the Plateau border, apart from the ‘matching condition’
itself.

Given this ‘matching condition’ is important for determining
the film flow, there has been speculation (Vitasari et al., 2016)
regarding what the ratio between ∂us=∂xj x ¼ 0 and us j x ¼ 0 might
be. Hypotheses for the value of this ratio are discussed in the next
section.
4. Matching conditions between Plateau border and film

This section is laid out as follows. Section 4.1 considers one
possible hypothesis from Vitasari et al. (2016) of how to match the
Plateau border flow to that in the film. The consequences of this
hypothesis for the film flows are identified in Section 4.2. An
alternative matching hypothesis is proposed in Section 4.3. It is
ultimately by performing fluid mechanical calculations in the
Plateau border (considered later on) that we can identify condi-
tions under which each hypothesis actually applies.

4.1. Uniform strain rate matching hypothesis

The study of Vitasari et al. (2016) speculated that

∂us=∂xj x ¼ 0 ¼ �us j x ¼ 0=ðπa=6Þ: ð12Þ
This is consistent with a uniform surface rate of strain on the
Plateau border, i.e. a uniform decay of velocity on the border
surface ‘extrapolated’ from the entrance to the border (where it
meets the film) to the border's symmetry point (the distance πa=6
being the distance from the entrance to the symmetry point
measured along the surface in the tricuspid Plateau border geo-
metry, and we have ‘unfolded’ this curved surface onto a straight
line along the direction of the film).

Assumption (12) turns out to be sufficient to close the set of
equations for the flow on the film (Vitasari et al., 2016), enabling
us to obtain us at any given x, and in particular us j x ¼ 0. As men-
tioned previously, the velocity us j x ¼ 0 is very important here, as it
is precisely this velocity that governs the transport of surfactant
between border and film.

Some of the consequences of assumption (12) are explored in
the next section.

4.2. Film–Plateau border matching with a uniform strain rate
hypothesis

It can be shown (Vitasari et al., 2016) (independently of the
assumption in Eq. (12)) that a velocity boundary layer can appear
at the edge of the film as the Plateau border is approached: the
velocity on the film surface changes quite rapidly with position
within this boundary layer. Specifically if us immediately outside
the boundary layer is denoted usðoÞ, then the boundary layer
approximation results in

∂us=∂xj x ¼ 0 � us j x ¼ 0�usðoÞ
� �

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q� �
� us j x ¼ 0�usðoÞ
� �

L
π
6
a0crit

� �.	

ð13Þ
where recall L is the half-film length and δ00, μs and a0crit are
dimensionless groups defined as follows: δ00 is an aspect ratio
(δ0=L), μs is a dimensionless surface viscosity (μs=ðμLÞ), and
moreover a0crit is

a0crit ¼
6
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q
: ð14Þ

We also define a dimensionless Plateau border curvature radius a0

to be a=L (with a0o1 on geometric grounds), interpreting a0crit as
being a critical value of a0 at which the presence of the Plateau
border starts to limit the film flow (further details to be given
shortly).

In Eq. (13), the term L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q
or equivalently Lπ6a

0
crit represents

the length scale of the velocity boundary layer on the film. Sub-
stitution from the definitions of δ00 and μs, gives the boundary
layer length as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ0μs=ð3μÞ

p
. This depends on (dimensional) film

thickness δ0 and on interfacial and bulk rheology (i.e. the ratio
μs=μ), but not on the length scale of the film (half-length L) nor
that of the border (curvature radius a).

The boundary layer length scale determined here is also inde-
pendent of how surface tension γ vs. x varies, implying that the
velocity field can have a boundary layer character even when the
Marangoni stress field does not. There could be more
complex situations for which both the velocity field and the
Marangoni stress field develop boundary layers, hence modifying
Eq. (13), although we neglect such complications here.

Substitution of Eq. (13) into Eq. (12) (which assumes uniform
strain rate on the border as mentioned above) gives

ðus j x ¼ 0�usðoÞÞ=a0crit � �us j x ¼ 0=a0: ð15Þ
Rearranging implies

us j x ¼ 0 � usðoÞ 1þa0crit=a
0� ��1 � usðoÞ 1þ6

π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

3

r !�1

ð16Þ

where Δ0 is δ00=a
0 and where Ms is a (rescaled) dimensionless

surface viscosity defined as Ms ¼ μs=ðμaÞ, a parameter already
identified by Leonard and Lemlich (1965).

It is clear from this result that us j x ¼ 0 can be more or less the
same magnitude as usðoÞ (i.e. the change in velocity us across the
boundary layer is insignificant) if a0⪢a0crit . This is a situation where
the Plateau border is sufficiently big, and/or the foam liquid frac-
tion (dominated by the liquid in the borders) is sufficiently high,
and/or the surface viscosity is sufficiently weak, that the film is
‘unaware’ of any constraints arising from the presence of the
Plateau border: in particular, the film flow field is unaffected by
the constraint that velocity must vanish at the symmetry point of
the Plateau border.

If however a0⪡a0crit , then us j x ¼ 0 is much smaller in magnitude
than usðoÞ: there is then an abrupt change in us near the end of the
film across the boundary layer. The transport of surfactant from
the Plateau border to film, which relies on transport at the velocity
us j x ¼ 0, is much more limited than it would have been had the
symmetry point on the Plateau border not been constraining the
motion.

Our numerical results and asymptotic analyses (both to be
presented later) indicate that when a0⪡a0crit (in our current nota-
tion, when Δ0Ms⪢1) the decay of us towards zero really is uniform
along the entire surface of the border, exactly as Eq. (12) suggests.
Indeed in this limit it turns out not even to be necessary to assume
that the curved border is ‘unfolded’ along the lines discussed
earlier. Eq. (12) is then an excellent approximation for matching
the film to the border.

Note that the study of Vitasari et al. (2016) not only considered
the case a0crit⪢a

0, i.e. δ00μs⪢a0 2, i.e. Δ0Ms⪢1, but also considered
another more ‘extreme’ case δ00μs⪢1, i.e. Δ0Ms⪢ða0Þ�2. Given that
a0o1 (and in fact for a dry foam a0⪡1), this latter case is
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automatically covered by Δ0Ms⪢1, and Eq. (12) (compatible with a
uniform surface rate of strain on the Plateau border) continues to
apply. In fact it turns out to be not Eq. (12) but rather Eq. (13)
which breaks down in this particular limit, i.e. there is no longer a
velocity boundary layer. As a consequence, the derivation of Eq.
(16) ceases to be valid. This situation has however been explored
already by Vitasari et al. (2016), and therefore we do not need to
give the case Δ0Ms⪢ða0Þ�2 any further special consideration here.

We wish to consider instead what happens when one hypo-
thesises a non-uniform surface rate of strain on the Plateau border
surface. This is achieved in the next subsection.

4.3. Non-uniform strain rate hypothesis

As stated above, we want to consider the case of non-uniform
strain rates on the Plateau border surface. In particular we want to
know what happens if the magnitude of the strain rate is biggest
near the entrance to the Plateau border (where it joins up with the
film) such that us decays to zero or near zero over a distance that is
much smaller than the distance πa=6 (or equivalently Lπ6a

0)
between the border entrance and its central symmetry point. Such
a rapid velocity decay is constraining the Plateau border flow,
which in turn constrains the film flow near the border. The ratio
between the length scale of the velocity boundary layer on the film
Lπ6a

0
crit and the decay length on the Plateau border is now rather

larger than a0crit=a
0 which was the estimated value of this ratio

originally used in Eq. (16). As a result, the actual value of us j x ¼ 0 is
rather smaller than Eq. (16) would predict. In what follows we
shall suppose that, evenwhen a0crit⪡a

0, the velocity decay length on
the Plateau border can be selected to be comparable with the
length scale of the velocity boundary layer on the film. The
rationale for selecting this particular length scale as being relevant
to velocity decay on the Plateau border will be discussed later. For
the present though, we wish to explore the consequences of
selecting it. The effect is to make the film aware of the constraints
from the Plateau border, but nevertheless still unaware of the
actual size of the Plateau border (since this is substantially larger
than the velocity decay length).

In lieu of Eq. (12), we assume a formula for ∂us=∂xj x ¼ 0 that is
compatible with the above mentioned decay length scale, i.e.

∂us=∂xj x ¼ 0 ¼ �cus j x ¼ 0 L
ffiffiffiffiffiffiffiffiffiffi
δ00μs

q� �
� �cus j x ¼ 0 L

π
ffiffiffi
3

p

6
a0crit

 !,,

� �cus j x ¼ 0 a
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p� �.
ð17Þ

where c is an unknown value (ideally of order unity, but yet to be
determined).

In that case (even if a0⪢a0crit , i.e. even if Δ0Ms⪡1), the magnitude
of us j x ¼ 0 (the velocity at the end of the film) will always be sig-
nificantly less than that of usðoÞ (the velocity immediately outside
the boundary layer). In fact (combining Eq. (17) with Eq. (13))
implies

us j x ¼ 0 �
ffiffiffi
3

p

ð
ffiffiffi
3

p
þcÞ

usðoÞ; ð18Þ

an important equation to which we will return later.
Note that Eq. (17) only implies (18) when Eq. (13) is also valid.

We have already stated that (13) might lose validity when the γ vs.
x field on the film develops a boundary layer character (instead of
just us vs. x exhibiting boundary layers). In such situations (17) can
still be valid, even though (18) is not. We will not study such
situations in any detail in what follows, although we will return to
this point much later on.

In summary, what we are now claiming is that if a0⪡a0crit
(equivalently Δ0Ms⪢1), then Eq. (12) still applies and consequently
us j x ¼ 0 is much smaller in magnitude than usðoÞ as Eq. (16) then
suggests. On the other hand, if a0⪢a0crit (i.e. Δ0Ms⪡1), Eq. (12) does
not apply, but should be replaced by Eq. (17) instead. As a result,
instead of Eq. (16) (which would now erroneously predict us j x ¼ 0

very close to usðoÞ), we need to employ Eq. (18), which predicts
somewhat smaller us j x ¼ 0 values.
5. Dimensionless groups and their magnitude

In the foregoing discussion we identified a number of key
dimensionless groups. For analysing the Plateau border flow, these
were Δ0 � δ=a (dimensionless film thickness) and Ms ¼ μs=ðμaÞ
(dimensionless surface viscosity). For analysing the film flow, we
identified instead δ00 � δ0=L (film aspect ratio), μs ¼ μs=ðμLÞ (again
a dimensionless surface viscosity, but scaled differently from Ms),
a0 ¼ a=L (dimensionless curvature radius of the Plateau border),
and a0crit (defined in terms of δ00 and μs in Eq. (14)). Not all these
dimensionless groups are independent of one another, some being
more relevant to the Plateau border, and others more relevant to
the film, but when trying to match the Plateau border flow to the
film flow, it is useful to consider them all.

In what follows estimates of the values of these dimensionless
groups are given (Section 5.1) and then the governing equations
developed earlier in Sections 2–4 are cast in dimensionless form
involving the relevant dimensionless groups (Section 5.2).

5.1. Typical values of dimensionless groups

Estimates of the above dimensionless groups have been obtained
(Vitasari et al., 2016) under conditions typical of a fractionation process.

The geometric factor δ00 (film thickness to film length) was
estimated to be small: around 4� 10�3 was typical for a freshly
formed film, but a smaller value 3� 10�6 was typical of a film that
has already had an opportunity to drain.

The geometric factor a0 was estimated (Vitasari et al., 2016) to
be 0.1 typically. This can be shown to correspond to a fairly dry
foam (Vitasari, 2014) (liquid fraction 0.17% assuming a Kelvin cell
bubble structure). A wetter foam would have a larger a0 value: a0 is
known to be proportional to the square root of liquid fraction
(Vitasari, 2014), so significant changes in liquid fraction imply less
significant changes in a0.

The value of Δ0 (which happens to equal δ00=a
0) is an order of

magnitude larger than that of δ00 (values somewhere in the range
4� 10�2 down to 3� 10�5 being typical). It is clear that Δ0 (like
δ00 itself) is a parameter that is significantly smaller than unity.

Considerable uncertainty surrounds the ‘typical’ value of the
dimensionless rheological parameter μs. This is partly because
different surface active materials will have very different surface
viscosities, so μs is strongly material dependent. However the
uncertainty is also partly because (even for a given surface active
material) different measurement techniques can lead to wildly
different values (Vitasari et al., 2016; Stevenson, 2005).

The surface active protein bovine serum albumin (BSA) is a material
that has been used in fractionation studies previously (Brown et al.,
1990). For a typical fractionation set up, the value of μs was estimated
(Vitasari et al., 2016) to be 880, using a surface viscosity value deter-
mined by Durand and Stone (2006). The common surfactant sodium
dodecyl sulphate (SDS) was found by Durand and Stone (2006) to have
a surface viscosity two orders of magnitude smaller than BSA. Different
measurement techniques however find much smaller surface viscos-
ities for SDS (smaller by three or more orders of magnitude): see
Vitasari et al. (2016) and references therein. Thus, with a0 ¼ 0:1 as
above, the parameterMs (which equals μs=a

0) could be as large as 8800
for BSA, but could be five (or more) orders of magnitude smaller for a
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different material (SDS) and/or if a different measurement technique is
deemed more reliable than that of Durand and Stone (2006).

The computations to follow will employ a0 fixed at 0.1, but with
Δ0 andMs values covering the wide ranges identified above. Before
proceeding with detailed calculations, however, it is convenient to
cast our governing equations in dimensionless form.

5.2. Governing equations in dimensionless form

We choose different dimensionless scales in the governing
equations according to whether we treat flow on the film (Section
5.2.1) or Plateau border (Sections 5.2.2 and 5.2.3).

5.2.1. Dimensionless governing equations for the film
For the film we make distances dimensionless with respect to

the film half-length L. The dimensionless coordinate x0 runs from
the centre of the film (at x0 ¼ �1) to the junction with the Plateau
border (at x0 ¼ 0).

We make surface tensions γ dimensionless with respect to a
Gibbs parameter4 G. This parameter G governs variations of surface
tension on the film: if there are significant relative changes in the
surfactant coverage along the film, we expect variations in γ up to
the order of G. For the systems treated here (Vitasari et al., 2013b,
2016), G is comparable in size to γ0, the constant tension at the
point where the film and border join.

Velocities on the film are made dimensionless on the scale
Gδ00=μ, a scale which arises from balancing Marangoni stresses
with viscous shear stress in the bulk of the film.

Eq. (4) becomes

3u0
s ¼ ∂γ0=∂x0 þδ00μs∂

2u0
s=∂x

0 2 ð19Þ
where u0

s is dimensionless velocity and γ0 is dimensionless surface
tension.

The dimensionless analogues of Eqs. (12) and (16) are

∂u0
s=∂x

0 j x0 ¼ 0 ¼ �u0
s j x0 ¼ 0=ðπa0=6Þ ð20Þ

u0
s j x0 ¼ 0 � u0

sðoÞ 1þa0crit=a
0� ��1 ¼ u0

sðoÞ 1þ6
π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

3

r !�1

; ð21Þ

u0
sðoÞ being dimensionless velocity outside a boundary layer. Ana-

logues of (17) and (18) are

∂u0
s=∂x

0 j x0 ¼ 0 ¼ �cu0
s j x0 ¼ 0

ffiffiffiffiffiffiffiffiffiffi
δ00μs

q
� �cu0

s j x0 ¼ 0 a0
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p� �
:

.	

� �cu0
s j x0 ¼ 0

π
ffiffiffi
3

p

6
a0crit

 !,
ð22Þ

u0
s j x0 ¼ 0 �

ffiffiffi
3

p

ð
ffiffiffi
3

p
þcÞ

u0
sðoÞ: ð23Þ

5.2.2. Dimensionless governing equations for the Plateau border
For the 2-d flow in the Plateau border we make distances

dimensionless on the scale a, with r0 denoting the dimensionless
radial coordinate. The dimensionless arc length (denoted S and
measured along the Plateau border) is now identical to the angular
coordinate θ. The symbol ∇ denotes the dimensionless gradient
operator. We also define two sets of dimensionless Cartesian
coordinates: an X coordinate (measured along the Plateau border
from the point where the border meets the film), and a Y coor-
dinate (measured across the border), as well as x, y coordinates
4 We define G as a Gibbs elasticity, the absolute magnitude of the derivative of γ
with respect to the logarithm of surfactant surface excess, evaluated for the par-
ticular surface excess on the Plateau border.
(rotated with respect to X and Y, and with their origin outside the
Plateau border at the point where r0 ¼ 0; see Fig. 2).

On the film (see Section 5.2.1) velocities were made dimen-
sionless on a ‘Marangoni’ velocity scale Gδ00=μ. Since we assume no
Marangoni stresses on the Plateau border surface, we select a
different velocity scale there: velocities are made dimensionless
on the scale juj r ¼ a;θ ¼ 0 j � jus j S ¼ 0 j , the absolute value recog-
nising that us j S ¼ 0 is typically negative.

Dimensionless velocity U has components either Ur and Uθ (in
polar coordinates) or UX and UY (in Cartesian coordinates), while
the velocity along the Plateau border surface is Us. Based on the
way we non-dimensionalise velocity, we deduce Us j S ¼ 0 ¼ �1.
Pressure is non-dimensionalised on the scale μjus j S ¼ 0 j=a
(equivalently on the scale Gδ00 ju0

s j S ¼ 0 j=a� GL�1Δ0 ju0
s j S ¼ 0 j ), and

we denote the dimensionless pressure by p.
Continuity implies ∇ � U ¼ 0. The dimensionless Stokes flow

equation is

0¼ �∇pþ∇2U: ð24Þ

On the Plateau border surface (r0 ¼ 1), the boundary conditions are
Ur ¼ 0 and also

�r0
∂
∂r0

Uθ

r0

� �
¼Ms

∂2Us

∂S2
: ð25Þ

At the entrance to the Plateau border (θ¼0) we have a boundary
condition

Uθ ¼ �3
2
ð1þΔ0�r0Þ2

Δ2
0

þ1
2

ð26Þ

and we also set the dimensionless shear stress to the known function
∂Uθ=∂r0. Symmetry conditions that are applicable on θ¼ π

6 and also on
r0 ¼ ð1þΔ0Þ= cos θ are Un ¼ 0 and n � ∇Ut ¼ 0 where Un and Ut are
normal and tangential velocity components and n denotes a normal
vector.

In addition to this, we are free to set a zero for the pressure scale.
One possible way of setting this is to assume zero pressure in the gas
phase outside the Plateau border, which (owing to the curvature of the
Plateau border surface) should give a negative pressure in the liquid in
the Plateau border. However in view of the fact that we have imposed
a condition of uniform curvature on the Plateau border surface, rather
than imposing a normal stress condition along it, we can only set zero
pressure in the gas phase at one particular point on the Plateau border
surface, which we take to be the symmetry point θ¼ π

6. We then
estimate the (dimensionless) pressure in the liquid at this point to be
�ðΔ0a0Þ�1. The magnitude of this has been obtained by dividing the
dimensional Young–Laplace pressure γ0=a through by the scale
GL�1Δ0 ju0

s j S ¼ 0 j . Defining γ00 ¼ γ0=G and a0 ¼ a=L, this evaluates to
γ00ðΔ0a0 ju0

s j S ¼ 0 j Þ�1. In the case of the protein BSA it has been found
(Vitasari et al., 2016) that γ00 is order unity (based on data sourced
from Durand and Stone, 2006). Meanwhile the dimensionless velocity
ju0

s j S ¼ 0 j at the film–Plateau border junction is sensitive to how
surfactant is distributed along the film, but should be no larger than
order unity, based on the scalings employed for the film flow.5 Hence
we estimate γ00ðΔ0a0 ju0

s j S ¼ 0 j Þ�1 to be ðΔ0a0Þ�1 and set this to be
(the absolute magnitude of) the liquid pressure on the Plateau border
surface at θ¼ π

6. The pressure that we compute at other θ values along
the Plateau border surface will differ from �ðΔ0a0Þ�1. However as
long as the variation in pressure relative to ðΔ0a0Þ�1 is small, our
approximation that the Plateau border surface has a uniform curva-
ture remains valid.
5 Note that jUs j S ¼ 0 j is unity by definition, but ju0
s j S ¼ 0 j is scaled differently

and differs from unity.
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5.2.3. Dimensionless quasi-1-d equations for the Plateau border
In addition to the 2-d formulation described above, we can also

obtain a dimensionless version of the quasi-1-d Plateau border
flow (from Section 3.5) applicable for dimensionless X values
considerably smaller than unity. The velocity component UY is
much smaller than UX, and so the flow is dominated by the latter
which we denote simply by U.

The governing equations are as follows. In dimensionless form,
Eq. (9) becomes

U �UsðXÞ
3
2

Y2

ðΔðXÞÞ2
�1
2

 !
ð27Þ

with dimensionless border thickness

Δ�Δ0þX2=2: ð28Þ
Eq. (11) (neglecting Marangoni effects in the Plateau border)
becomes

∂U=∂Y j Y ¼ Δ ¼Ms∂2Us=∂X2 ð29Þ
from which it follows

3Us=Δ¼ 3Us Δ0þX2=2
� �

¼Ms ∂2Us=∂X2;
.

ð30Þ

where recall Δ0 is a small parameter. This is the key equation
which we must solve.

We seek the value of ∂Us=∂X j X ¼ 0 (or equivalently ∂Us=∂Sj S ¼ 0

since Cartesian coordinate X and arc length coordinate S coincide
at X ¼ S¼ 0). These values can be used to couple the film flow u0

s
and Plateau border flow Us. Eq. (20) hypothesises that

a0 ju0
s j �1∂u0

s=∂x
0 j x0 ¼ 0 � ∂Us=∂Sj S ¼ 0 � 6=π ð31Þ

whereas Eq. (22) gives (for a value of c to be determined)

a0 ju0
s j �1∂u0

s=∂x
0 j x0 ¼ 0 � ∂Us=∂Sj S ¼ 0 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
:

.
ð32Þ

In the above (for both 2-d and quasi-1-d systems) there is an
assumption (to be checked a posteriori) that Us and hence ∂Us=∂X (or
equivalently ∂Us=∂S) vary on length scales large compared to Δ1=2

0 . The
reason is that Marangoni stresses are neglected in Eqs. (25) and (29)–
(30) assuming that Plateau borders act as surfactant reservoirs due to
being much thicker than films, which can only be true for X larger than
order Δ1=2

0 .
6 In the systems of interest, the value of β depends on the relative differences
in surfactant concentration between surfactant-rich material in Plateau borders
and surfactant-lean material in films. Assuming a significant relative concentration
difference, we can treat β as being a constant of order unity.

7 The choice of μs ¼ 0:088 for this illustrative case recognises from Section 5.1
that the parameter Ms (and hence the parameter μs �Msa0 with a0 ¼ 0:1 here) can
be orders of magnitude smaller than the ‘nominal’ Ms value of 8800 quoted in that
section.
6. Case with analytic solution for the velocity field in the film

In the first instance we consider the velocity field on the film.
Either Eq. (20) or (22) allows us to close the set of equations deter-
mining this. All the above discussion has been generic without
assuming any particular field for surface tension γ0 vs. x0 along the
film. In order to calculate actual velocity fields u0

s vs. x
0 in this system,

it is necessary to know the value of γ0 vs. x0 (which ultimately
depends on the instantaneous distribution of surfactant, that in turn
is also coupled to the velocity field via the surfactant mass balance):
for the sake of illustration, a simple and easy-to-solve case with a
specified surfactant distribution is considered in what follows. The u0

s
vs. x0 velocity fields that we compute of course drive the subsequent
time evolution γ0 vs. x0 (although we do not consider this aspect here,
focussing just on the instantaneous velocity field u0

s). In the easy-to-
solve case that we consider here, the contrast between the con-
sequences of Eq. (12) and those of (17) becomes readily apparent.

We will suppose for convenience that

γ0 �γ00 ¼
β
2

1�ðx0 þ1Þ2
� �

ð33Þ

γ00 is the (assumed constant and uniform) surface tension on the
Plateau border (non-dimensionalised here with respect to the
Gibbs parameter G) and β is a dimensionless constant.6 This is a
simple but plausible distribution of surface tension on a film
during the foam fractionation scenarios of interest here: film
surface tension is on average higher than that on the Plateau
borders, and moreover local surface tension grows as one moves
towards the centre of the films, away from the Plateau borders.

We are interested in cases where the parameter a0crit is no larger
than order a0, since only in such cases is there any ambiguity regarding
which boundary condition to use (assumption (20) vs. assumption
(22)). Under these circumstances the velocity field admits a ‘boundary
layer’, a decaying exponential which decays rapidly as x0 moves into the
film away from the Plateau border. It follows moreover that the

boundary layer length (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q
in dimensionless units) is no larger

than order a0 (with dimensionless Plateau border curvature radius a0

itself being much smaller than unity).
The solution to Eq. (19) for u0

s that satisfies condition (20) is

u0
s ¼ �βðx0 þ1Þ

3
þ βð1þa0π=6Þ
3 1þa0=a0crit
� �exp x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ00μs=3
q

0
B@

1
CA

� �βðx0 þ1Þ
3

þ βð1þa0π=6Þ
3 1þa0=a0crit
� �exp x0

π
6
a0crit

0
B@

1
CA: ð34Þ

Hence at the end of the film where it joins the Plateau border (i.e.
at x0 ¼ 0)

u0
s j x0 ¼ 0 ¼ �β

3

ða0=a0critÞ�
π
6
a0

� �
1þa0=a0crit
� � ð35Þ

which is actually consistent with Eq. (21). Remember that a0crit is
no larger than order a0 here, so the right hand side of Eq. (35) is
reasonably close to �β=3. Indeed we can denote this value �β=3
by u0

sðoÞ the dimensionless velocity immediately outside the
exponential ‘boundary layer’. Both velocities u0

s j x0 ¼ 0 and u0
sðoÞ are

of course negative (i.e. in the direction from Plateau border to film)
since in the systems of interest, Marangoni stresses drive motion
from surfactant-rich Plateau borders to surfactant-lean films, as
well as along the surfaces of the films, towards their centres.

An illustrative case is plotted in Fig. 3 using dimensionless

parameter values7 μs ¼ 0:088 and δ00 ¼ 4� 10�3 (with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q
�

0:010 and hence a0crit ¼ 6
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ00μs=3

q
� 0:020) and also with a0 ¼ 0:1.

The dimensionless parameter β is taken arbitrarily to equal unity.
In the case of assumption (22), the solution for the velocity field

becomes instead

u0
s ¼ �βðx0 þ1Þ

3
þβ
3

cffiffiffi
3

p þπ
6
a0crit

� �
ð1þc=

ffiffiffi
3

p
Þ

exp
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ00μs=3
q

0
B@

1
CA: ð36Þ

From Eq. (36) we deduce at the end of the film

u0
s j x0 ¼ 0 ¼ �β

3
ð1�πa0crit=6Þ
ð1þc=

ffiffiffi
3

p
Þ

ð37Þ
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Fig. 3. (a) Dimensionless fluid surface velocity u0
s on a film vs. dimensionless

coordinate x0 along the film predicted by Eq. (34) (the ‘original assumption’) and Eq.
(36) (the ‘new assumption’) respectively. We suppose μs ¼ 0:088 and δ00 ¼ 4� 10�3

from which we can deduce ðδ00μs=3Þ1=2 � 0:010 and a0crit ¼ 6
πðδ00μs=3Þ1=2 � 0:020. We

also take a0 ¼ 0:1 and set (without loss of generality) β¼1. In Eq. (36), the parameter
c is arbitrarily set to

ffiffiffi
3

p
. (b) A zoomed view of u0

s vs. x0 in the neighbourhood of
x0 ¼ 0 where the film joins the Plateau border.
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which is consistent with Eq. (23), and (given that c is expected to be
of order unity) suggestive of a velocity with a magnitude rather
smaller than β=3.

Fig. 3 plots the velocity profile (36) assuming c¼
ffiffiffi
3

p
(chosen

arbitrarily for the moment, albeit to be justified later on) and all
other parameter values as before. We can see that under these
circumstances, the velocity at the end of the film u0

s j x0 ¼ 0 is more
constrained than with Eq. (34).

Corroborating the discussion of Sections 4.2 and 4.3, a comparison
between Eqs. (37) and (35) tells us how much less u0

s at the end of the
film is in the case of boundary condition (22) compared to (20). We can
however only effect this comparison if we are able to determine the
value of the parameter c. This requires detailed knowledge of the flow
field in the Plateau border and is the topic of the sections to follow.
8 Note that the 40 s run time reported here gives just the velocity field in the
Plateau border arising due to the surfactant distribution on the film for a given
instant in time. The run times reported in the introduction to the paper corre-
sponding to the simple model of Vitasari et al. (2016) (e.g. just a few minutes run
time with surface viscosity) considered the entire evolution of the surfactant
concentration field, with on the order of 104 time steps. This corresponds to a mere
0.02 s run time per step.
7. Two-dimensional fluid dynamical calculations

The 2-d Stokes flow equations for the Plateau border described
in Section 5.2.2 have been implemented in the finite element
software COMSOL multiphysics using polar r0, θ coordinates.
Although it is possible to solve numerically the coupled Stokes
flow equations for the Plateau border and film together, in practice
we avoid this, as the film would need to be discretised into very
tiny elements due to being much thinner than the Plateau border.
It is less expensive to exploit lubrication type assumptions in the
film (as per Section 2) and perform COMSOL finite element cal-
culations solely for the Plateau border.
We encountered a slight difficulty with implementing the
symmetry conditions (Un ¼ 0 and n �∇Ut ¼ 0) at the boundary
r0 ¼ ð1þΔ0Þ= cos θ, which is a straight line in Cartesian coordi-
nates, but curved in polar coordinates. COMSOL did not permit us
to represent the boundary of our solution domain via an arbitrary
r0 vs. θ curve. It did however permit us to divide the boundary up
into a large number of segments (1000 segments) with r0 vs. θ on
each segment being represented by a Bezier curve. The Bezier
curves were chosen such that for each segmented interval of θ, the
values of r0 and dr0=dθ at the start and end of the interval matched
the true boundary r0 ¼ ð1þΔ0Þ= cos θ. The conditions Un ¼ 0 and
n � ∇Ut ¼ 0 were then applied to these Bezier representations of
the symmetry line (despite the fact that the Bezier representation
does not quite coincide with the original symmetry line, and hence
symmetry should be very slightly broken along it).

There was invariably some noise detectable in our simulation
data on the length scale of the Bezier intervals, but it was tiny
compared to the velocities calculated. Moreover the use of Bezier
curves in the polar coordinate representation of the symmetry
boundary proved far less noisy than using piecewise linear (or
‘straight’) r0 vs. θ segments in that polar coordinate representation,
which would imply dr0=dθ jumps from segment to segment.

7.1. Numerical implementation

We implemented a numerical 2-d simulation in COMSOL, for
values of Δ0 equal to 5� 10�2, 5� 10�3, 5� 10�4, and 5� 10�5.
The finite element mesh was chosen adaptively by COMSOL. Fig. 4
shows a ‘sample’ mesh in the case Δ0 ¼ 0:05. This has been con-
verted from a mesh in polar r0, θ coordinates to Cartesian x, y
coordinates (see Fig. 2 for definitions of x and y; compared to the X, Y
system, the origin has been shifted and the coordinate frame rota-
ted). To aid clarity, the mesh shown has only 1558 elements, and the
symmetry line r0 ¼ ð1þΔ0Þ= cos θ (which maps to x ¼ 1þΔ0) is
constructed using only 100 Bezier segments in r0, θ space (instead of
the usual 1000 segments). The meshes we actually used in our
computations were significantly denser (see below). Unsurprisingly
Fig. 4 shows smaller elements being chosen near the entrance to the
Plateau border near θ¼0 (owing to the thinner geometry there) but
elements could be rather larger near θ¼ π=6 where the border has
opened much wider. Smaller elements are also seen along x ¼ 1þΔ0

(as a consequence of the aforementioned Bezier representation).
As stated above, the meshes used in our computations were

denser than the one in Fig. 4. Even with these dense meshes,
however, there was a marked tendency towards having fewer
elements in more ‘extreme’ geometries as Δ0 was decreased. This
was partly due to the fact that, as Δ0 decreased, the overall size of
the solution domain decreased slightly. However it was also due to
the fact that, as Δ0 decreased, significant velocities tended to be
confined closer and closer to the entrance to the Plateau border,
meaning rather large elements could be used elsewhere in the
domain. For instance 191 503 elements (869 680 degrees of free-
dom) were used when Δ0 ¼ 5� 10�2 but only 92 155 elements
(435 612 degrees of freedom) were used for Δ0 ¼ 5� 10�5.
Simulations with Δ0 ¼ 5� 10�2 took approximately 40 s on a PC
with an Intel Core i5 and 6 Gb RAM memory, with those for
smaller Δ0 values running slightly more quickly.8 Notice however
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that the smallest Δ0 values also are amenable to asymptotic
approaches (see Section 5.2.3).

We studied values of dimensionless surface viscosity Ms over a
wide range. We considered9 Ms values in powers of ten from 104

down to 10�6, and also considered Ms ¼ 0.
Results of the COMSOL simulations are presented and discussed

in the next section.
8. Numerical results

This section is laid out as follows. In Section 8.1 we show
computed streamline patterns in the Plateau border. Then in
Section 8.2 we show velocity profiles along the gas–liquid Plateau
border surface. Next in Section 8.3 we analyse the surface strain
rate at the film–Plateau border junction, which is essential for
coupling the film and Plateau border flows together. Next in Sec-
tion 8.4 we consider pressure distributions. Finally in Section 8.5
we discuss the impact of surface viscous effects on surfactant mass
transfer rates.
9 In addition to the various cases described here, one can solve a formal limit of
Ms-1 for which one imposes a tangential velocity condition on the gas–liquid
Plateau border surface Us ¼ �ð1�6S=πÞ in lieu of Eq. (25). However the case Ms ¼
104 produced a Us profile that was already so close to that tangential velocity
condition, we never found it necessary to tackle the formal Ms-1 case.
8.1. Streamline patterns

In what follows we consider streamline patterns with two
distinct Δ0 values: Δ0 ¼ 0:05 (Section 8.1.1) and Δ0 ¼ 0:005 (Sec-
tion 8.1.2). Topologies of the streamline patterns are discussed in
Section 8.1.3. Finally Section 8.1.4 places a special focus on a par-
ticular Ms value, namely Ms ¼ 1.

8.1.1. Streamline patterns for Δ0 ¼ 0:05
Fig. 5 shows three streamline patterns computed for Ms ¼ 104,

Ms ¼ 1 and Ms ¼ 0:1 respectively all for the case Δ0 ¼ 0:05. These
streamline patterns have been computed in r0, θ coordinates but
plotted in terms of Cartesian x, y variables as defined in Fig. 2.

On each figure a total of 15 streamlines are shown (including
the streamline on the domain boundary). It is clear that the
streamline pattern for Ms ¼ 104

fills the entire domain, which
seems consistent with a hypothesis of uniform decay of the surface
velocity between the entrance to the Plateau border and the
symmetry point on the Plateau border surface. This in fact follows
directly from boundary condition (25). If Ms is exceedingly large,
∂2Us=∂S2 must be small to compensate. Hence ∂Us=∂S must be near
uniform, and Us must be close to a straight line function of S

Us � �ð1�6S=πÞ ð38Þ
which satisfies the correct boundary conditions Us j S ¼ 0 ¼ �1 and
Us j S ¼ π=6 ¼ 0 respectively at the Plateau border entrance and at the
symmetry point on the Plateau border.

The streamline pattern for Ms ¼ 1 fills most of (but not quite all
of) the domain: the spatial decay of the streamline pattern is
noticeably faster than for Ms ¼ 104. Finally for Ms ¼ 0:1 the spatial
decay of the streamline pattern is seen to be very abrupt indeed.
This is definitely inconsistent with an assumption of uniform
spatial decay of the velocity field along the entire Plateau border
surface.

8.1.2. Streamline patterns for Δ0 ¼ 0:005
Analogous data but with a smaller Δ0 (i.e. Δ0 ¼ 0:005) are

shown in Fig. 6. Each plot again has 15 streamlines, but (owing to
the extremely thin geometry at the entrance to the Plateau border)
it is not easy to see them all. This is particularly true for Ms ¼ 0:1
where the streamlines are all confined very near the entrance to
the Plateau border, the rest of the Plateau border barely having
any flow.

By contrast for Ms ¼ 104 it is still the case that the streamlines
fill the entire Plateau border (as was also seen in Fig. 5) but the
streamline pattern is subtly different from what was seen before.
Specifically the topology of the streamline pattern is different, as
Fig. 7 shows schematically: two internal stagnation points (one
centre and one saddle) are present in the case with small Δ0 ¼
0:005 and Ms ¼ 104, and, associated with these stagnation points,
there is a set of closed recirculation streamlines. In fact we this
same topology was observed in all cases studied with both Δ0r
0:005 and MsZ10.

The explanation for this change in streamline topology is given
in the next section.

8.1.3. Streamline topology
When Δ0 is small but Ms is large (i.e. rather larger than unity)

we have already seen that significant tangential flow on the gas–
liquid Plateau border surface extends sufficiently far along the
Plateau border that the velocity is still significant at points where
the local border thickness Δ greatly exceeds the thickness Δ0 at
the film–Plateau border junction. To satisfy continuity, a tangential
flow velocity also arises on the symmetry line r0 ¼ ð1þΔ0Þ= cos θ
which is of opposite sign but similar order of magnitude to the
flow on the gas–liquid surface r0 ¼ 1.
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In the region where Δ⪢Δ0, the flow field in the interior of the
Plateau border set up by those tangential boundary flows, should
not be too sensitive to precisely which boundary condition we
impose at the film–Plateau border junction at θ¼0 between r0 ¼ 1
and r0 ¼ 1þΔ0, given that the length of that boundary is tiny. In
particular if we were to change the boundary condition at θ¼0 so
as to ‘close off’ the film–Plateau border junction and thereby not
permit any fluid penetration whatsoever across any part of it, we
would not expect to affect greatly the flow far from the film–Pla-
teau border junction, provided we kept the tangential flows on
r0 ¼ 1 and r0 ¼ ð1þΔ0Þ= cos θ unchanged.

This ‘closed off’ variant of the flow field necessarily has closed
recirculation streamlines. Given the tangential motion imposed on
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Fig. 6. Streamline patterns within the Plateau border in the cas
some of the domain boundaries, the resulting flow is reminiscent
of a ‘lid-driven’ system (Ramanan and Homsy, 1994) for which a
closed recirculation streamline topology might be anticipated.
Returning to the Plateau border flow, since the ‘true’ flow field
away from the neighbourhood of θ¼0 should be similar to the
‘closed off’ variant, it too must have closed recirculation
streamlines.

The above argument does not however apply if Δ0 is increased:
the film–Plateau border junction is then rather more significant,
and a change to the boundary condition on that junction (from the
original boundary to a ‘closed off’ one) would be rather more than
just a weak perturbation to the flow. Thus there is no need to
expect the same streamline topology in these two distinct cases.
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 No stagnation point  With stagnation points

Fig. 7. Topology of the streamline pattern in a Plateau border in the case (a) with no stagnation point and (b) with two stagnation points (one centre and one saddle). To aid
clarity, the thickness of the Plateau border has been exaggerated in both (a) and (b), instead of drawing the figure to scale. However (b) is deliberately drawn thinner than
(a) because cases with low film thickness (and also high surface viscosity) tend to exhibit the stagnation point topology.

10 Strictly speaking we ignore Marangoni stresses on those parts of the border
where it is thicker than the ‘effective Henry constant’ (see Section 3.5), the effective
Henry constant being a physicochemical length scale bigger than the film thickness,
but smaller than the curvature radius of the Plateau border.
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Likewise the argument does not apply when Ms is compara-
tively small (e.g. Ms rather less than unity). In such cases the Pla-
teau border flow field and specifically the tangential velocity on
the gas–liquid Plateau border surface decays quite rapidly moving
along the border. In the region where the tangential surface
velocity is significant, the thickness of the Plateau border is still
comparable with the thickness of the film. Thus the arguments
suggesting a change in streamline topology towards a closed
recirculation pattern do not apply here, because those arguments
relied on flow managing to extend into regions where the Plateau
border thickness vastly exceeded that of the film.

8.1.4. Case Ms ¼ 1
The above discussion in Section 8.1.2 considered Δ0 ¼ 0:005

with Ms ¼ 0:1 and with Ms ¼ 104. Consider now the case Ms ¼ 1 in
Fig. 6(b). As for the case Ms ¼ 1 with Δ0 ¼ 0:05 (i.e. Fig. 5(b)) this
shows at least some streamlines penetrating along most of the
solution domain. However for Δ0 ¼ 0:005 relatively few stream-
lines (out of the 15 streamlines plotted) penetrate very far into the
domain. This suggests a rapid velocity decay near the entrance to
the Plateau border followed by a more gradual decay.

Understanding how a rapid decay followed by a gradual one
might come about particularly for Ms values near unity can be
explained with reference to the quasi-1-d asymptotic model of
Section 5.2.3. For sufficiently small X values Eq. (30) simplifies to

3Us=Δ0 �Ms∂2Us=∂X2: ð39Þ

The solution for Us is an exponential decay, decaying on a length
scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
.

If Ms is significantly smaller than unity then the exponential
decay is complete long before X becomes order Δ1=2

0 which is the
regime for which Eq. (39) remains close to Eq. (30). It is however
possible to query the physical basis for Eq. (30) (and hence Eq.
(39)) under these circumstances: as alluded to in Section 5.2.3,
Marangoni stresses in the Plateau border were neglected on the
basis that it is much thicker than the film10 but that is not true for
XrOðΔ1=2

0 Þ.
If however Ms is order unity or above, the exponential decay is

‘frustrated’. As the decay of Us proceeds and X increases, Δ
becomes larger than Δ0, not only ensuring the physical validity of
(30), but also making it deviate from (39). This increases the
characteristic decay length further and further above

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
, so

the decay slows down.
It is instructive to compare with Fig. 5(c), which has Δ0 ¼ 0:05

and Ms ¼ 0:1, giving the same value for the product Δ0Ms as in
Fig. 6(b). Whereas Fig. 5(c) shows a rapid decay of the velocity field
(i.e. exponential decay with a characteristic decay lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
, continuing of course to neglect any Marangoni stresses

on the border), it is clear that Fig. 6(b) exhibits a very different
length scale for the overall decay, in view of the gradual decay
component mentioned above.

We have also computed streamline patterns for yet smaller
values of Δ0, i.e. Δ0 ¼ 0:0005 and Δ0 ¼ 0:00005, but the extremely
thin geometry near where the Plateau border joins the film makes
it difficult to resolve the patterns without a highly zoomed view in
that part of the domain. In addition to the 2-d streamline patterns,
however, it is also of interest to know the distribution of tangential
velocity Us along the gas–liquid Plateau border surface. Such data
are easy to plot even for exceedingly tiny Δ0 values, and are con-
sidered in the next section.

8.2. jUs j vs. S curves

In what follows we compare jUs j vs. S curves for two different
Δ0 values Δ0 ¼ 0:005 (Section 8.2.1) and Δ0 ¼ 0:00005 (Section
8.2.2).

8.2.1. jUs j vs. S for Δ0 ¼ 0:005
Curves for jUs j vs. S computed numerically are shown in Fig. 8

(a) for Δ0 ¼ 0:005 and various Ms (remember that by construction
Us j S ¼ 0 ¼ �1 so that jUs j S ¼ 0 j ¼ 1).

In Fig. 8(a), for the case Δ0 ¼ 0:005 and Ms ¼ 10 000, we see Us

is virtually a straight line function of S. The case Δ0 ¼ 0:005 and
Ms ¼ 100 also deviates comparatively little from a straight line.
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when Δ0⪡Ms⪡1. This curve (labelled ‘exp decay’) is shown explicitly in (a) for the
case Δ0 ¼ 0:005 and Ms ¼ 0:1 but is barely distinguishable from the numerical data.
The analogous exponential curve is not however shown in (b) (which has a much
smaller Δ0 and thereby substantially faster decays) to avoid crowding the figure.
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These data then correspond to the prediction of Eq. (38). The data
match the assumption (31) used by Vitasari et al. (2016).

Looking instead at Δ0 ¼ 0:005 and Ms ¼ 0:1 we see that jUs j vs.
S is very far from a straight line function. Instead it follows very
closely an exponential decay (with characteristic decay lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
as discussed in Section 8.1.4): the numerical data and

the exponential decay curve are virtually indistinguishable on the
scale of the graph.

The cases Δ0 ¼ 0:005 and either Ms ¼ 10 or Ms ¼ 1 are inter-
mediate between the situations described above. In particular Δ0

¼ 0:005 and Ms ¼ 10 shows a rapid initial decay which is arrested
(at around S¼0.2 with jUs j being roughly 0.4 at this point) to be
followed by a straight line decay.

The case Δ0 ¼ 0:005 and Ms ¼ 1 does not seem to attain a
straight line regime as S increases. Nevertheless the decay with
increasing S turns out to be rather slower than exponential (to
avoid crowding the graph, we have not plotted the corresponding
exponential expð�S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
Þ for this particular Δ0 and Ms

combination). The numerical data for Δ0 ¼ 0:005 and Ms ¼ 1 cor-
respond then to the expected ‘frustrated’ exponential described in
Section 8.1.4, i.e. the decay length grows even whilst the decay
itself occurs.

8.2.2. jUs j vs. S for Δ0 ¼ 0:00005
Data with the same Ms values as before but for Δ0 ¼ 0:00005

(not Δ0 ¼ 0:005) are plotted in Fig. 8(b).
We still see a straight line function for Ms ¼ 10 000 and an

exponential decay for Ms ¼ 0:1 (albeit for Δ0 ¼ 0:00005 decaying
on a much smaller length scale than previously).
The case Ms ¼ 100 now shows a moderate deviation from pure
straight line behaviour, but with a straight line recovered for S
values greater than about 0.1 (see also further discussion of this
case in the appendix). The case Ms ¼ 10 also shows a rapid initial
decay which is subsequently arrested into a straight line decay.
However the rapid initial decay progresses to rather smaller jUs j
values when Δ0 ¼ 0:00005 than when Δ0 ¼ 0:005 (i.e. it continues
down to jUs j of roughly 0.2, instead of roughly 0.4). Finally if we
consider Ms ¼ 1 for Δ0 ¼ 0:00005 we see that the decay of jUs j is
substantially faster than was the case with Δ0 ¼ 0:005 with that
same Ms value.

8.2.3. Explaining the various decay modes for Us

In addition to Us exhibiting pure straight line decays (very large
Ms) and pure exponential decays (values of Δ0 and Ms both sig-
nificantly smaller than unity), the data in Sections 8.2.1–8.2.2
show cases where a rapid initial decay is ‘arrested’ into straight
line decay, and also other cases where an exponential decay is
‘frustrated’, becoming slower than exponential (although not
necessarily a straight line decay).

We already explained in Section 8.1.4 via a quasi-1-d asymp-
totic analysis, how exponential decays for small Δ0 and Ms values
become frustrated once Ms values approach unity. We can also
exploit the quasi-1-d asymptotic analysis to distinguish pure
straight line decays from cases where rapid initial decays are
arrested into straight line decays.

If Ms⪢1=Δ0, then it is clear (via Eq. (28)) that Ms⪢1=Δ for all X
values, and hence (via quasi-1-d equation (30)) that ∂2Us=∂X2

must be near zero for all X. This implies that ∂Us=∂X must be near
uniform for all X values (or strictly speaking for all X values in the
X⪡1 domain of validity of the quasi-1-d asymptotic equations).
This corresponds to a pure straight line decay.

If however 1⪡Ms⪡1=Δ0, then (according to Eqs. (28) and (30))
values of X on the order of Δ1=2

0 still give very large values of
∂2Us=∂X2, implying significant non-uniformities in ∂Us=∂X. As X
grows, however, the value of ∂2Us=∂X2 decays very significantly,
and it is in this domain that Us vs. X is arrested into a straight
line decay.

The predictions (when Ms⪢1=Δ) of uniform ∂Us=∂X in (at least
part of) the solution domain only hold for X⪡1 (the domain where
the quasi-1-d analysis applies). However for larger X values, ana-
logous arguments imply (via Eq. (25)) a uniform ∂Us=∂S (recalling
that Cartesian coordinate X and arc length coordinate S coincide
for X⪡1).

8.3. j ∂Us=∂Sj evaluated at the film–Plateau border junction

The profiles of Us vs. S allow us to compute the values of surface
strain rate j ∂Us=∂Sj at the film–Plateau border junction S¼0.
Recall from Section 5.2.3 that knowing these values is important
for coupling the film and Plateau border flows together.

Tabulated data for j ∂Us=∂Sj S ¼ 0 j are given in Table 1 (and are
also plotted in Fig. 9). An alternative way to present the same data
(see Table 2) is in terms of the parameter c defined via Eq. (32)
which gives

c¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
j ∂Us=∂Sj S ¼ 0 j : ð40Þ

Fig. 9 shows that for sufficiently large values of Ms, the value of
j ∂Us=∂Sj S ¼ 0 j approaches 6=π (just as Eq. (38) predicts). This
corresponds to a uniform straight line decay of jUs j from jUs j ¼ 1
at S¼0 (the film–Plateau border entrance) to jUs j ¼ 0 at S¼ π

6 (the
symmetry point on the Plateau border surface). The value of Ms at
which j ∂Us=∂Sj S ¼ 0 j becomes close to 6=π depends on Δ0, with
agreement achieved sooner as Δ0 increases. This finding is in



Table 1
Values of j ∂Us=∂Sj S ¼ 0 j for various Ms and Δ0. Data shown in italics are within 10%
of 6=π (the value assumed by Vitasari et al., 2016, corresponding to uniform velocity
decay along the entire Plateau border).

Ms Δ0

5� 10�5 5� 10�4 5� 10�3 5� 10�2

0 1:077� 105 1:089� 104 1419 134.4

10�6
8:970� 104 1:063� 104 1403 134.3

10�5
5:435� 104 9062 1297 133.4

10�4
2:280� 104 5446 959.6 125.7

10�3 7675 2280 547.2 96.05
10�2 2446 767.3 228.2 55.16
10�1 771.3 243.7 76.54 22.98
1 235.6 74.51 23.57 7.522
10 58.81 18.73 6.274 2.749
100 9.946 4.140 2.429 1.999
1000 2.756 2.141 1.962 1.918
104 1.994 1.933 1.915 1.910
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Fig. 9. The surface strain rate evaluated specifically at the film–Plateau border
junction j ∂Us=∂Sj S ¼ 0 j (determined from COMSOL numerical simulations in the
Plateau border) plotted for various dimensionless film thicknesses Δ0 and various
dimensionless surface viscosities Ms. Knowing this surface strain rate value is
relevant to coupling the film and Plateau border flows together. For sufficiently
large Ms, the values of j ∂Us=∂Sj S ¼ 0 j converge to 6=π (horizontal line) with faster
convergence seen for larger Δ0. This limiting value corresponds to a uniform
velocity decay along the Plateau border surface, which has a dimensionless arc
length of π=6 between the film–Plateau border junction (with unit velocity in the
present scaling) and a symmetry point (with zero velocity) on the border surface.

Table 2
Values of the parameter c for various Ms and Δ0. Here c has been obtained from

j ∂Us=∂Sj S ¼ 0 j by multiplying through by
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
. Near the top of the table, the

values of c are small (in fact c is identically zero for Ms ¼ 0). Note however that
there is a band of values in the middle of the table (shown in bold face) where c is

within 10% of the value
ffiffiffi
3

p
. These data correspond to Δ0rMsr1. Values in italics

towards the bottom part of the table, correspond to those also given in italics in the
previous table. Since we already know that j ∂Us=∂Sj S ¼ 0 j is nearly 6=π for those

cases, we automatically know that c� 6
π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
. For such cases, the value of c then

tends to be rather larger than unity, since those data correspond to larger values offfiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
. Below the data shown in bold but above the data shown in italics, there are

a set of c values which are significantly less than
ffiffiffi
3

p
. Such data correspond to the

case MsZ1 but Δ0Msr1.

Ms Δ0

5� 10�5 5� 10�4 5� 10�3 5� 10�2

0 0 0 0 0
10�6 0.634 0.237 0.0992 0.0300
10�5 1.215 0.640 0.290 0.0943
10�4 1.612 1.217 0.678 0.281
10�3 1.716 1.612 1.223 0.679
10�2 1.729 1.715 1.613 1.223
10�1 1.724 1.723 1.711 1.624
1 1.665 1.666 1.666 1.681
10 1.315 1.324 1.402 1.943
100 0.703 0.925 1.717 4.469
1000 0.616 1.513 4.387 13.56
104 1.409 4.322 13.54 42.70
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Fig. 10. Computed data Δ0 j ∂Us=∂Sj S ¼ 0 j for various Δ0 and Ms. In the limit of
Ms-0, Δ0 j∂Us=∂Sj S ¼ 0 j seems to converge to a constant (with a value of roughly 7,
shown as a horizontal line). This implies a velocity field decaying along the border
over a very small distance of order Δ0.
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accordance with the predictions of Section 8.2.3 which required
large values of Δ0Ms for a pure straight line decay.

The particular data which match these predictions are high-
lighted in Table 1. Nevertheless the important conclusion from
Fig. 9 and Table 1 is that for many combinations of Δ0 and Ms that
we have considered, it is simply not the case that j ∂Us=∂Sj S ¼ 0 j is
close to 6=π. As a result, the assumption (31) used by Vitasari et al.
(2016) to determine the flow velocity at the film–Plateau border
junction (and hence the rate of surfactant mass transfer predicted
between Plateau border and film) is not always valid. Rescaling the
data (as we do in Section 8.3.1 below) to collapse it in various
different regimes can help us to deduce how j ∂Us=∂Sj S ¼ 0 j
behaves as a function of the parameters Δ0 and Ms.

8.3.1. Rescaling j ∂Us=∂Sj S ¼ 0 j data
If we rescale the data from Fig. 9 by multiplying j ∂Us=∂Sj S ¼ 0 j

by Δ0 we obtain the data of Fig. 10. In the limit of very small Ms (i.e.
for11 Ms⪡Δ0⪡1) the rescaled data approach a constant making it
11 In order to achieve Ms⪡Δ0, it is necessary to choose the very largest value of
Δ0 discussed earlier in Section 5.1 (Δ0 ¼ 4� 10�2), as well as a Ms value more than
5 orders of magnitude smaller than the base case value (Ms ¼ 8800 in the ‘base
apparent that j ∂Us=∂Sj S ¼ 0 j scales proportionally with 1=Δ0

(numerically the coefficient of proportionality appears to be
close to 7).

This corresponds to Us decaying rapidly in space, over an order
Δ0 length scale. As explained in Section 5.2.3, that raises a concern
as to whether Marangoni stresses can be ignored in the Plateau
border as our calculations have done. Even putting that concern to
one side for the moment, we note there is disagreement with the
quasi-1-d predictions described in Section 8.1.4 which imply (for
Ms and Δ0 values both rather smaller than unity) exponential
decay on a length scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
. To understand why the expo-

nential decay predictions cease to apply in the limit of very small
Ms (even in the absence of Marangoni stresses) it is necessary to
realise that they were obtained on the basis of lubrication theory,
which demands longitudinal variations in the flow only occur on
(footnote continued)
case’ discussed above). Indeed from the discussion of Section 5.1, we expect that
Ms⪡Δ0 will be a far less common scenario than Δ0⪡Ms .
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3

p
M�1=2

s . Data for Ms values satisfying Δ0rMsr1 tend
to converge to this line.

P. Grassia et al. / Chemical Engineering Science 143 (2016) 139–165154
distances greater than the thickness of the flow domain. For an
exponential decay to be valid

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
should exceed Δ0 (or in

order of magnitude terms Ms must be at least as large as Δ0).
In the limit of Ms⪡Δ0⪡1 the parabolic profile hypothesised in

(27) must adjust locally very close to the Plateau border surface (at
Y �Δ) so as to change the magnitude of j ∂U=∂Y j from the ‘para-
bolic profile’ prediction 3Us=Δ to a much smaller value. Eq. (29)
then no longer implies (30), and decay of Us is permitted over an
order Δ0 distance, instead of the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
distance that Eq. (30)

would predict. In an extreme case, i.e. Ms-0 (see Fig. 11), a ‘stick-
slip’ problem would arise (reminiscent of that considered in
Richardson, 1970) with a non-zero ∂U=∂Y on the surface of the film
(thanks to a non-zero Marangoni stress there) matching to a
vanishing ∂U=∂Y on the surface of the Plateau border (where
Marangoni stresses are, by assumption, neglected).

As mentioned in Section 5.2.3, the Plateau border has barely
thickened at all over this tiny spatial distance, and it is not
necessarily appropriate to treat the Plateau border in the way our
model assumes as being a reservoir of surfactant (with constant
and uniform surfactant coverage). In any case when Ms is
exceedingly small it seems simplest just to ignore surface viscosity
altogether, decoupling the Plateau border from the film, and then
to compute the surfactant transport processes of interest on the
film via the procedures already established in Vitasari et al.
(2013b).

Returning to consider the full set of Δ0 and Ms values studied in
our numerical simulations, yet another way of scaling the data is
now presented in Fig. 12, namely Δ1=2

0 j ∂Us=∂Sj S ¼ 0 j plotted against
Ms. The figure makes it apparent that for a range of Ms values,
more or less those values satisfying Δ0rMsr1, we find

j ∂Us=∂Sj S ¼ 0 j �
ffiffiffi
3

p
ðΔ0MsÞ�1=2 ð41Þ

an equation that follows directly from the exponential velocity
decay (with decay length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
) as predicted in Section 8.1.4.

Eq. (41) is plotted in Fig. 12 (the line marked ‘slope �1
2’). In par-

ticular for the very smallest Δ0 values that we considered (i.e.
Δ0 ¼ 0:00005), we see good collapse of data onto that line over
several decades.

Expressed in terms of the parameter c, Eq. (41) implies that
c¼

ffiffiffi
3

p
: data matching this c value are highlighted in Table 2.

Knowing c is important for determining the flow at the film–
Plateau border junction (which is evident from Eq. (23), and which
is an issue upon which we elaborate later). Computing the ‘Plateau
border to film’ flow raises however a similar concern to the one
just noted above: we are still dealing with decays over a length
scale sufficiently short (and hence over Plateau border thicknesses
sufficiently limited) that it might not be appropriate to use our
present model that treats Plateau borders as surfactant reservoirs
with constant and uniform surfactant coverage.

Despite the good collapse of data onto the ‘slope �1
2 ’ line noted

above, if we take sufficiently large Ms values in Fig. 12, it is clear
that the data begin to lie above that line. This implies that c
exceeds

ffiffiffi
3

p
. This is of course expected because for Δ0Ms values in

excess of unity we know that j ∂Us=∂Sj S ¼ 0 j � 6
π and hence (via Eq.

(40)) we have c� 6
π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
, which certainly exceeds

ffiffiffi
3

p
.

What is of interest here however is that there is a range of Ms

values (typically those values with 1⪡Ms⪡1=Δ0) for which data in
Fig. 12 lie underneath the line marked ‘slope �1

2 ’. Those data have c
values less than

ffiffiffi
3

p
. The smallest c value computed in Table 2

within the parameter regime under consideration occurs for Δ0 ¼
5� 10�5 and Ms ¼ 1000 and has the value c¼0.616. Physically c
values less than

ffiffiffi
3

p
imply velocity fields moving into the Plateau

border decaying over scales longer than the nominal exponential
decay length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
. These longer length scales can be asso-

ciated with the frustrated exponential mechanism described in
Section 8.1.4. Further discussion of these c values less than

ffiffiffi
3

p
,

including a formula for predicting what the c values actually are,
can be found in the appendix.

8.4. Distributions of pressure

In our numerical analysis we have assumed that the Plateau
border surface is a uniform circular arc. This was a simplification
that we introduced in Section 3. In reality the Plateau border
surface should be able to deform out of circular, with the local
curvature and the pressure jump from liquid to gas being linked by
a Young–Laplace relation. We can however gauge the suitability
(or otherwise) of the circular arc approximation by examining how
the pressure in the liquid phase (computed using the circular arc
approximation) varies along the Plateau border surface. The more
uniform is the computed pressure distribution along that circular
arc surface, the better is the circular arc approximation.

Sections 8.4.1 and 8.4.2 consider respectively how the com-
puted pressure distributions are affected by varying Ms and Δ0.

8.4.1. Pressure dependence with respect to Ms

Fig. 13 plots the absolute value of pressure jpj vs. arc length S
measured along the Plateau border surface. Recall from Section
5.2.2 that (at least at the Plateau border symmetry point S¼ π

6), the
value of p is negative, being set to �ðΔ0a0Þ�1 at that symmetry
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point. Here Δ0 is 0.005 and a0 ¼ 0:1, although a number of different
values of Ms (10 000, 10, 1 and 0.1) are considered.

Along the Plateau border surface r0 ¼ 1, the arc length S is
identical to angular coordinate θ. Even though Fig. 13 corresponds
specifically to r0 ¼ 1, plots of pressure jpj vs. coordinate θ along
the Plateau border symmetry line r0 ¼ ð1þΔ0Þ= cos θ, although not
plotted here, actually turn out to look the same (on the scale of the
graph). This indicates that p is primarily a function of θ with
comparatively weak dependence on r0.

The gradient of the pressure, dominated by ðr0Þ�1∂p=∂θ, is
required to drive Stokes flow within the Plateau border. That a
pressure gradient is present is evident in Fig. 13: starting from the
symmetry point of the Plateau border surface S¼ π

6, and then
moving backwards to smaller S values, the pressure p is seen to
rise, i.e. p becomes less negative, and so jpj falls. In certain cases
for very small S values, p is predicted to change sign from negative
to positive, so that jpj starts to rise again. We will consider the
implications of this predicted sign change very shortly, but for the
moment we focus solely on pressure gradients. Fig. 13 shows the
pressure gradient is largest for comparatively small S, but decays
quite rapidly moving along the Plateau border. Such a decay in the
pressure gradient comes about for two reasons: firstly the border
thickens (implying via lubrication theory that less pressure gra-
dient is required to drive a given amount of flow along it) and
secondly the flow field itself (represented e.g. by the surface
velocity Us) also decays. Hence over much of the Plateau border
surface (on the approach to the symmetry point S¼ π

6) the pressure
gradient is negligible, i.e. jpj is near uniform, this uniform value
being ðΔ0a0Þ�1 (shown by a dotted line in Fig. 13 and representing
the pressure jump across the gas–liquid surface of the Plateau
border).

Computed jpj values close to this dotted line can be considered
to be comparatively close to ðΔ0a0Þ�1, permitting us to treat the
corresponding part of the Plateau border surface as a uniformly
curved arc. Computed pressures that deviate from the dotted line,
however, indicate parts of the domain where the Plateau border
should not be treated as uniformly curved, i.e. where the shape of
the border ought to be adjusted or relaxed. Such pressures occur
for decreasing S values moving towards the neighbourhood of the
film–Plateau border junction, pointing to the existence of a tran-
sition region (as already alluded to in Section 3 and analogous to
what is considered in Bretherton, 1961; Reinelt and Kraynik, 1989,
1990; Schwartz and Princen, 1987) where the shape of the domain
needs to adjust between a comparatively flat film and a circular
Plateau border. We do not however attempt to compute such
transition regions here. An increase in the value of p moving
backwards from S¼ π

6 (i.e. a decrease in jpj as long as p remains
negative) suggests a tendency that would favour a thicker and
flatter, lower curvature border had the border been permitted to
relax its shape. Predicted sign changes in p from negative to
positive are an extreme manifestation of the need to adjust the
shape. Although a Young–Laplace law on the gas–liquid surface of
the Plateau border is not imposed in our computation, were such a
law to be imposed, a sign change in the pressure implies a sign
change in the surface curvature: assumptions of uniform curvature
are then untenable.

Smaller Ms values imply smaller and smaller deviation from the
dotted line: this reflects the rapid spatial decay (with increasing S)
of the velocity Us at small Ms, which in turn implies a rapid spatial
decay of the pressure gradient ðr0Þ�1∂p=∂θ. Indeed for the smallest
Ms value plotted, the entire pressure distribution lies compara-
tively close to the dotted line, and no sign change in p is observed.

8.4.2. Pressure dependence with respect to Δ0

Section 8.4.1 considered pressures only for the case Δ0 ¼ 0:005.
A decrease in Δ0 increases the magnitude of the pressure. Partly
this is due to setting the pressure at the symmetry point S¼ π

6 of
the Plateau border surface to �ðΔ0a0Þ�1. Even if we compensate
for this, by plotting pþðΔ0a0Þ�1 vs. S (instead of p vs. S) we still see
higher pressure drops along the Plateau border with smaller Δ0:
see e.g. Fig. 14 comparing Δ0 ¼ 0:005 with Δ0 ¼ 0:00005. This is
unsurprising: a Stokes flow incurs a larger pressure drop in an
extremely narrow gap (Δ0 ¼ 0:00005) than in a somewhat wider
gap (Δ0 ¼ 0:005).

Values of Ms ¼ 10 000 and Ms ¼ 1 are shown in Fig. 14. For the
case Ms ¼ 10 000 the pressure distributions (when expressed in
terms of pþðΔ0a0Þ�1 instead of p) converge together for S values
greater than about 0.2 regardless of the value of Δ0. This is
expected, because the surface velocity distribution in these Ms ¼
10 000 cases should follow the straight line function equation (38)
regardless of the value of Δ0. Away from the narrow gap region at
the entrance to the Plateau border, the same surface velocity dis-
tribution on effectively the same solution domain must produce
the same gradients of pressure.

For Ms ¼ 1 we do not see the Δ0 ¼ 0:005 and Δ0 ¼ 0:00005
pressure distributions converging together in the fashion that was
observed for Ms ¼ 10 000. The pressure drop to drive a Stokes flow
depends not just on the geometry of the flow domain, but also on
the velocity field within the domain. In Fig. 8 we see that the
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velocity distribution for Δ0 ¼ 0:00005 and Ms ¼ 1 decays to zero
far more quickly as S grows than the distribution for Δ0 ¼ 0:005
and Ms ¼ 1 does. The velocity field for Δ0 ¼ 0:005 and Ms ¼ 1
shows an initial rapid decay being replaced further along the
border by a much more gradual one. Since the velocity field for
Δ0 ¼ 0:005 and Ms ¼ 1 survives longer than that for Δ0 ¼ 0:00005
and Ms ¼ 1, larger pressures are expected with the larger Δ0 value.

We have marked in Fig. 14 lines corresponding to zero pressure,
so that pþðΔa0Þ�1 becomes the same as ðΔ0a0Þ�1: see the dashed
line (for the case Δ0 ¼ 0:005) or the dotted line (for the case
Δ0 ¼ 0:00005). As was the case in Fig. 13, over much of the domain,
pressures are below these lines (indicating a modest change in the
value of jpj relative to ðΔ0a0Þ�1, and hence a Plateau border sur-
face that is well approximated by a uniformly curved arc). It is only
for very small values of S that the computed pressures for any
given Δ0 lie above the respective dashed or dotted line, indicating
a need to relax the shape of the Plateau border surface away from
a circular arc.

8.5. Surfactant mass transfer rate from Plateau border to film

The velocity data of Section 8.2 have been scaled such that the
dimensionless speed at the film–Plateau border junction jUs j S ¼ 0 j
was equal to unity for all values of Δ0 and Ms. This scaling is very
convenient for solving for the Plateau border velocity field in
isolation from the film. Here however we want to estimate the
magnitude of ju0

s j S ¼ 0 j , i.e. the speed at the film–Plateau border
non-dimensionalised on the velocity scale specified in Section
5.2.1. This alternate scaling (in terms of u0

s rather than Us) allows us
to couple the Plateau border and film together, specifically to
determine the border to film surfactant transport rate as a func-
tion of Δ0 andMs, to reveal whether there are particular parameter
regimes where the Plateau border is acting as a bottleneck for the
flow onto the film.

Eq. (23) actually gives us not the value of ju0
s j S ¼ 0 j on its own,

but rather the value of the ratio ju0
s j S ¼ 0 j=ju0

sðoÞ j (with both u0
s j S ¼ 0

and u0
sðoÞ expected to be negative quantities as surfactant flow is

away from the Plateau border towards the centre of the film). We
do however expect that ju0

sðoÞ j (the speed of the film outside a
velocity boundary layer, and hence unconstrained by the border)
will be order unity. This follows as a result of the way u0

s has been
non-dimensionalised as long as Δ0Msrða0Þ�2 and as long as var-
iations in surfactant coverage along the film are of comparable
magnitude to the surfactant coverage on the Plateau border itself
(Vitasari et al., 2016).

Since a0 is a small parameter (we assume a0 ¼ 0:1 here), the
above mentioned constraint Δ0Msr ða0Þ�2 is satisfied for all Δ0

and Ms values considered in Table 1, with the exception of the
product of the largest Δ0 and Ms values (0.05 and 104

respectively12). Given an order unity value of ju0
sðoÞ j as mentioned

above, it follows from Eq. (23) that the ‘Plateau border to film’ flow
ju0

s j S ¼ 0 j will be order
ffiffiffi
3

p
=ð

ffiffiffi
3

p
þcÞ. In other words, the larger the

value of c, the greater the tendency of the Plateau border to act as
a bottleneck.

In Sections 8.5.1–8.5.3 that follow we consider how ju0
s j S ¼ 0 j

behaves for various combinations of the parameters Ms and Δ0.
Sections 8.5.4–8.5.6 then summarise and discuss these findings
and relate them to time scales for mass transfer.
12 It has been shown (Vitasari et al., 2016) that any Δ0 and Ms combination
such that the product Δ0Ms exceeds unity automatically reduced ju0

s j S ¼ 0 j down to
an order 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
value. In the event that in addition Δ0MsZða0Þ�2 (meaning that

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
is even less than the already small parameter a0), a theory of Vitasari

et al. (2016) suggests further reductions in ju0
s j S ¼ 0 j over and above the

aforementioned ones.
8.5.1. Value of ju0
s j S ¼ 0 j in case Ms⪢1=Δ0

In the event that Δ0Ms⪢Oð1Þ (still of course with Δ0Ms rather
smaller than ða0Þ�2) it happens that c¼ 6

π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
, as we have

already established in Section 8.3.1. Clearly c⪢1 in this particular
limit. Substituting into Eq. (23), gives ju0

s j S ¼ 0 j � ð
ffiffiffi
3

p
=cÞju0

sðoÞ j (still
taking ju0

sðoÞ j as being order unity). Based on the definition in Eq.
(14), this rearranges to ju0

s j S ¼ 0 j � ða0=a0critÞju0
sðoÞ j with a0⪡a0crit

whenever Δ0Ms⪢Oð1Þ. In a typical case e.g. Ms ¼ 104 and Δ0 ¼
0:005 (such as was considered in the streamline pattern shown in
Fig. 5(a)) we deduce via Eq. (14) that a0crit � 0:78. Hence a0=a0crit
which is equal to ð

ffiffiffi
3

p
π=6ÞðΔ0MsÞ�1=2 evaluates to roughly 0.12 for

these parameter values. The speed at the film–Plateau border
junction ju0

s j S ¼ 0 j is therefore an order of magnitude smaller than
the typical film velocity ju0

sðoÞ j . The above situation implies that
either the foam is sufficiently dry (i.e. the Plateau border size
relative to the film measured via the parameter a0 is sufficiently
small) and/or the surface viscosity is sufficiently large (or in other
words a0crit is sufficiently large), that the zero velocity constraint on
the symmetry point of the Plateau border manages to extend its
influence all the way to the film–Plateau border junction.

8.5.2. Value of ju0
s j S ¼ 0 j in case Δ0⪡Ms⪡1

Now consider the case Δ0⪡Ms⪡1. In this case we predict (see
e.g. Fig. 12) that c¼

ffiffiffi
3

p
. According to Eq. (23) the flow speed at the

film–Plateau border junction is half of the nominal film surface
speed ju0

sðoÞ j (itself an order unity quantity) that applies to film
points away from the Plateau border. The surface viscosity is now
sufficiently low that the junction is ‘unaware’ of the exact location
of the Plateau border symmetry point, and so is not constrained by
that point. However the halving of the film velocity arises from the
assumed lack of any Marangoni stress contribution from the Pla-
teau border. As already mentioned previously that assumption
may well be invalid when Δ0⪡Ms⪡1, and restoring Marangoni
stresses on that part of the Plateau border which is only margin-
ally thicker than the film will restore u0

s j S ¼ 0 back to the level of
u0
sðoÞ.

8.5.3. Value of ju0
s j S ¼ 0 j in case 1⪡Ms⪡1=Δ0

Finally consider a value cr
ffiffiffi
3

p
as occurs in the domain

1⪡Ms⪡1=Δ0. For example consider the value c¼0.616 corre-
sponding (as mentioned in Section 8.3.1 above) to Δ0 ¼ 5� 10�5

and Ms ¼ 1000. Via Eq. (23), the speed ju0
sjS ¼ 0 j at the film–Plateau

border junction is now 0.73 times the nominal film speed ju0
sðoÞ j

away from the border. The fact that the velocity at the junction is
less than that in the film once again arises due to assuming no
Marangoni stresses in the Plateau border: this tends to reduce the
velocity at the film–Plateau border junction relative to u0

sðoÞ.
However the adverse effect on the speed at the junction is less
than previously (i.e. multiplication by a factor 0.73 instead of by a
factor of a half). The surface viscosity is now at a level where it
couples the motion of the film–Plateau border junction with the
motion of points on the Plateau border surface where the border is
already much thicker than the film, that thicker border restricting
the flow less than a thinner border (still assuming no Marangoni
stresses) would.

8.5.4. Time scales for surfactant mass transfer
To summarise, depending on the Δ0 and Ms values considered,

and assuming we ignore Marangoni stresses on the Plateau border
compared to those on the film (an assumption that could be
queried in the case of Section 8.5.2 in particular), we have deduced
flow velocities slowing down at the film–Plateau border junction
by factors of 0.12 (Section 8.5.1), a half (Section 8.5.2) and 0.73
(Section 8.5.3) depending on the values of Δ0 and Ms that are
chosen. Time required for surfactant transport should scale
inversely with those velocities, and would therefore increase by
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factors of roughly 8.3, 2 and 1.3 respectively. Surface viscosity
could thereby make the fractionation process less efficient, in
particular if the time required to achieve surfactant transport onto
the foam film becomes comparable with the typical residence time
of films within the fractionation column.

In dimensional units, bubble residence time in a typical frac-
tionation column has been given (Vitasari et al., 2013b) as around
12 s (based on an experimental study of Martin et al., 2010).
Meanwhile the Marangoni-driven surfactant transfer time scale
(converted back to dimensional units, and ignoring any surface
viscous effects in the first instance, Vitasari et al., 2013b) has been
estimated to be on the order of 3� 10�2 s assuming a compara-
tively thick film (specifically assuming Δ0 � 4� 10�2 as quoted in
Section 5.1). Recalling however that the characteristic velocity
given in Section 5.2.1 scales proportional to δ00 �Δ0a0, and that
characteristic time scales inversely with velocity, reduction in Δ0

by roughly an order of magnitude (to attain the value Δ0 ¼ 0:005
matching that considered in Section 8.5.1) implies an order of
magnitude increase in mass transfer time scale (which becomes
roughly 0.3 s still ignoring surface viscosity). Even if this time scale
is increased by the factor 8.3 mentioned above (to account for
surface viscous effects) mass transfer should have ample oppor-
tunity to occur for any reasonable bubble residence time in a
fractionation column (around 12 s as quoted above). Much smaller
Δ0 values (i.e. much thinner films) however change the picture
dramatically. A value of Δ0 as low as 5� 10�5 (as in Section 8.5.4)
implies a three order of magnitude increase in the estimate of
typical surfactant mass transfer time compared to the original
time scale 3� 10�2 s quoted above. The surfactant mass transfer
time scale then becomes around 30 s neglecting surface viscous
effects. This is now rather longer than the typical residence time in
a fractionation column and suggests a redesign requirement using
a taller column in order to increase residence time. Surface viscous
effects causing further increases in the mass transfer time scale
(even quite moderate increases e.g. doubling the time scale or
multiplying it by a factor 1.3 as alluded to above) could however
impact on the efficiency of even that redesigned column.

Ironically then, cases for which surface viscosity leads to the
biggest relative increase in surfactant mass transfer have little
impact on the fractionation process overall (because mass transfer
time in the absence of surface viscous effects was actually
exceedingly short, given the films were still comparatively thick).
Cases where surface viscosity produces rather modest increases in
already comparatively long mass transfer time scales (which arise
in turn owing to having exceedingly thin films) potentially are
more problematic. Determining which of these two different film
thickness regimes is most applicable to a given fractionation pro-
cess requires knowledge of film drainage rates. This is beyond the
scope of the present discussion (film drainage not being con-
sidered here) but the issue is discussed by Vitasari et al. (2013b).

8.5.5. Coupling to the surfactant concentration field
Yet another point to note is that a significant velocity difference

(as our models suggest via Eq. (23)) between the film–Plateau
border junction and points on the film slightly away from that
junction (i.e. immediately outside a ‘velocity boundary layer’ as
has been described in Section 6) has implications for the time
evolution of the surfactant concentration field. Detailed analysis of
this time evolution is outside the scope of the present work
(which is concerned solely with finding instantaneous surfactant
transport rates for a given instantaneous surfactant distribution).
However the question is relevant for determining mass transfer
time scales and so is discussed in qualitative terms below.

Consider an element of film surface immediately adjacent to
the film–Plateau border junction, the element size being com-
parable with the extent of the aforementioned velocity boundary
layer. Analogously with a mechanism noted by Vitasari et al.
(2016), sharp gradients of surfactant coverage could develop in
that film element over time due to the velocity mismatch across it.
With that velocity mismatch present but without those sharp
surfactant coverage gradients, more surfactant will be leaving the
element (driven by Marangoni stresses in the direction towards
the film centre) than entering it (from the Plateau border), shar-
pening gradients of surfactant coverage within the element. Only
by acquiring a surfactant coverage mismatch almost counter-
balancing the velocity mismatch can a near uniform surfactant
flux be delivered across the film element in question, which is
what is expected for an element that is small compared to the
overall length of the film.

Our analysis of film velocity fields ought to be reformulated in
cases where sharp surfactant gradients arise on films. At present
the analysis starting from Eq. (13) and leading eventually to Eq.
(23) has assumed a simple structure for the velocity boundary
layer on the film, balancing bulk viscous shear stresses with sur-
face viscous stresses within that layer. If however the surfactant
concentration field in the film develops a boundary layer character
near the junction with the Plateau border (and hence the Mar-
angoni stress field ∂γ0=∂x0 likewise has a boundary layer character),
then the velocity boundary layer in the film necessarily becomes
much more complex than before. That Eq. (13) fails to capture any
Marangoni effects within the velocity boundary layer is apparent
from the discussion of Section 4.2 which indicates that the only
material properties affecting the (dimensional) length scale of the
velocity boundary layer are μ and μs (i.e. bulk and surface visc-
osity), the remaining terms contributing to the said length scale
being wholly geometric. An equation such as (13) that evaluates
the strain rate in the velocity boundary layer at the junction point
with the Plateau border wholly in terms of the change in velocity
across the boundary layer and the layer's nominal thickness
determined without reference to the Marangoni stresses within it
cannot take account of any complex boundary layer structure on
the part of the surfactant concentration field.

Since Eq. (13) can be modified by sharp gradients in the sur-
factant coverage field, it follows that Eq. (23) will likewise be
modified, as the former equation was needed to derive the latter
(see e.g. the derivation of Eq. (18) of which (23) is merely a
dimensionless version). A change in that latter equation has
however two important consequences. Firstly it changes the
velocity at the film–Plateau border junction (hence changing the
border to film surfactant transfer rate, and thereby the time scale
to achieve that transfer). Secondly it identifies an important
feedback mechanism: modifying Eq. (23) modifies the velocity
mismatch, yet it is that very mismatch which causes (analogously
to Vitasari et al., 2016) a complex structure to appear in the
Marangoni stress field that in turn required a modification to Eq.
(23) in the first place.

In summary, the predictions of the ratio between surface strain
rate and surface velocity within the Plateau border which we have
calculated (as functions of Δ0 and Ms given in e.g. Table 1) are
expected to remain valid. Likewise it is still the case that the sur-
face strain rate and surface velocity are continuous across the
film–Plateau border junction. However the velocity mismatch
between that junction and points on the film immediately outside
a velocity boundary layer produces evolutions of surfactant con-
centrations that in turn lead to quite complex ‘boundary layer’
structures for the surfactant distributions along the film with
sharp gradients in surfactant coverage being sustained. These
complex surfactant distributions can then affect the velocities at
the junction, the Plateau border to film mass transfer rates, and
the time scale required for mass transfer. Moreover they feed back
onto the velocity mismatch that originally produced them.
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8.5.6. Coupling to the shape of the Plateau border
Section 8.5.5 considered the possibility that the surfactant

concentration field might develop a complex structure in the
neighbourhood of the film–Plateau border junction, which then
affects the local surface velocity and local mass transfer rate at that
point. Yet another complication affecting velocity and mass
transfer near this junction is that, under the action of normal
stresses, the shape of the Plateau border might need to be relaxed
away from circularity: see the discussion in Section 8.4.

The key to determining the Plateau border to film mass transfer
rates here has been the computations of surface strain rates at the
film–Plateau border junction j ∂Us=∂Sj S ¼ 0 j (see e.g. Section 8.3),
coupling the film and Plateau border flows together.

The surface strain rates were however computed based on
assuming a uniformly curved Plateau border surface. It is unclear
to what extent relaxing the surface shape in the normal direction
is likely to affect these (tangential) surface strain rates. We can
hypothesise that if the surface were to be permitted to deflect
outwards (in order to relax the higher liquid pressures computed
in the neighbourhood of S¼0 compared to the negative pressures
obtained at S¼ π

6) we would obtain results qualitatively similar to
those we already have, merely replacing the film thickness para-
meter Δ0 by a larger effective value to represent the outwards
deflection. This is however speculative, and investigating this
hypothesis by a full ‘free surface’ numerical simulation (i.e.
allowing the solution domain itself to deform so as to balance
normal stresses) represents a considerable undertaking.
13 Recall that, as has been explained in Section 3.5, the border will act as a
surfactant reservoir once its local thickness exceeds an ‘effective Henry constant’.
This ‘effective Henry constant’ is assumed to be intermediate between the film
thickness and the curvature radius of the Plateau border surface.
9. Discussion

The results for the Plateau border flow fields as computed in
Section 8 indicate how to match film and Plateau border flows in
various different parameter regimes of dimensionless film thick-
ness Δ0 and dimensionless surface viscosity Ms. The results also
indicate the extent to which the presence of the Plateau border
constrains the film flow.

Specifically if Δ0Ms⪢1 (requiring an extremely large Ms given
that Δ0⪡1) the flow at the film–Plateau border junction is very
strongly constrained by surface viscous effects (see e.g. Eq. (21)).
Moreover the surface strain rate on the Plateau border is spatially
uniform, ensuring that the surface velocity exhibits a uniform
straight line decay along the border. This corroborates the work of
Vitasari et al. (2016).

In the opposite case of a small Ms value, typically for Δ0⪡Ms⪡1,
the decay of the velocity field along the Plateau border surface is
predicted to be exponential, with a characteristic decay distance
predicted by Eq. (39) to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms=3

p
, which is now substantially

less than the full arc length measured along the border. Via Eq.
(23), this leads to a more constrained velocity at the film–Plateau
border junction than the assumption of Vitasari et al. (2016), i.e.
Eq. (31) (in place of Eq. (32)) would have done. The reason for this
is that Eq. (31) solely constrains the flow at the film–Plateau bor-
der junction for geometric reasons, i.e. based on how close by the
junction is to the border's symmetry point. In fact for Δ0⪡Ms⪡1
the velocity on the Plateau border decays very near the border
entrance, well before approaching that symmetry point, meaning
the geometric constraint is not then relevant. The constraint that
Eq. (32) places on the system in the Δ0⪡Ms⪡1 limit arises in fact
from the assumed absence of any Marangoni stress on the Plateau
border. This then predicts a velocity decay over a much smaller
longitudinal distance than a purely geometric symmetry
constraint would.

We can nonetheless identify a potential problem with the
assumptions underlying our model in this case: we have assumed
that Marangoni stresses are present on the film, but absent on the
Plateau border, on the supposition that the Plateau border contains
a reservoir of surfactant through being for the most part sub-
stantially thicker than the film. However with that assumption the
predicted flow field in the Plateau border is effectively confined to
a very small part of the border, specifically the region near the
entrance to the border where it is not substantially thicker than
the film. Marangoni stresses could still be significant in that par-
ticular region, even though in the rest of the border there are
insignificant Marangoni stresses and likewise insignificant flow.

Once Marangoni stresses on the Plateau border need to be
taken into account, we can no longer solve for the detailed flow
field in the Plateau border without prior knowledge of the
instantaneous surfactant concentration distribution (and hence
instantaneous Marangoni stress field) along the border's surface:
we have a coupled fluid mechanical and mass transfer problem for
the border in addition to that already studied (Vitasari et al., 2016)
for the film. In the presence of Plateau border Marangoni stresses,
no constraining effect of the Plateau border would be evident at
the junction with the film, constraints only manifesting them-
selves moving along the border once it becomes much thicker
than the film,13 giving in effect a surfactant reservoir that sup-
presses Marangoni stresses. Given the order

ffiffiffiffiffiffi
Δ0

p
length scale over

which the border is predicted to thicken and hence Marangoni
stresses would be permitted to decay is now rather greater than
the order

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
scale over which surface viscosity couples the

motion of adjacent surface points together, the flow velocity on
the Plateau border surface can be obtained entirely in terms of
local properties (local Marangoni stress at a point and local border
thickness at that point) ignoring surface viscous effects. This
means that the Plateau border flow no longer couples to the film
flow, and hence no longer constrains the film flow. Under those
circumstances, in the limit of small Ms, we can deduce a velocity
field on the border u0

s � 1
3ða0Þ�1ðΔ=Δ0Þ∂γ0=∂X (which turns out to be

the same velocity field as if we ignored surface viscosity altogether
(Vitasari et al., 2013b), the velocity decaying with X moving along
the border, provided that ∂γ0=∂X decays more rapidly than Δ=Δ0

grows). Film flows can then be computed in a similar (i.e. entirely
local) fashion ignoring surface viscous effects altogether. As far as
film flows are concerned, we therefore recover the model already
studied in Vitasari et al. (2013b). The above constitutes the most
important finding for the case of small Ms.

To summarise then for Δ0⪡Ms⪡1, Eq. (23) that implies a velo-
city at the film–Plateau border junction half of the value ‘uncon-
strained by the border’ would have been correct in the present
limit 1⪡Δ0⪡Ms if we could contrive to have Marangoni stresses on
the film but not on the Plateau border. It is however not neces-
sarily realistic to suppose that there are no Marangoni stresses on
the Plateau border in this particular limit. These Plateau border
Marangoni stresses return the velocity at the film–Plateau border
junction back towards the ‘unconstrained’ value.

Yet another important limit that we studied within Section 8
had Δ0⪡1 and Ms⪢1 (but still with Δ0Ms⪡1 and hence Ms⪡1=Δ0).
Here the decay in surface velocity along the border is slower than
the increase of the border thickness that drives a decay in Mar-
angoni stresses, implying it is actually reasonable to ignore Mar-
angoni effects in the Plateau border, but nonetheless the reduction
in the flow at the film–Plateau border junction is less marked than
before: the presence of the Plateau border causes the junction
velocity to fall but it remains more than half the value that would
apply ignoring the constraining effect of the Plateau border. The
flow field along the Plateau border no longer decays exponentially.
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Instead it exhibits a non-uniform decay near the entrance to the
Plateau border, and a uniform straight line decay further on.
Rom

a
a0
10. Conclusions

In this work we have considered the Marangoni-driven flow
and surfactant transport between a foam Plateau border and a
foam film during the process of foam fractionation, such flows
being likely to arise in various scenarios (e.g. foam fractionation
with reflux, fractionation in stripping mode, and multicomponent
fractionation). In particular we have studied the role that surface
viscosity (measured by a dimensionless parameter Ms) and film
thickness (measured by a dimensionless parameter Δ0) play in this
flow and mass transfer process. Our analysis recognises that the
surface strain rate and the surface velocity must both be con-
tinuous across the film–Plateau border junction. Indeed, if we
know the ratio between the surface strain rate and the surface
velocity at the film–Plateau border junction this provides us with
sufficient information to compute the film flow field.

The aforementioned strain rate to velocity ratio can however be
obtained via a fluid mechanical analysis in the Plateau border: this
ratio is then what couples the Plateau border flow to the film flow.
It has been proposed in literature (Vitasari et al., 2016) that the
surface strain rate should be uniform on the entire Plateau border
surface, and hence that surface velocity needs to be a straight line
function of distance along the border, vanishing at a stationary
symmetry point on the border surface. The ratio between the
surface strain rate and surface velocity (at the film–Plateau border
junction) is then just the reciprocal of arc length of surface
between the symmetry point and the junction.

Our fluid mechanical analysis shows that this hypothesis is
indeed valid in the case when the product Δ0Ms exceeds unity.
Surface viscosity is then sufficiently strong that the film–Plateau
border junction is constrained by the stationary symmetry point
mentioned above: the velocity at the film–Plateau border junction
is reduced substantially compared to the ‘no surface viscosity’ case
and the surfactant mass transfer process slows down significantly.
The impact on the total mass transfer taking place in a fractiona-
tion column can be surprisingly little, however, since these sub-
stantial slow downs in transfer rate typically occur in situations
where foam films are sufficiently thick that the characteristic mass
transfer time scale (prior to the ‘surface viscous’ slow down) is
orders of magnitude less than the available residence time that
foam films spend in the fractionation column.

In other parameter regimes (i.e. Δ0Ms⪡1) significant non-
uniformities are possible in the surface strain rate along the Pla-
teau border length (a contrast from what was hypothesised by
Vitasari et al., 2016). The case Δ0Ms⪡1 could be further subdivided
into Δ0⪡Ms⪡1 and 1⪡Ms⪡1=Δ0. In the case Δ0⪡Ms⪡1 a rapid
exponential spatial decay of surface strain rate and surface velocity
is predicted along the Plateau border, and such decay is clearly
spatially non-uniform. In the case 1⪡Ms⪡1=Δ0 on the other hand, a
rapid and non-uniform spatial decay occurs near the film–Plateau
border junction, but this is then arrested and replaced by a uni-
form decay further along the border. There are consequences for
the velocity of surfactant mass transfer across the film–Plateau
border junction, being reduced to half of its ‘no surface viscosity’
value in one case, and somewhat more than half of that value in
the other. Time scales for surfactant transfer are thereby increased
by a factor of two in the first case, and by a factor somewhat less
than two in the other. These moderate increases in surfactant mass
transfer times may however impact negatively on the efficiency of
the foam fractionation process as they typically occur in regimes
with exceedingly thin foam films, when transfer (even without the
complications of surface viscosity) is slow, and struggles to reach
completion within the residence time available to foam films
within the fractionation column.

In the regime Δ0Ms⪡1, the lower velocities due to surface
viscosity referred to above arise not from constraints imposed at
the Plateau border symmetry point, but rather from the fact that
the Plateau border is assumed to act as a constant and uniform
surfactant reservoir, thereby suppressing Marangoni stresses on
the entire border. One could query this assumption in e.g. the case
Ms⪡1 in particular, because in that case significant surface velo-
cities turn out to be confined to a very restricted part of the Pla-
teau border near the film–Plateau border junction, where the
border thickness is comparable with that of the film, and insuffi-
cient to contain a surfactant reservoir. In such cases, the flow on
the film is unlikely to be constrained by the presence of the Pla-
teau border.

The analysis that we have presented here can compute velocity
fields and thereby surfactant flux fields on films and Plateau bor-
ders at a given instant in time and for a given instantaneous sur-
factant coverage distribution (surfactant being considered to vary
much more significantly on the films than on the Plateau borders
which are treated as surfactant reservoirs as mentioned above). In
this work we have not attempted to compute the time evolution of
the surfactant coverage on the film produced by these velocity and
flux fields. We cannot rule out the possibility therefore that the
surfactant coverage field will evolve over time in such a way as to
invalidate some of the assumptions we have used to obtain the
above mentioned estimates of velocities at film–Plateau border
junctions, of associated surfactant mass transfer rates, and hence of
surfactant mass transfer time scales. The predicted ratios between
surface strain rates and surface velocities at the film–Plateau border
junction (which suffice to close the governing equations for the
film) are likely to be more robust than the estimates we have given
of surface velocity itself. This is because deriving those estimates of
surface velocity involves additional constraining assumptions about
how surfactant might be distributed on films.

Throughout our work a simplifying assumption has been that
the domain of the film–Plateau border system is fixed with a
planar film joining up directly with a circular arc border. The
pressure jumps across the gas–liquid Plateau border surface can be
estimated in such a system and compared with the pressure dis-
tribution in the liquid phase along the assumed circular arc border.
Over much of the assumed circular arc, the computed pressure
distribution in the liquid is sufficiently uniform compared to the
size of the aforementioned pressure jumps that deviations from
circularity can be neglected. This is not however the case near the
film–Plateau border junction where a transition region is required
over which the surface is not a circular arc: indeed the location of
the surface is not known a priori. Computing the transition region
is beyond the scope of this study, involving modifications to the
flow domain applying a boundary condition in the normal direc-
tion. This is however precisely the region where we need to extract
tangential surface information, i.e. the ratio between surface strain
rate and surface velocity, which we use to couple the Plateau
border to the film. The effect of including a transition region upon
these tangential properties is unclear, but given that the transition
region is expected to thicken the Plateau border near the point
where it joins up with the film, the effect may be simply like
increasing the value of Δ0 in the present model.
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t

δ0

critical a0 constraining film–Plateau border
junction
0

Δ

dimensionless parameter relating surface strain
rate and velocity
Δ0
(at film–Plateau border junction)

θ
coefficient in linear combination (equal to c)

Λ
Gibbs parameter
μ
film half-length

a logarithmic correction factor depending on XRK
 μs
rescaled μs (Ms ¼ μs=a

0)

ðminÞ
 value of Ms minimising c0
unit normal vector

pressure

pressure (made dimensionless on a scale relevant
to Plateau border)

polar coordinate

dimensionless r (r0 ¼ r=a)

arc length coordinate

arc length coordinate (dimensionless; S¼s/a)

unit tangent vector

flow velocity

vector velocity field

surface flow velocity

velocity component
Þ
 ‘unconstrained’ film surface flow outside velocity
boundary layer

dimensionless u (based on a Marangoni scale
relevant to the film)

dimensionless us
Þ
 dimensionless usðoÞ

vector velocity field (dimensionless)

rescaled u0 (U ¼ u0=ju0

s j S ¼ 0 j )

, UY
 velocity components (dimensionless)

Uθ
 velocity components (dimensionless)

Ut
 normal and tangential velocity (dimensionless)
rescaled u0
s (Us ¼ u0

s=ju0
s j S ¼ 0 j )
IÞ, UsðIIÞ
 linearly independent solutions
I1Þ
 limiting intercept for UsðIÞ

II1Þ
 limiting intercept for UsðIIÞ

s=∂X j ðI1Þ
 limiting slope for UsðIÞ

s=∂X j ðII1Þ
 limiting slope for UsðIIÞ

linÞ
 linear combination of UsðIÞ and UsðIIÞ
Cartesian coordinate

dimensionless x (x0 ¼ x=L)

shifted/rotated Cartesian coordinate
(dimensionless)

dimensionless x (scaled differently from x0;
X ¼ x0=a0 ¼ x=a)

right hand end of a Runge–Kutta integration
interval

Cartesian coordinate

shifted/rotated Cartesian coordinate
(dimensionless)

dimensionless y (Y¼y/a)
ek symbols
dimensionless constant governing surface tension
variation (of order unity)

film surface tension
Plateau border surface tension
dimensionless γ (γ0 ¼ γ=G)

dimensionless γ0 (γ00 ¼ γ0=G)

Plateau border half-thickness
film half-thickness
dimensionless δ (δ0 ¼ δ=L)

dimensionless δ0 (δ00 ¼ δ0=L)

rescaled δ0 (Δ0 ¼ δ0=a0)

rescaled δ00 (Δ0

0 ¼ δ00=a
0)
polar coordinate
power law exponent
liquid viscosity
surface viscosity
dimensionless μs (μs ¼ μs=ðμLÞ)
μs
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Appendix A. Boundary conditions at the Plateau border
entrance

This appendix explains some of the subtleties (alluded to in
Section 3.3) associated with identifying a suitable boundary con-
dition across the Plateau border entrance.

The thin geometry of the film (with film aspect ratio δ00 defined
as δ00 � δ0=L⪡1) suggests a requirement that, in the polar coordi-
nates of the Plateau border, juθ j⪢jur j . This is not the same as ur
being identically zero everywhere along θ¼0. Indeed imposing a
condition that ur vanishes along θ¼0 (and hence ∂ur=∂r also
vanishes there) leads to problems at the point r¼a, θ¼0.
Approaching that particular point along the Plateau border surface
(i.e. along r¼a), the surface strain rate ∂us=∂s¼ a�1∂us=∂θ must be
non-zero: indeed determining the value of ∂us=∂s is important for
coupling the film and Plateau border flows. If however (approa-
ched along θ¼0), the value of ur and likewise the value of ∂ur=∂r
are taken to vanish at that same point, then continuity is violated.

In order to understand why imposing a condition ur ¼ 0 is
problematic at the film–Plateau border junction, it is useful to
consider more carefully the velocity profile in the film, viz. a
parabolic flow profile such as Eq. (1). If us happens to be changing
along the film surface, it is actually possible to compute the non-
zero velocity component in the transverse direction merely via the
continuity equation. The fact that we are able to use a continuity
equation to deduce the transverse velocity component, rather than
more conventionally invoking a transverse momentum equation,
comes about because of the extreme aspect ratio of the film (i.e.
δ00⪡1 implying Δ0⪡1 also). For such an aspect ratio, the transverse
component of the momentum equation is trivial in the film
(merely stating that pressure gradients are longitudinal rather
than transverse). As one moves from the film deeper and deeper
into the Plateau border, however, eventually the transverse com-
ponent of the momentum equation must cease to be trivial:
lubrication type assumptions must eventually cease to apply.
Hence to determine the Plateau border flow field, a second
boundary condition is required along θ¼0 to accompany the non-
trivial transverse momentum equation.

Near the entrance to the Plateau border, based on geometry, we
have already stated that juθ j⪢jur j . Moreover (again due to geo-
metry) the radial derivative of uθ (i.e. ∂uθ=∂r) is expected to be
vastly in excess of the angular derivative of ur (i.e. r�1∂ur=∂θ).
Given Eq. (8) for uθ vs. r, the value of ∂uθ=∂r is known, whereas
r�1∂ur=∂θ is a priori unknown. Now the r;θ component of the
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strain rate tensor (i.e. the stress tensor divided by viscosity μ) is
∂uθ=∂r�uθ=rþr�1∂ur=∂θ. Based on the above arguments we
already anticipate that ∂uθ=∂r dominates r�1∂ur=∂θ. The geometry
also implies that �uθ=r is smaller than ∂uθ=∂r (by a factor on the
order of Δ0).

We therefore decided to implement a stress boundary condi-
tion setting the r;θ stress component equal to the known term
μ ∂uθ=∂r which is expected to dominate. This boundary condition
permits computation of flow fields avoiding any problems satis-
fying continuity at the point r¼a, θ¼0.

One special situation that we can use to illustrate our chosen
stress boundary condition is the hypothetical case for which flow
in the Plateau border is purely rectilinear in the direction parallel
to the film and also locally invariant along that direction. The
terms which we have neglected from the strain rate �uθ=r and
r�1∂ur=∂θ then turn out to cancel one another exactly. This is a
manifestation of the fact that the radial velocity component can
change with θ simply because the radial unit vector changes with
θ, even if the direction of the fluid velocity vector itself remains
fixed. However in this special case, the aforementioned invariance
of the assumed rectilinear flow also implies (via continuity) that ur
vanishes at θ¼0. The above is of course a very special case: under
ordinary circumstances we expect local tangential variation of the
flow along the Plateau border and our chosen boundary condition
then produces a non-zero ur.
Appendix B. Case of large Ms with 1⪡Ms⪡1=Δ0

In the main text we indicated how for large values of the
parameter Δ0Ms⪢1, the flow field Us on the Plateau border surface
was well represented by a straight line function (38) that decayed
uniformly between the entrance to the Plateau border and the
border's symmetry point. Meanwhile for small values of Δ0Ms

with Δ0⪡Ms⪡1, we indicated (in Section 8.1.4) how an asymptotic
analysis near the Plateau border entrance predicted an exponential
decay of Us on a characteristic length scale much smaller
than unity.

Cases with 1⪡Ms⪡1=Δ0 correspond to neither of the above
mentioned limits. Such cases are nonetheless of physical interest.
Section 5.1 suggests that Ms could be as large as 8800 for fractio-
nation of a high surface viscosity surface active protein, such as
bovine serum albumin (BSA), whereas Δ0 could be as low as about
3� 10�5 for a common black film (giving 1=Δ0 on the order of
33 000).

For 1⪡Ms⪡1=Δ0, if we move a significant distance S along the
Plateau border (comparable with the dimensionless distance π

6
between the Plateau border entrance and its symmetry point), the
boundary condition (25) implies that ∂2Us=∂S2⪡1, suggesting that
∂Us=∂S is nearly spatially uniform and hence Us vs. S is locally quite
close to a straight line function. However very near the film–Pla-
teau border junction, Eq. (30) suggests (in the limit as Cartesian
coordinate X-0) that ∂2Us=∂X2 has a very large value (in turn
implying a large ∂2Us=∂S2 since Cartesian coordinate X and arc
length coordinate S coincide in the X-0 limit). Hence ∂Us=∂X or
equivalently ∂Us=∂S is spatially non-uniform in this part of the
domain. We deduce that the decay of the velocity field Us is
‘complex’ in the sense that there is a non-uniform decay region
near the entrance to the Plateau border, followed by a uniform
decay region further along the border.

An asymptotic formulation (Eq. (30)) in terms of a Cartesian
coordinate X (in lieu of an arc length coordinate S) remains a valid
description in the non-uniform region, thereby simplifying the
calculations we need to perform there. In what follows we
demonstrate that these (asymptotic) governing equations admit
power law solutions (see Appendix B.1) and perturbation solutions
(see Appendix B.2). The actual solution we seek for Us vs. S is
obtained via generating two independent solutions (see Appendix
B.3) and taking a linear combination of them (see Appendix B.4).
An analytic estimate that is consistent with the asymptotic for-
mulation and that determines the ratio between the surface strain
rate and surface velocity at the film–Plateau border junction is
obtained and discussed in Appendices B.5 and B.6.

B.1. Power law solutions

We seek velocity fields on the Plateau border surface Us vs. X
satisfying Eq. (30). It is instructive to consider various possible
solutions of this equation, even if those we generate in the first
instance do not have the desired property that they decay to zero
at the symmetry point of the Plateau border. Since Eq. (30) is
linear, provided we can find linearly independent solutions of it,
linear combinations of those independent solutions can be taken
to meet the constraint imposed at the symmetry point.

In the limit where X⪢
ffiffiffiffiffiffi
Δ0

p
Eq. (30) simplifies to

6Us=X
2 �Ms ∂2Us=∂X2: ðB:1Þ

Assuming an asymptotic solution Us � XΛ, it follows
ΛðΛ�1Þ ¼ 6=Ms, and hence

Λ¼ 1
2
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 6
Ms

s
: ðB:2Þ

Since we are interested in large Ms values here, we can simplify to

Λ� 1þ6=Ms or Λ� �6=Ms ðB:3Þ

with 6=Ms⪡1 in the regime of interest. We conclude that there are
two independent modes of behaviour for Us. One grows nearly
linearly with X. The other is almost constant. Subtracting the near
linear term from the near constant one, gives a solution that
exhibits a nearly uniform decay.

Such a solution could be viewed as a ‘frustrated exponential’.
Specifically it is ‘trying’ to decay as an exponential, but as that
decay occurs, the Plateau border thickens (i.e. the denominator on
the left hand side of Eq. (30) grows). This changes the character-
istic length scale for the ‘exponential’ decay, which in this parti-
cular case is arrested into a near uniform decay instead of the
originally anticipated exponential.

B.2. Perturbation solutions

There is an issue with the above power law asymptotic solu-
tions: Eq. (B.1) only applies for X⪢

ffiffiffiffiffiffi
Δ0

p
but does not apply all the

way down to X¼0. In that limit we must return to Eq. (30).
Approximate solutions to (30) can however be obtained by
anticipating that on the left hand side of that equation we can
replace Us by either a near constant solution Us j X ¼ 0 or by a near
linear solution ð∂Us=∂X j X ¼ 0ÞX. We then integrate the right hand
side of that equation twice to obtain an improved approximation
for Us.

In the former case (an approximation based on a ‘near constant’
function) we obtain

∂Us

∂X
� 3

ffiffiffi
2

p
Us j X ¼ 0ffiffiffiffiffiffi
Δ0

p
Ms

arctan
Xffiffiffiffiffiffiffiffiffi
2Δ0

p
 !

: ðB:4Þ

We have (deliberately) set an integration constant here such that
Eq. (B.4) vanishes as X-0, to comply with our assumption (for this
particular solution branch) that Us should change only very little
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Fig. 15. Solutions of Eq. (30) which has been obtained via an asymptotic for-
mulation for (a) UsðIÞ and (b) UsðIIÞ in the case Δ0 ¼ 0:00005 and Ms ¼ 100. In (a) the
approximate formula equation (B.5) is shown. In (b) we compare with a linear
function X=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
and also with the approximate formula equation (B.8) (the

latter being virtually indistinguishable from UsðIIÞ).
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with respect to Us j X ¼ 0. Integrating again gives

Us�Us j X ¼ 0 �
3
ffiffiffi
2

p
Us j X ¼ 0ffiffiffiffiffiffi
Δ0

p
Ms

X arctan
Xffiffiffiffiffiffiffiffiffi
2Δ0

p
 !

�
ffiffiffiffiffiffi
Δ0

2

r
log

X2

2Δ0
þ1

 ! !
:

ðB:5Þ
Even though for X⪡

ffiffiffiffiffiffi
Δ0

p
this solution has (by construction) only

second order variation in X, note that for X⪢
ffiffiffiffiffiffi
Δ0

p
the expected

behaviour is

Us�Us j X ¼ 0 �
3
ffiffiffi
2

p
Us j X ¼ 0ffiffiffiffiffiffi
Δ0

p
Ms

π
2
X: ðB:6Þ

Our assumption of a ‘near constant’ function can nevertheless still
apply even for values of X=

ffiffiffiffiffiffi
Δ0

p
large compared to unity, as long as

X=
ffiffiffiffiffiffi
Δ0

p
is smaller than Ms.

In the latter case (basing the approximation on a ‘near linear’
function substituted into the left hand side of (30)) we obtain

∂Us

∂X
� ∂Us

∂X






X ¼ 0

1þ 3
Ms

log 1þ X2

2Δ0

 ! !
ðB:7Þ

and hence

Us �
∂Us

∂X






X ¼ 0

Xþ 3
Ms

X log 1þ X2

2Δ0

 !
þ2

ffiffiffi
2

p
Δ1=2

0 arctan
Xffiffiffiffiffiffiffiffiffi
2Δ0

p
 !

�2X

 ! !

ðB:8Þ
where we have chosen integration constants that recover the set
value of ∂Us=∂X j X ¼ 0 and that ensure Us j X ¼ 0 vanishes.

Eq. (B.8) also has a well-defined asymptotic behaviour as X
becomes much larger than Δ1=2

0 . The function is dominated by the
value ð∂Us=∂X j X ¼ 0ÞX in that case, all other terms (including a
slightly awkward logarithmic one) are multiplied by a very small
prefactor 3=Ms with Ms⪢1 here. Such behaviour can be inferred
from Eq. (B.1): as X grows towards the order of unity, it is evident
that ∂2Us=∂X2 becomes very small (on the order of M�1

s with
Ms⪢1), implying ∂Us=∂X is uniform.

The observation that the solutions of Eq. (30) have well-defined
asymptotic behaviours for X⪢

ffiffiffiffiffiffi
Δ0

p
is what allows us to find a

combination of the available solutions satisfying a constraint that
velocity must vanish on the approach to the symmetry point on the
Plateau border. The procedure for doing this is described below.

B.3. Generating independent solutions

We can select the required solution via a linear combination
method. This involves generating independent solutions of the
governing differential equation, in the first instance without taking
regard of the actual boundary conditions imposed. The solutions
thereby obtained are then combined to satisfy the correct
boundary conditions.

Consider two solutions UsðIÞ and UsðIIÞ with the following con-
ditions at X¼0:

UsðIÞ j X ¼ 0 ¼ 1 and ∂UsðIÞ=∂X j X ¼ 0 ¼ 0 ðB:9Þ

UsðIIÞ j X ¼ 0 ¼ 0 and ∂UsðIIÞ=∂X j X ¼ 0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
: ðB:10Þ

We integrate both solutions numerically out to values of X
much larger than

ffiffiffiffiffiffi
Δ0

p
. In this regime we expect

UsðIÞ �UsðI1Þþ
∂Us

∂X






ðI1Þ

X ðB:11Þ

UsðIIÞ � UsðII1Þþ
∂Us

∂X






ðII1Þ

X ðB:12Þ

where UsðI1Þ, ∂Us=∂X j ðI1Þ, UsðII1Þ and ∂Us=∂X j ðII1Þ are constants that
we determine numerically. Specifically the values ∂Us=∂X j ðI1Þ and
∂Us=∂X j ðII1Þ are slopes of the UsðIÞ vs. X and UsðIIÞ vs. X curves, whilst
UsðI1Þ and UsðII1Þ are Legendre transforms, i.e. extrapolations of the
tangent to those curves back to the intercept on the Us axis. All
these numerical values are only weakly sensitive to where we
terminate the numerical integration, provided (as mentioned
before) we integrate out to X values larger than

ffiffiffiffiffiffi
Δ0

p
.

Functions UsðIÞ and UsðIIÞ for Δ0 ¼ 0:00005 and Ms ¼ 100 are
plotted in Fig. 15 on the domain 0rXr0:25. These were com-
puted via a Runge–Kutta integration routine (step size equal to
0.001). The right hand boundary of the integration domain
(X¼0.25) is chosen arbitrarily to be a value for which the lubri-
cation theory assumptions underlying the derivation of (30)
should still apply (specifically in an earlier Eq. (28) we must con-
strain the thickness of the Plateau border such that Δ⪡1 and
dΔ=dX⪡1).

Note that UsðIÞ is close to the prediction of Eq. (B.5). This is quite
remarkable since the value of the function changes by a factor
3 over the domain plotted, yet Eq. (B.5) was derived ignoring that
variation on the left hand side of (30). Even though we thereby
make an error in the numerator of the left hand side of (30), we
only do so for X values where the denominator of the left hand
side of (30) has increased significantly, making the quotient itself
less important.

Moreover we observe that UsðIIÞ is roughly approximated by a
linear function UsðIIÞ � X=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
, but Eq. (B.8) performs better still

(being virtually indistinguishable from numerical data). A con-
sequence of UsðIIÞ being nearly linear is that the Legendre transform
UsðII1Þ is numerically a very small value (certainly much smaller
than UsðI1Þ).

The analysis leading to Eqs. (B.11) and (B.12) is only strictly
valid in the lubrication region where Δ⪡1 and dΔ=dX⪡1. The



Table 3
Comparison between the values of the parameter c obtained from numerical cal-
culation with COMSOL (as outlined in Sections 7 and 8.3), from asymptotic analysis
(as described in Appendices B.3 and B.4) and from an approximate analytic formula
(given by Eq. (B.25) in Appendix B.5). The asymptotic analysis and approximate
formula are relevant to values of Ms significantly larger than unity, but with values
of Δ0Ms smaller than unity, and the set of values of Ms and Δ0 shown here satisfy
those constraints. Two computed values are shown associated with the approx-
imate analytic formula. The first value includes a logarithmic correction (the term
LRK in Eq. (B.25)). The second value (shown in parenthesis) ignores those
logarithmic corrections. Throughout the table, values highlighted in italics are
within 10% of what is predicted by the numerical calculations in COMSOL.

Δ0 Ms c (numerical) c (asymptotic) c (approximate)

5� 10�5 100 0.703 0.702 0.620 (0.801)

1000 0.616 0.615 0.617 (0.637)
10 000 1.409 1.410 1.411 (1.417)

5� 10�4 100 0.925 0.922 0.904 (1.093)

1000 1.513 1.513 1.524 (1.561)

0.005 100 1.717 1.707 1.816 (2.016)
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arguments however generalise to an arc length coordinate S
measured along the Plateau border surface (essentially we replace
∂2Us=∂X2 in Eq. (30) by ∂2Us=∂S2). We deduce analogously (for S
values larger than

ffiffiffiffiffiffi
Δ0

p
)

UsðIÞ �UsðI1Þþ∂Us=∂X



ðI1ÞS ðB:13Þ

UsðIIÞ �UsðII1Þþ∂Us=∂X



ðII1ÞS ðB:14Þ

where the numerical constants namely UsðI1Þ, ∂Us=∂X j ðI1Þ, UsðII1Þ
and ∂Us=∂X j ðII1Þ are identical to those obtained previously.

B.4. Linear combination of solutions

We now seek a linear combination (denoted UsðlinÞ) of UsðIÞ and
UsðIIÞ that vanishes at the symmetry point of the Plateau border
(corresponding to S¼ π=6).

We first define a parameter c0

c0 ¼
UsðI1Þþ

∂Us

∂X






ðI1Þ

π
6

UsðII1Þþ
∂Us

∂X






ðII1Þ

π
6

: ðB:15Þ

To ensure that UsðlinÞ vanishes at S¼ π
6 we can define

UsðlinÞ ¼ �UsðIÞ þc0UsðIIÞ: ðB:16Þ

We have chosen the sign here such that UsðlinÞ is a negative
quantity (which corresponds to surfactant transport in the
expected direction from Plateau border to film). In what follows
however we consider for convenience the absolute value jUsðlinÞ j .

Fig. 16 shows jUsðlinÞ j obtained via a linear combination of UsðIÞ
and UsðIIÞ which were themselves shown previously in Fig. 15. It is
apparent (as has been stated previously) that there is a region
where the surface strain rate is non-uniform near the Plateau
border entrance, followed by a uniform strain rate region over the
rest of the Plateau border surface. The solution for jUsðlinÞ j exhibits
a rapid initial decay that is arrested and replaced by a less abrupt
straight line decay.

The data in Fig. 16 (which have Δ0 ¼ 0:00005 and Ms ¼ 100)
compare favourably with the corresponding finite element
numerical data obtained from COMSOL as plotted in Fig. 8(b): we
have not included those COMSOL data in Fig. 16, because they are
actually so close as to be indistinguishable on the scale of the plot.
An approximation to UsðlinÞ can also be obtained based on a linear
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Fig. 16. Solutions of Eq. (30) for the flow speed along the Plateau border surface
jUsðlinÞ j (obtained via a linear combination of UsðIÞ and UsðIIÞ themselves being
solutions of Eq. (30)) in the case Δ0 ¼ 0:00005 and Ms ¼ 100. It is also possible to
determine the speeds directly via a COMSOL numerical simulation: the COMSOL
data (see Fig. 8(b)) are not shown explicitly on the current plot as they would be
indistinguishable from the data already shown. An approximation to UsðlinÞ con-
structed from the perturbation solutions presented in Appendix B.2 is also shown
for comparison.
combination of the perturbation approximations in Appendix B.2.
This is also plotted in Fig. 16: agreement is imperfect.14

It is now very easy to obtain the ratio between the surface strain
rate and surface velocity at the Plateau border entrance (this ratio
being necessary to achieve film–Plateau border matching as we
have discussed in the main text). By construction, jUsðlinÞ j X ¼ 0 j ¼
UsðIÞ j X ¼ 0 ¼ 1 and ∂jUsðlinÞ j=∂X j X ¼ 0 ¼ �c0 ∂UsðIIÞ=∂X j X ¼ 0 ¼
�c0=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
. Hence

jUsðlinÞ j �1∂jUsðlinÞ j=∂X j X ¼ 0 ¼ �c0
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
:

.
ðB:17Þ

We now identify the parameter c in Eq. (32) with the parameter c0

(obtained via Eq. (B.15)) here. Via Eq. (23) this parameter governs
the extent to which the presence of the Plateau border limits the
flow at the film–Plateau border junction.

Values of the parameter c (in the domain 1⪡Ms⪡1=Δ0) obtained
via this asymptotic linear combination technique have been
tabulated in Table 3. Values of c obtained independently via
COMSOL numerical simulation (as discussed in the main text) are
also given, and match the values from the asymptotic linear
combination technique.

Table 3 shows that c is less than
ffiffiffi
3

p
in this domain 1⪡Ms⪡1=Δ0

(the particular value of
ffiffiffi
3

p
applying instead over the quite dif-

ferent domain Δ0⪡Ms⪡1). The significance of c now being less thanffiffiffi
3

p
can be seen in Eq. (23), which predicts surface velocities

‘constrained’ by the Plateau border at the film–Plateau border
junction to be rather more than half the ‘unconstrained’ values.

B.5. Derivation of analytic estimate of c0

It is possible to obtain an analytic estimate of c0 using the
perturbation approximations developed in Appendix B.2.

We approximate UsðIÞ (itself defined in Appendix B.3) by the
solution given in Eq. (B.5) noting that UsðIÞ j X ¼ 0 ¼ 1. Based on Eqs.
(B.4) and (B.5), the Legendre transform of UsðIÞ is approximately

UsðIÞ �X
∂UsðIÞ
∂X

� 1� 3
Ms

log
X2

2Δ0
þ1

 !
: ðB:18Þ
14 There are some subtleties with the way this approximate solution has been
obtained. Given that Eqs. (B.6) and (B.8) were derived in a domain in which Car-
tesian coordinate X matches arc length S, we assumed that we could replace X by S
throughout. We then assumed that we could take a linear combination that van-
ished as S-π

6. This approach turns out to be consistent with the results that will be
presented in Appendices B.5 and B.6 apart from slight changes in the values of
some small logarithmic corrections.
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We seek the value of the Legendre transform UsðI1Þ for X⪢
ffiffiffiffiffiffi
Δ0

p
.

Eq. (B.18) suggests this is sensitive to the X value chosen, although
the sensitivity is extremely weak, involving a logarithmic correc-
tion in X which is moreover multiplied by an order M�1

s prefactor,
with Ms⪢1 here.

We shall take UsðI1Þ to be evaluated at a specific point denoted
XRK (chosen here so as to correspond to the right hand end of the
Runge–Kutta integration domain that was already employed in
Appendix B.3). In our case XRK ¼ 0:25. Defining the symbol LRK to
be log ð1þX2

RK=ð2Δ0ÞÞ, we find (via Eq. (B.18))

UsðI1Þ � 1�3LRK
Ms

: ðB:19Þ

The value ∂Us=∂X j ðI1Þ (i.e. the X⪢
ffiffiffiffiffiffi
Δ0

p
limit of ∂UsðIÞ=∂X)

meanwhile is obtained unambiguously from Eq. (B.4) to be

∂Us

∂X






ðI1Þ

� 3
ffiffiffi
2

p
ffiffiffiffiffiffi
Δ0

p
Ms

π
2
: ðB:20Þ

We now proceed to approximate UsðIIÞ by the solution given in
Eq. (B.8) noting from Eq. (B.10) that ∂UsðIIÞ=∂X j X ¼ 0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
.

Observe moreover from Eq. (B.7) that the value of ∂UsðIIÞ=∂X only
ever deviates from ∂UsðIIÞ=∂X j X ¼ 0 by relative amounts on the order
of M�1

s . Evaluating at X ¼ XRK we deduce in fact that

∂Us

∂X






ðII1Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p 1þ3LRK
Ms

� �
ðB:21Þ

where LRK is the logarithmic term defined above, which as in Eq.
(B.19) is divided through by Ms (with Ms⪢1 here).

Also observe from Eqs. (B.7) and (B.8) that UsðIIÞ �X∂UsðIIÞ=∂X (i.e.
the Legendre transform) is smaller than UsðIIÞ itself, by a factor of
order M�1

s . Specifically

UsðIIÞ �X
∂UsðIIÞ
∂X

� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p 6
Ms

X�
ffiffiffiffiffiffiffiffiffi
2Δ0

p
arctan

Xffiffiffiffiffiffiffiffiffi
2Δ0

p
 ! !

: ðB:22Þ

Hence evaluating the Legendre transform at XRK we deduce

UsðII1Þ � � 1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p 6
Ms

XRK�
ffiffiffiffiffiffiffiffiffi
2Δ0

p π
2

� �
� �6

ffiffiffi
2

p

M3=2
s

XRKffiffiffiffiffiffiffiffiffi
2Δ0

p �π
2

 !
:

ðB:23Þ
Since XRK is chosen much larger than order

ffiffiffiffiffiffi
Δ0

p
, this UsðII1Þ value

is clearly sensitive to our choice of XRK. Note however that the
value of UsðII1Þ is much smaller than that of ∂Us=∂X j ðII1Þ. Moreover
it is even smaller than the correction term involving LRK in
∂Us=∂X j ðII1Þ: this is because XRK has a numerical value significantly
smaller than unity, whereas LRK (by construction) has a numerical
value significantly larger than unity. To a good approximation then
we can suppose that UsðII1Þ vanishes (as would have been the case
had UsðIIÞ been a perfectly linear function in X).

Eq. (B.15) for c0 becomes upon substituting from Eqs. (B.19)–
(B.21)

c0 �
1�3LRK

Ms
þ

ffiffiffi
2

p
ffiffiffiffiffiffi
Δ0

p
Ms

π2

4

 !

π
6

1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p 1þ3LRK
Ms

� � : ðB:24Þ

Rearranging and Taylor expanding, retaining only leading order
terms in the small parameter LRK=Ms

c0 � 6
π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
1�6LRK

Ms

� �
þ3

ffiffiffi
2

p
π

2
ffiffiffiffiffiffiffi
Ms

p 1�3LRK
Ms

� �
: ðB:25Þ

This is our approximate analytic expression for c0, with the value
�c0=

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
then fixing (see Eq. (B.17)) the ratio between the

surface strain rate and the surface velocity at the film–Plateau
border junction, which then (as alluded to previously) matches the
film and Plateau border flows. Implications of Eq. (B.25) are dis-
cussed in the next section.

B.6. Discussion: analytic estimate for c0

We interpret Eq. (B.25) as follows. The first term on the right
hand side 6

π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
is actually the value that is expected when Δ0

MsZOð1Þ (corresponding to velocity decaying uniformly along the
entire Plateau border surface). Here however Δ0MsrOð1Þ and
velocity decay is non-uniform, faster near X¼0 than for larger X
values. Thus the right hand side of Eq. (B.25) for c0 (which concerns
the velocity decay near X¼0) involves a second term,
3
ffiffiffi
2

p
π=ð2

ffiffiffiffiffi
M

p
sÞ.Each term in Eq. (B.25) is multiplied by a correction

factor, respectively 1�6LRK=Ms and 1�3LRK=Ms, these factors
being relatively close to unity (since Ms⪢1).

Estimates of c0 computed using Eq. (B.25) for various Δ0 and Ms

are shown in Table 3. These are compared with c values obtained
numerically with COMSOL (see the main text) and/or by an
asymptotic approach (see Appendix B.4).

The table actually reports estimates determined both with and
without the logarithmic correction terms (i.e. the terms involving
LRK=Ms in Eq. (B.25)). For Ms ¼ 1000 and Ms ¼ 10 000 the loga-
rithmic corrections make very little difference to the values pre-
dicted by Eq. (B.25) which are generally close to the previously
obtained numerical and/or asymptotic values. However values
computed with the logarithmic corrections fit the numerical and/
or asymptotic data noticeably better than those without. For
Ms ¼ 100, Eq. (B.25) does not perform anywhere near as well as it
does for either Ms ¼ 1000 or Ms ¼ 10 000. However it is still the
case that including the logarithmic corrections represents an
improvement over not including them.

It is possible to perform some additional analyses on Eq. (B.25),
supposing (at least as a rough approximation) that the logarithmic
correction terms involving LRK=Ms may be discarded. We can for
instance obtain a minimum value of c0 for any given Ms by taking
the limit Δ0-0. The minimum value obtained is

min
Δ0

c0 � 3
ffiffiffi
2

p
π 2M1=2

s

� �.
ðB:26Þ

where we assume Ms⪢1 and hence minΔ0
c0⪡1. Meanwhile (still

assuming terms in LRK=Ms are negligible), we obtain a minimum
value of c0 for any given Δ0 by choosing

Ms ¼MsðminÞ �
ffiffiffi
2

p
π2 4Δ1=2

0

� �
:

.
ðB:27Þ

the minimum then being

min
Ms

c0 � 2 3 21=4 Δ1=4
0

� �
¼ 2

3
ffiffiffi
2

p
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MsðminÞ

p
 !

ðB:28Þ

which is twice minΔ0
c0 from Eq. (B.26) (evaluating that equation

for Ms ¼MsðminÞ).
If Ms⪢MsðminÞ (or equivalently if Δ0⪢π4=ð8M2

s Þ), the value of c0 is
dominated by the term involving 6

π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
. If however Ms⪡MsðminÞ

(or equivalently Δ0⪡π4=ð8M2
s Þ), then c0 approaches the value

3
ffiffiffi
2

p
π=ð2 ffiffiffiffiffiffiffi

Ms
p Þ, i.e. minΔ0

c0 given in Eq. (B.26).
The data for Ms ¼ 1000 and Ms ¼ 10 000 shown in Table 3

actually all have c0 dominated by the contribution from 6
π

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ0Ms

p
because even the smallest Δ0 value in the table (i.e. 5� 10�5)
already exceeds π4=ð8M2

s Þ. Indeed it is only for Ms ¼ 100 and either
Δ0 ¼ 5� 10�5 or Δ0 ¼ 5� 10�4 that Table 3 shows c0 values that
are dominated by the term 3

ffiffiffi
2

p
π=ð2 ffiffiffiffiffiffiffi

Ms
p Þ within Eq. (B.25).

Finally note that very small c0 values, such as Eq. (B.25) predicts
for Ms⪢1 but Δ0⪡1=Ms⪡1, imply that the presence of the Plateau
border places very little constraint on the film flow. According to
Eq. (23), the ratio between ‘constrained’ velocities at the film–
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Plateau border junction and ‘unconstrained’ velocities away from
that junction would be around 1�c0=

ffiffiffi
3

p
for c0⪡1.
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