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Problem solving is a preferred activity teachers choose to help students learn concepts. At the same time,
successful problem solving is widely regarded as a very good indicator of conceptual learning. Many
studies have provided evidence that problem solving often improves students’ chances of learning
concepts. Still, the question remains relatively unexplored as to how this activity is useful to promote
concept learning. In this study we explore this question in the setting of three university students solving a
problem on hydrostatics, in which the concept of buoyancy is involved. We use coordination class theory to
study how these students progress on their conceptual understanding. We were able to describe how this
progress is related to contextual traits, as well as to students’ particular epistemic stances. Finally, we
discuss some implications for research and for teaching.
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I. SOME RESULTS FROM RESEARCH IN
PROBLEM SOLVING

It is safe to state that problem solving is a universally
extended practice among physics teachers at all levels. It is
also widely accepted that problem solving is particularly
adequate to promote Physics concept learning. However,
this association is based more on teachers’ intuitive knowl-
edge than on actual research results on how this learning
takes place [1]. Although solving many problems does not
guarantee that students will achieve the desired conceptual
development, physicists do attain much of their conceptual
understanding by solving a large number of problems.
Thus, the question of how and when problem solving
contributes to students’ conceptual understanding is impor-
tant for physics education research.
Although there are several studies that report progress

in students’ conceptual understanding after particular
problem-solving tasks [2–7], they are focused on the
(sometimes) successful results of these activities rather
than on the learning process during them.
For example, Leonard et al. [5] use results from educa-

tional research to develop a framework for knowledge
organization, and use it to create an instructional approach
called analysis-based problem solving. It is designed to
promote deep conceptual understanding and proficient
solving abilities in students. The authors argue why such
practices are potentially efficient in promoting conceptual
understanding, but they do not actually explore concept
learning as it occurs during those practices.

In a similar fashion, Foster [4] carries out a thorough
study on the influence of a teaching strategy that explicitly
includes problem-solving strategies, both on the final
solving abilities of students and their understanding of
physics. Results show that students taught with an explicit
problem-solving strategy perform better on post-tests that
assess their conceptual understanding.
Docktor et al. [7] describe the implementation of a

framework for solving physics problems: Conceptual
Problem Solving (CPS). This implementation, in operational
terms, consists of engaging students in explicitly declaring
physics principles, the justification for their use, and a
consequent plan of action. The authors report that classroom
discussions were promoted, that problem solutions, as
measured in written assessments, were of higher quality,
and that students also scored higher in conceptual measures.
Similarly, Gil and Martínez Torregrosa [3] describe a

strategy for teaching problem solving which is based on the
mechanisms of scientific inquiry, as occurs within the
physics community. They report that students improve,
among other operational abilities, their qualitative descrip-
tions of physical phenomena.
These are just some examples of studies that, although

different in settings and analytical frameworks, have two
particular features in common. First, they show that
problem solving is a potentially adequate activity to
promote students’ conceptual understanding. Second, they
do not explore how students build that conceptual under-
standing during problem solving. Thus, the question
remains as to how problem solving contributes to the
desired conceptual learning in students.

II. CONCEPTUAL KNOWLEDGE DURING
PROBLEM SOLVING

In order to address the last question of the preceding
section, we believe it is important to consider other studies
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that have focused on the conceptual knowledge used within
problem-solving activities.
Almost twenty years ago, diSessa [8] made the point that

understanding the process of conceptual change called for
an account of the entities that were changing in that
process. From this premise, besides developing an impor-
tant theoretical contribution for the study of conceptual
change (coordination class theory), he provides empirical
evidence of the different ways a student coordinates the
concept of force during an actual problem-solving task.
The data reported come from a one-on-one interview with a
student (J) who is addressing different questions related to
objects falling, or being pushed, or slowing down when
moving on real surfaces due to friction.
In 2002, Witmann showed that one can describe student

reasoning in wave physics during problem solving, in terms
of reasoning resources that are inappropriately linked
together into an objectlike model. He used coordination
class theory (developed by diSessa, [8]) to understand
students’ explanations consistent with a description of
waves as objects rather than a description of waves as a
propagating disturbance within a system.
Another example of studies addressing the details of

conceptual dynamics during problem-solving activities
is the work of Wagner in 2006 [9]. Although intended
to address the problem of transfer, this work provides a
thorough analysis of the conceptual progress that takes
place throughout a number of problem-solving sessions in
which the researcher holds one-on-one interviews with a
student. The work details how this student, Maria (pseudo-
nym) exhibits an evolution of her ideas on the law of large
numbers.
Shortly after, in 2007, Parnafes [10] provided a detailed

study of how pairs of students, working on problems that
deal with oscillators, show evolving ideas of frequency
and velocity. The main purpose of that work was to study
the conceptual understanding of oscillation phenomena
through the use of computational representations. The
author focuses on the representational aspects involved
in students’ conceptual change, and contributes to co-
ordination class theory by establishing how these kinds of
representations constitute a support for concept learning.
In 2008, Levrini and diSessa [11] carry out a thorough

and detailed analysis, describing how students’ conceptual
understanding of proper time changes during a single
classroom episode when addressed from different defini-
tions. In doing so, the authors show how the data analyzed
are understandable from the point of view of coordination
class theory, and how this theoretical approach highlights
the process of comparing, contrasting, and conciliating
students’ different conceptual views of proper time.
In a study published in 2015, Sengupta et al. [12] address

a similar problem to that of Parnafes [10]. These authors are
interested in better understanding how a video game can be
beneficial for the learning of linear momentum. They argue

that, in general, research has focused more on demonstrat-
ing the overall effectiveness of games than on analyzing
the specific processes of conceptual change involved in
students’ learning. They study how conceptual understand-
ing evolves as students play a video game that requires
them to predict and produce deflections by applying
different forces during different time intervals.
The reports cited in this section constitute the most

immediate background for the present work. Although they
vary in the concepts studied, the types of tasks students
solve, and the research environments (interviews or actual
classroom settings), they all share the same knowledge-in-
pieces approach. This approach conceives knowledge to be
made up of many fine-grained elements or pieces [13,14].
According to this ontology, learning is, in a nutshell, re-
organizing those pieces in different ways when confronted
with different situations. Also, it is an approach that has
been successful to understand the substance of not only
conceptual but also epistemic knowledge [15–18].
The present study shares this view on knowledge. We

focus on understanding how contextual details that students
attend to in the physical situation can orient the different
coordinations of buoyancy, thus sustaining its learning. The
case we present here makes a significant contribution to the
previous work because (a) students make substantial and, in
our opinion, impressive progress during a single problem-
solving session of under 80 minutes; (b) this progress takes
place in an interview setting, where no teacher is involved,
and thus no instructional strategy is being carried out.
However, there were certain nudges from the interviewer,
which will be discussed in the data analysis.
We intend to guide the reader through the sequence that

students follow in understanding buoyancy in the case of a
cube sitting at the bottom of a water-filled container, which
is in turn placed on a scale (see Fig. 1, case C). Students
begin by assuming that buoyancy is zero, because there is
no liquid below the body. Later, they decide that buoyancy

FIG. 1. The problem posed to students. Adapted from Leonard
et al. [19]].
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is equal to body weight because there is a thin water layer
under it. After that, they understand the buoyant force is
different from zero and less than body weight. Finally,
they are able to arrive at the correct value for buoyancy
(B ¼ W-N).

III. THE STUDY

The problem-solving session in which the data for this
study were collected was one of a series of interviews
carried out with three university students. They were in the
third semester of their career in physics. At the moment of
the interview, they had already been instructed in hydro-
statics. One of the first problems posed to them during
those interviews, was the one in Fig. 1.
When conducting the first interview we encountered an

unexpected reasoning: Students dismissed the influence
of buoyancy on the body inside the fluid in situation C.
The following is an excerpt from that interview when they
first attempted a solution of the problem (Students will be
referred to as A, M, and J):
M: (to the interviewer) we say that the scale in A reads

the same as in C, because there is no buoyancy.
A: we’re saying that here, in C, buoyancy does not

intervene, that the scale reads the weight of the three things
because the body is flat against the bottom of the
container…. I mean, for a buoyant force to exist it has
to be floating
J: (looking at his class notes) It says here that all

bodies, totally or partially immersed in a fluid receive a
buoyant force…
M: we never saw a case like that, a body all sunk

touching the bottom
J: we never saw it against the bottom
M: if it’s all flat against the bottom, then the only upward

force is the normal force done by the surface, then there is
no buoyancy pointing up
M: because there is no liquid there to… (makes upward

gestures with her hands)
A, M, and J were very confident of their ideas (so much

so, that they even disregarded a piece of information that
proceeds from an authoritative source: J’s class notes).
After that, they extended the reasoning to compare cases
“B” and “D” and ultimately to state that all scales would
show the same reading (a full analysis of the data can be
found in Ref. [20]). At that point we realized that, although
they were giving a “correct” answer, their reasoning called
for a more profound analysis. Thus, in the second interview,
the problem was posed to them again. We wanted to probe
deeper into their conceptualization of buoyancy in that
particular case. The analysis of the present work is done on
the basis of the data collected at that second interview [21].
We call on coordination class theory [22], to show some
critical details of how solving this particular problem
impacts their conceptual understanding of buoyancy [23].

IV. COORDINATION CLASS THEORY

Why coordination class theory? This theory presents two
characteristics that render it particularly suitable for our
purposes: (a) It conceives concepts as multiple elements
associated in multiple possible ways, and thus, allows for
multiplemechanisms for conceptual change. It is temporally
and conceptually fine grained, and therefore it is suitable to
study concept changes occurring within a single problem-
solving session. (b) It posits the existence of elements called
read-out strategies that account for people’s perception,
things they focus their attention on, and how these are linked
to other pieces of conceptual knowledge. Thus, it is suitable
to study the link between conceptual dynamics and the
problem context.
This theory was developed to address important ques-

tions within the science education community, such as
(i) what does it mean to “know” a concept? How can this
vague idea be expressed in more precise terms so as to
provide more useful insights for research?, and (ii) What
does “conceptual change” mean?, what actually changes in
students’ minds and how is the process of that change?
The theory attempts to provide more precise answers to
these questions.
This theory considers knowledge to be a complex system

consisting of multiple elements related in multiple ways.
Within this perspective, learning a concept means coordi-
nating many of those elements in many different ways. This
perspective entails some nonintuitive considerations. It is
not possible, for example, to set a precise limit between
knowing and not knowing a concept. Learning a concept
involvesmany different relations betweenmultiple elements
and thus, a person could exhibit a competent performance
even though some of those relations could be technically
incorrect. Moreover, it is reasonable to assume that people
never attain a complete learning of a particular concept, or, in
other words, that such a “complete” learning status is not
specifiable. Nevertheless, this nonspecifiable status is not
problematic, since our research interests are focused on
intermediate states of learning.
A coordination class is a model for particular kinds of

concepts, among which are scientific concepts. The main
function of a coordination class is to allow people to read a
particular kind of information out of situations in the world.
This reading takes place through specific processes and
strategies. Many of the difficulties students have are related
to the circumstances in which they execute those particular
strategies and processes. Examples of this relevant infor-
mation are the existence, magnitude, and direction of a
force, or the timelike distance in space-time between two
events, in the case of proper time. In the remainder of this
section we briefly describe the strategies and processes
proposed by coordination class theory to obtain that
information in any particular situation.
The architecture of a coordination class includes

two elements: read-out strategies and an inferential net.

SOLVING PROBLEMS TO LEARN CONCEPTS, … PHYS. REV. PHYS. EDUC. RES. 12, 020144 (2016)

020144-3



Read-out strategies allow people to focus their attention on
certain information. The inferential net is the total set of
inferences people make to turn information read-outs into
the required relevant information. The generic processes
that build up a coordination class are incorporation and
displacement. Incorporating is recruiting elements from
prior conceptualizations into the partial encoding [24] of
the new concept. Displacement consists of dismissing
elements from prior conceptualizations that may initially
and inappropriately take over the function of the co-
ordination class in certain circumstances. Typically, stu-
dents exhibit two characteristic difficulties in creating a
new coordination class: the problem of span and of
alignment. The problem of span refers to the ability (or
lack thereof) to recruit and coordinate the elements of
the class in a sufficiently large set of contexts in which the
concept is relevant. According to the theory, “using” a
concept in different contexts may well imply retrieving
different pieces of knowledge and/or articulating them in
different ways. The particular knowledge and the particular
way it is coordinated in specific applications of the concept
is called a concept projection. Alignment thus refers to the
possibility of obtaining the same relevant information by
means of different projections of the concept.
The theory also establishes a stronger form of alignment:

articulate alignment, or articulation. Articulation occurs
when students are not only able to determine the relevant
information in different circumstances, but can also explic-
itly relate those different projections, noting differences and
similarities between them. This stronger form of alignment
is a metaconceptual process which is a natural extension
of the theory in its original form [11]. Figure 2 shows a
schematic diagram of these elements.

V. RESEARCH QUESTIONS

(i) What are the incorporations, displacements, projec-
tions, and articulations that account for students’

conceptual progress as they solve the problem
of Fig. 1?

(ii) What is the particular role of read-outs in that
progress?

VI. METHODOLOGY

As we explained at the beginning of this paper, the data
analyzed correspond to a second interview with students A,
M, and Jwhen solving the problem of Fig. 1. This interview
is part of a series of interviews with these students solving
other problems and took place 90 days after the first one.
Students voluntarily responded to a call from the

research group. Although researchers were not the instruc-
tors of these students, they were recognized not only as
researchers, but also as teachers of their institution. By the
time of the first interview, students had been instructed in
hydrostatics, as typically represented by textbooks such as
Serway’s [25] or Sears and Zemansky’s [26]. All three
students were in the third semester of their career and to that
moment, showed an average performance, representative of
their cohort; that is, they regularly attended class and had
passed 80% of their courses so far.
The researcher and interviewer (first author) was in

charge of posing the problem situation and interrupted
students to encourage debates and to make students’
reasoning more explicit as they searched for answers.
This was done using different types of interventions.
These interventions varied from more neutral to more
perturbative ones. Neutral interventions were, for example,
asking for clarification on their points of view, nodding to
their expressions, or simply expressing interest in their
thoughts. More perturbative interventions included recall-
ing prior statements or focusing on details that were not
explicitly attended to. Students were, most of the time,
very committed to their reasoning process and lively
discussions took place. Interviews were video recorded
and then transcribed.

FIG. 2. Schematic representation of theoretical elements that constitute a coordination class.

LAURA BUTELER and ENRIQUE COLEONI PHYS. REV. PHYS. EDUC. RES. 12, 020144 (2016)

020144-4



In order to provide a guide for the reader as to how
different “pieces of knowledge” are interpreted either as a
read-out strategy or as a bit of an inferential net, different
criteria are summarized in Table I.

VII. RESULTS AND ANALYSIS

Two ideas arose during the first interview that went
unquestioned by the students: the cube at the bottom of the
water-filled container receives no buoyant force; and all
four scales show the same reading. In this second interview
we revisited the same situation and asked them to consider
it once again. When they tried to compare cases A and C
(see Fig. 1), they stopped to understand what the scale reads
in case C. This doubt generated an extended discussion
(80 minutes) during which we were able to observe
important changes in their conceptualization of buoyancy.
Although these changes are observed throughout the
complete interview; we will show four snippets (Si) that
are representative of them in subsections A–D. They are
continuous sequences of students’ speech.

A. There is no buoyant force at all

S1 [3:10 min]: “Assuming there is no liquid between the
small cube and the bottom of the container”
(1) A: and we said like… buoyancy does not do anything

to it because it is completely touching the bottom
side of the beaker

(2) J: there’s no liquid under it
(3) A: so the scale reading is the normal force that the

bottom does on it, and its magnitude is the same as
its weight. (J agrees)

(4) J: assuming there is no liquid between the cube and
the bottom

(5) A: that “ideal” stuff they always tell us that happen!
(laughter)

(6) Int.: what if I replace that little cube for a little ball
of the same material, and the same volume, just
change the shape… in that case, is your answer the
same as for the cube?

(7) J: well, in that case it has water underneath
(8) Int.: what does it mean “it has water underneath”?
(9) J: because here, with the cube, I’m assuming that it

is completely in contact with the base of the
container, then there is no water between the cube
and the container

(10) Int.: ok, so, you mean, the base of the cube is dry?
(11) J: (smiles in a gesture that indicates that appreciation

was an exaggeration) … yeah…
(12) A: I mean, … ideally… (ironic tone)
(13) M: I don’t think shape has nothing to do with it,

‘cause we never cared about shape to compute the
magnitude of buoyancy

(14) A: yeah… I mean
(15) J: sure, buoyancy doesn’t depend on shape, just

volume, so in this case (cube at the bottom) there
should be a buoyant force…

(16) A: (confused)… so it would be the same…. the same
as here…. (comparing the case of the ball and of
the cube)

(17) J: careful, ‘cause… remember when we saw why
there is buoyancy, it was because the volume of
water displaced was held by the water underneath…
so that generates buoyancy… so it does matter if
there is water underneath or not

Three distinct projections can be identified in this snippet.
A very particular read-out strategy seems to have triggered

TABLE I. Operational definitions for read-out strategies and elements of the inferential net.

Operational criteria to interpret data in students’ verbalizations

Knowledge element Operational criteria Some examples

Read-out strategies They refer to specific traits in objects in the situation there is no liquid underneath the metal cube
They are directly read from the context, not questioned
or mediated by any other reasoning

there is liquid underneath the ball

They refer to physical traits, such as size, shape,
spatial distribution, etc.

both bodies (cube and sphere) displace
liquid, regardless of their shape.

They do not involve abstractions, as concepts or
other physical principles.

the surfaces are totally smooth

They are essential to start off an inferential net there is no water under the cube
the “extra” layer of water at the top
of the fluid

Elements of the
inferential net

They are usually expressed in the form of if-then
statements

buoyancy doesn’t depend on shape… so…
there should be a buoyant force

They involve, or are linked to, abstract elements
such as concepts or physical laws.

because of this extra volume of water up
here the pressure down here is going
to be larger

The inference chain is directed to the goal of producing a
concept-distinctive information.
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the first of these projections: there is no liquid underneath the
metal cube and, thus, they infer that buoyancy is zero (turns 1,
2, 4, and 9). On the other hand, another read-out strategy
triggers the second projection: there is liquid underneath the
ball, and therefore, there is a nonzero buoyant force (turn 7).
A third projection momentarily puts the previous two on
hold. It is triggered by a read-out that indicates that both
bodies (cube and sphere) displace liquid, regardless of their
shape. Since the value of the buoyant force does not depend
on shape, but only on displaced volume, then both bodies are
affected by the same buoyant force. (turns 13, 14, 15, 16).
In turn 17, J is explicit in his attempt to articulate

projections 1 (buoyancy is zero on the cube) and 2
(buoyancy is nonzero for the sphere). He understands, at
the same time, that buoyancy is related to the volume of
liquid displaced, but there is also an extra condition for this
to be true: there must be liquid underneath the body.
Figure 3 shows a scheme of these projections. As shown

in Fig. 3(a), the read-out there is no water under the cube, is
activated together with another one: the surfaces are totally
smooth (turns 1, 9). Both read-outs are consistent with the
problem figure, in which the cube’s bottom face is in
complete contact with the bottom of the container.
However, we also believe that the activation of these
read-outs is linked to a particular epistemic stance, or idea,
that is consistent with a strategy that students consider licit
to solve physics problems. This can be defined as follows:
“to solve physics problems it is ok to simplify aspects of the
situation as needed.” This idea is epistemic because it
represents a stance on knowledge construction (particularly
during problem solving). This piece of epistemic knowl-
edge (turns 4, 5, 11, 12) enables students to read-out
particular traits of the contacting surfaces: the surfaces are
completely smooth and there is no water under the cube.
These read-outs are not only triggered by the geometrical
depiction of the surfaces, but are also sustained by the
activation of this epistemic piece of knowledge. We will
refer to this piece of epistemic knowledge as modeling by
simplifying.

B. Buoyancy balances weight

S2 [24:37 min]: “Buoyancy is equal to weight”
After the end of S1, and up to the beginning of S2,

students discuss for over 15 minutes
(1) Int.: ok, so, let’s assume this is so, and that’s

because you assumed that there was a thin layer
of water… so let’s go back to the cube, or
the ball, sitting on the bottom, whichever you
prefer

(2) J: when we saw this, remember we had done
something like this? (draws a cubic portion of
the fluid within the fluid and points at the pressures
above and below that imaginary cube, as well as the
different depths) and we looked at the pressures on
the top and bottom faces and then computed the
total force on the cube… so if now we have the cube
at the bottom of the container (draws the cube at the
bottom) down here we have the pressure of all this
water column and on the top face a smaller
pressure so the forces of these pressures plus the
weight equals zero because the cube is at equi-
librium

(3) M: so if we take this (buoyancy as the result of
hydrostatic pressure) then there is buoyancy…
‘cause we have liquid down here, even if it’s a tiny
layer, pressure down there times this area, and
pressure up here times this area, that difference
between them yields buoyancy… otherwise the
pressure would have to be the same above and
below, and that can’t be…

(4) J: so if there is water underneath we have a result
different from last time (meaning that before they
said B ¼ 0 andW ¼ N for case C, and now they find
a nonzero value for B)

(5) M: no, it’s still the same result (all scales read
the same)

(6) A: it’s still the same!
(7) Int.: so we have weight and buoyancy, and no

normal force?

FIG. 3. Schematic diagrams of the three projections reported in S1. (a) No buoyancy on sunk cube, (b) nonzero buoyancy for sunk
sphere, and (c) nonzero buoyancy for either sunk body.
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(8) J: NO, there is no normal on the cube but… but
buoyancy is equal to weight, and that buoyancy is
what the scale reads

The read-out strategy reported in the first snippet (there
is no water underneath the cube) was displaced and another
read-out was incorporated there is a thin liquid layer under
the cube. In addition, surface is totally smooth is still
activated. These two read-outs, combined, lead to infer that
there is no contact between the cube’s bottom face and the
surface of the container. On the other hand, buoyancy as the
result of hydrostatic pressures is recovered, as shown in
turns 2 and 3. These facts combined lead them to generate a
still nonaligned projection (buoyancy is not equal to weight
in this case).
Once again, a piece of epistemic knowledge, modeling

by simplifying, together with a particular trait of the context
(the figure of the problem depicts two completely flat
contacting surfaces) have driven students’ reasoning. Read-
outs seem to be activated as a result of a contextual
characteristic together with a particular epistemic stance
sustained by modeling by simplifying.
Figure 4 shows a schematic diagram of the pieces of

knowledge coordinated in this projection.

C. Buoyancy is smaller than weight

S3 [49:00 min]: “buoyancy is smaller than the weight of
the block”
Even though students had assumed a thin liquid layer

under the cube, it was difficult for them to accept that a
heavy body, one that cannot float in water, and is sinking to
the bottom of the liquid, will not eventually touch the
bottom of the container. This keeps them working on the
problem. In this snippet, students consider an imaginary
situation and conclude that buoyancy on the block is neither
zero nor equal to its weight.
On the basis that all scale readings are equal (something

that they are confident about all along) they break up the

scale reading into its various contributions, which they
refer to as “normal forces,” which correspond to each of
the bodies on it. Thus, in the setting of case A, they call the
force from the scale on the water N1, and the force from the
scale on the metal cubeN2. They imagine another situation,
similar to case C, in which they do not need to analyze the
forces on the sunk cube. This situation, C’, an analogue to
case C, is depicted in Fig. 5. They imagine the same
container in A, in which no cube is placed inside the liquid.
Also, they consider that there is more water in the container,
more specifically, an “extra” amount of water of equal
volume to that of the cube. At the same time, they consider
another cube lying directly on the scale, and they conclude
that this cube must weigh less than the cube that was
removed from within the water. N0

1 is the normal force
from the scale on the water in C’, and N0

2 is the force from
the scale on a metal cube sitting directly on it. In comparing
situations A and C (or C’), they cancel out the forces from
the scale on the wooden cube and on the container. The
consideration of this analogous situation, C’, helps them
conclude that, if scale readings are the same for A and C
(or C’), then buoyancy on the metal cube in case C is not
equal to its weight, contrary to the results they arrived at in
S1 (B ¼ 0) or S2 (B ¼ W).
(1) A: it’s like if now it (metal cube in case C) had less

weight… if here you have a normal N1 (case A) that
corresponds to the pressure of a water column this
high, and also this normal N2 (on the metal cube,
case A) that is equal to its weight. Now if you look
here (case C), now the cube is inside, so all I need to
look at is the new normal on the water, because of
this little extra volume of water up here [the water
displaced by the metal cube] and there is this new
height, so the pressure down here is going to be
different, larger, so there’s going to be a new normal
N0

1 that is larger than N1. But we know both
readings have to be the same, so if they are the
same, it’s like having the metal block sitting outside,

FIG. 4. Schematic diagram of the projection described in S2.

FIG. 5. Analogy proposed by students. The case C’, in which
the force “supporting” the metal cube is smaller than in case A.
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but with a different weight… I mean I have N1 plus
N2 and it has to be equal to N1’ which is larger than
N1… so if I want the reading to be the same and now
instead of putting the cube inside I just lay it on the
scale, and I assume both readings are the same, then
the new normal on the cube N0

2 on this cube outside
the container would have to be less thanN2… so it’s
like the cube had to change its weight …

(2) M: it’s because now its equal to buoyancy [the new
normal, N0

2, is equal to buoyancy]… so it’s like you
get that weight is not equal to buoyancy [in case C]
but since the sum ends up being the same … I mean
buoyancy is smaller than weight, but the sum gives
the same result.

A and M arrive at the same conclusion (body weight is
diminished under water) through different reasonings. M
probably continues to think that the metal cube only
interacts with water, and not with the base of the beaker;
thus, she (incorrectly) takes that diminished weight to be
balanced by the buoyant force on the cube (in fact,
buoyancy is a reasonable candidate to be the balancing
force of that “new diminished weight”). On the other hand,
A does not assume any particular interaction between the
face of the cube and the bottom of the container; in fact, as
she places the cube outside the container.
A andM are improving their conceptual understanding of

buoyancy: it is different from zero but less than weight.
This new projection brings together three very important
features of buoyancy at the same time. It links buoyancy to
the displaced liquid, since it is explicitly related to the
“extra” layer of water on top of the fluid. Also, buoyancy is
explicitly related to the increased liquid pressure at the
bottom of the container.
Finally, buoyancy is related to the particular effect that

fluids have of “diminishing” the weight of immersed
bodies.
This new projection is clearly initiated by something that

had not been present in their prior reasoning: the “extra”
layer of water at the top of the fluid when the cube is
immersed in the container. This read-out triggers a chain of
inferences: increased water level → increased water pres-
sure ðbottomÞ → N0

1 > N1 → N0
2 < N2 → decreased W.

M’s intervention in turn 2, although physically flawed, is a
great contribution. It allows connecting those inferences
to a value of buoyancy which is neither zero nor equal to
body weight.
There is also a strategic move here. At some point during

the sequence of inferences reported above, an epistemic
idea is activated which can be stated as follows: “when you
get stuck solving a problem, it is ok to replace the given
situation by an analogous one, make conclusions in it, and
then translate those conclusions back to the original
situation.” In this particular case, the strength in this move
is enabling students to approach the question of how
buoyancy and normal forces are acting on the body from

a perspective that avoids the problematic contact surface at
the cube’s bottom face. We will refer to this epistemic
stance simply as analogy. Figure 6 gathers the pieces
coordinated in this projection in a schematic way.

D. Changing the model for the contact surface

S4 [65:03 min]: “just imagine a surface like this one…”
For several minutes, students engage in a discussion in

which A and M try to show J how the “made up” situation,
C’, leads them to a new, different result (B < W).
Eventually, they get back to the issue of whether the cube
at the bottom of the container is or is not touching the
surface. The interviewer comments that being in contact
does not necessarily mean that there is no water at all
between the surfaces of the cube and the container. From
this idea, they decide to consider a rough surface and
they identify water pressure on the top and bottom faces
of the cube, they express the relation between those
pressures and buoyancy (except for a missing area), and
they finally write down all the forces on the submerged
cube, as shown in Fig. 7. They immediately arrive at the

FIG. 6. Schematic diagram of the projection described in S3.

FIG. 7. Model proposed by the students from a “microscopic”
point of view. (P1 and P2 are pressures, P is weight, N is normal
force, and E stands for buoyancy).
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vector equation: W þ Bþ N ¼ 0 (In the figure, this
equation reads Pþ Eþ N ¼ 0)
As before, they break down the scale reading, for case C,

into the partial contributions that correspond to each of the
bodies on it. Thus, they arrive at the conclusion that the
scale reading will be equal to the sum of four contributions:
one corresponding to the wooden block, one corresponding
to the container, one corresponding to the liquid, consid-
ering the “extra amount of water”, and one corresponding
to the submerged metal cube (which they now know is
W-B)
(1) Int.: contact does not necessarily mean that there is

no water, right?
(2) A: ok, but, imagine that you have a surface like

this one… on these points it does touch the
bottom [Fig. 7]

(3) J: Oh! Right! I assumed the surface was completely
smooth!

(4) A: so then, since there’s a little bit of water in these
places, there you have the water pressure at the
bottom (P2 in the figure), but also, you’ve got these
contact points and they do an upward normal (N in
the figure)… so you have buoyancy that is the result
of these two pressures, plus the normal, plus
weight … (writes the vector equation in Figure 6,
Pþ Eþ N ¼ 0, which stands forW þ Bþ N ¼ 0 in
its English version)

(5) M: But if you take directions into account, weight is
buoyancy plus normal.

(6) Int.: ok… so this that you just did, does it solve the
problem you had before?

(7) A: Yes… because weight is not equal to buoyancy,
but it isn’t equal to the normal force, either… and
before we said that weight was either equal to the
normal force, or equal to buoyancy… we never
considered all three altogether…

(8) J: we never considered the cube to have a rough
surface… we always thought that it was completely
smooth …

(9) A. so, if the scale reading is made up of normal
forces… we have three normal forces: the one on
the wooden cube, the one on the “increased” water
(because the metal cube is inside), and the one on
the metal cube… oh, but wait!… this new normal on
the water should be related to buoyancy, that’s what
I’m not sure about…

(10) M: the normal force on the metal cube is its weight
minus buoyancy …

During this fourth snippet students modeled the surface
as a macroscopically smooth and microscopically rough
one. This model constituted a fundamental piece that
allowed students to produce an aligned projection of
buoyancy for this situation.
One read-out is displaced (surfaces are completely

smooth) and another one is incorporated (surface is
microscopically rough), in a very quick and natural way.

How can this move occur so easily and in an unproblematic
way? We believe that this move is supported by the same
epistemic piece of knowledge already reported in S1 and
S2: modeling by simplifying (“to solve physics problems it
is ok to simplify aspects of the situation as needed”). Given
this epistemic stance, it is only natural to assume different
microscopic characteristics for that surface, so that water
pressure and contact with the container can coexist. This
new model for the contacting surface still contains sim-
plifications: water pressure is considered uniform under-
neath the cube, and contact points do not seem to alter the
overall value of the contact area.
Figure 8 shows the different elements coordinated in this

projection.

E. The role of the interviewer

How much is the interviewer involved in students’
progress? It could be argued that it was the interviewer’s
intervention that originated some of the reasonings that
were later reported as students’ conceptual progress. This is
particularly so in S1 and S4. The interviewer did indeed
affect students’ thoughts. However, we will show they did
not abandon their original ideas.
In S1, we reported three different projections (no water

under the cube leads to no buoyancy; liquid under the
sphere leads to non-zero buoyancy; and both bodies dis-
place liquid means buoyancy is non-zero in both cases).
These last two were most probably prompted by the
interviewer in turn 6. She asks them to compare the case
of the cube with the one of a sphere. This is a perturbative
intervention because it introduces an element not present in
students’ reasoning. However, their first projection is still
there, and two more projections are being considered. In
fact, students are attempting to articulate those projections.
Again, this articulation could be attributed to the inter-
viewer’s prompt in turn 10. She focuses on an otherwise
unnoticed fact: no water under the cube means the cube’s
bottom face is dry, as if it had never been introduced in the

FIG. 8. Schematic diagram of projection described in S4.
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container. Students, however, do not back up from their
original idea that the cube is not affected by buoyancy.
On the contrary, their reasoning is refined as they view the
underlying liquid as an “extra” condition for buoyancy to
occur; and this condition is indeed a very reasonable one,
in physical terms.
S4 illustrates how students changed the original simpli-

fication of two smooth surfaces, totally in contact with
each other, for another one in which macroscopically flat
surfaces present roughness at a microscopic level. One
cannot help noticing that it was the interviewer’s comment
in turn 1 that prompted this change (contact does not
necessarily mean there is nowater). The critical point is that
it just introduced the possibility that there could be contact
with both water and container at the same time. Students
are the ones who actually decided to revise the model for
the surfaces as they did and they did so spontaneously.
In both snippets (S1 and S4) the interviewer’s partici-

pations did not override students’ reasoning. On the
contrary, students’ spontaneous reasoning was enriched.

VIII. DISCUSSION

The analysis of this case was originated by the fact that,
although giving a correct answer (all scales do read the
same), students were “incorrectly” using the concept of
buoyancy. Interpreting this as a robust misconception on
buoyancy, would only have called for its report as such and
not for any further study. Instead, a knowledge-in-pieces
perspective lead us to pursue the present study and to
witness students’ conceptual progress at a very small scale.
We were able to understand students’ progress even when
they momentarily held views that are inconsistent with
normative physics.

A. What are the evidences of students’
conceptual progress?

In S1, they still have not been able to decide what the
value of buoyancy is, however they are making conceptual
progress. They are committed to the expansion of the class
to the particular context of a cube sitting flat against the
bottom of the container. This involves three different
projections and an articulation between them. This process
leads them to explicitly consider the importance of the
liquid underneath the body, which is very relevant to a
physical description of buoyancy.
A particular element is seen to play an important role in

the process described in the preceding paragraph. An
epistemic stance is seen to participate: modeling by
simplifying. This stance can be regarded as an epistemic
resource in agreement with previous research that has
focused on epistemic knowledge from a knowledge-in-
pieces approach [11,22–24]. In this view, people’s attitude
in relation to knowledge and knowing is the context-
sensitive result of activating different epistemic resources.

Modeling by simplifying allows students to make assump-
tions that are not explicitly suggested in the problem and
these assumptions are critical for the read-out surfaces are
totally smooth. The idea that epistemic resources can either
foster or hinder the activation of productive knowledge that
students have available is neither new nor surprising [27].
What constitutes an interesting aspect of the present
discussion is that in this study we are able to describe
how this epistemic piece of knowledge is related to the
activation of a particular read-out.
Modeling by simplifying is also involved in the displace-

ment of a particular read-out strategy (there is no liquid
between the surfaces) and the incorporation of another one
(there is a thin liquid layer under the cube) which occur in
S2. This change implies that students continue to make
efforts to expand the class for buoyancy.
The conceptual progress observed in S3 exhibits some

striking features. Students generate, of themselves, a new
context in which they can avoid the issues that are keeping
them from (confidently) obtaining the actual value for
buoyancy. In doing so, they start off with a new read-out
strategy: the extra liquid up there. Besides, a very useful
element is incorporated into the inferential net: the episte-
mic resource of analogy. This epistemic stance not only
validates a particular type of reasoning, it also helps them
make inferences that connect elements of the actual
situation with elements of the analogous case. Once more,
we are able to observe how this epistemic piece of
knowledge operates in relation to the if-then sequence in
the inferential net. As a result, buoyancy is greater than zero
and less than weight, in closer agreement with its actual
normative value.
Finally, in S4, students displace the read-out surfaces

are totally smooth and incorporate surface is microscopi-
cally rough. Thus, they are able to assume a new
simplification that allows for buoyancy and a contact
force at the same time. As in the case of the read-outs
displaced and incorporated in S1 and S2 (there is no water
under the cube and there is a thin liquid layer), this
displacement or incorporation is linked not only to
particular geometrical characteristics, but also to assump-
tions at a microscopic level that are enabled by modeling
by simplifying.
Focusing on the role of read-outs in the overall con-

ceptual progress one is confronted to a particular finding.
Read-outs seem to be activated by salient features of the
problem, that students can directly perceive, but also by a
particular epistemic stance: modeling by simplifying. There
is nothing in the problem depiction or in the problem
statement that could lead students to see a thin layer of
liquid completely separating both surfaces, or to see the
assumed roughness of the cube’s bottom face at a micro-
scopic level. These things are read-out because of a
particular epistemic positioning: to solve physics problems
it is ok to simplify aspects of the situation as needed.
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The role of epistemic resources described in the preced-
ing paragraph constitutes a natural expansion of co-
ordination class theory that includes epistemic stances
within its ontology.

B. Implications

The present work has strong implications for researchers
addressing the question of how and when conceptual
learning takes place. It shows how a knowledge-in-pieces
perspective, as the one adopted here, allows understanding
otherwise inaccessible processes. Viewing students’ ideas
as robust misconceptions, for example, calls for detecting,
recognizing, and eventually guiding students to replace
those misconceptions for “correct” physical ideas. On the
contrary, from the present view, research can help us
understand conceptual progress independently of the
“correctness” of students’ conceptual understanding at
any particular time. This is much more in agreement with
actual experiences as students and as teachers: learning
involves changing ideas, and even ideas that are not
completely correct may well represent progress in one’s
understanding.
The results of the present analysis could also be useful

for teachers and curriculum developers to inform their
work. The first thing that this study highlights is that the
situations we offer students may have certain details that
can go unnoticed to us, but which can have a great impact
on their reasoning. Of course, we cannot say that cubes are
either a better or a worse option than spheres to teach
buoyancy. Nevertheless, we can affirm that the comparison
of both cases is the most sensible choice, as it offers the best
chances of expanding students’ conceptual span.

The second thing that this study alerts us to is the use of
(implicit) simplifications often present in problem state-
ments. Do they actually facilitate learning? Or can they
constitute an extra obstacle for students? The discussions
analyzed are evidence that students had to work hard to
overcome that implicit simplification in order to understand
how different forces were acting in this case. The use of
problems with implicit simplifications may end up in
conceptual difficulties for students that can go unnoticed
to us. This is clear evidence of the extent to which modeling
should be regarded as an instructional goal in itself and not
something that students will always learn on their own.
Finally, the ways in which intereviewer’s prompts affect

students’ reasoning can also be an important input for
teachers. As such, we are constantly making micro on-the-
spot decisions, while conducting classroom or small group
discussions. What kinds of interventions are most helpful
for students’ knowledge construction? Data show that it is
possible to keep them working on their own ideas and, at
the same time, to nudge them into more productive
reasoning.

ACKNOWLEDGMENTS

We are thankful for the referees’ feedback during the
review process of this paper. Their ideas and suggestions
not only contributed to improving the manuscript, but they
also helped us understand important characteristics of our
own work. We not only appreciate the input they provided
but also the generous and respectful way in which they did
this. The present work was funded by Agencia Nacional de
Promoción Científica y Técnica, Argentina.

[1] T. Byun and G. Lee, Why students still can’t solve physics
problems after solving over 2000 problems, Am. J. Phys.
82, 906 (2014).

[2] C. B. Labra, A. Gras-Martí, and J. Martínez-Torregrosa,
Análisis de la resolución de problemas de física en secun-
daria y primer curso universitario en Chile, Enseñanza de las
Ciencias 22, 275 (2004).

[3] D. Gil Pérez and J. Martínez Torregrosa, A model for
problem solving in accordance with scientific methodol-
ogy, Eur. J. Sci. Educ. 5, 447 (1983).

[4] T. Foster, Ph.D. thesis, University of Minnesota, Minnesota,
2000, http://groups.physics.umn.edu/physed/People/Tom's
%20Thesis/tom.html.

[5] W. Leonard, W. Gerace, and R. Dufresne, Resolución de
problemas basada en el análisis: Hacer del análisis y del
razonamiento el foco de la enseñanza de la Física,
Enseñanza de las Ciencias 20, 387 (2002).

[6] J Mestre, R. Dufresne, W. Gerace, P. Hardiman, and J.
Tonger, Promoting skilled problem-solving behavior

among beginning physics students, J. Res. Sci. Teach.
30, 303 (1993).

[7] J. Docktor, N. Strand, J. Mestre, and B. Ross, Conceptual
problem solving in high school physics, Phys. Rev. ST
Phys. Educ. Res. 11, 020106 (2015).

[8] A. diSessa and B. Sherin, What changes in conceptual
change?, Int. J. Sci. Educ. 20, 1155 (1998).

[9] J. Wagner, Transfer in pieces, Cognit. Instr. 24, 1 (2006).
[10] O. Parnafes, What does “Fast” mean? Understanding the

physical world through computational representations,
J. Learn. Sci. 16, 415 (2007).

[11] O. Levrini and A. diSessa, How students learn from
multiple contexts and definitions: Proper time as a co-
ordination class, Phys. Rev. ST Phys. Educ. Res. 4, 010107
(2008).

[12] ] P. Sengupta, K. D. Krinks, and D. B. Clark, Learning to
deflect: Conceptual change in physics during digital game
play, J. Learn. Sci. 24, 638 (2015).

SOLVING PROBLEMS TO LEARN CONCEPTS, … PHYS. REV. PHYS. EDUC. RES. 12, 020144 (2016)

020144-11

http://dx.doi.org/10.1119/1.4881606
http://dx.doi.org/10.1119/1.4881606
http://dx.doi.org/10.1080/0140528830050408
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://groups.physics.umn.edu/physed/People/Tom's%20Thesis/tom.html
http://dx.doi.org/10.1002/tea.3660300306
http://dx.doi.org/10.1002/tea.3660300306
http://dx.doi.org/10.1103/PhysRevSTPER.11.020106
http://dx.doi.org/10.1103/PhysRevSTPER.11.020106
http://dx.doi.org/10.1080/0950069980201002
http://dx.doi.org/10.1207/s1532690xci2401_1
http://dx.doi.org/10.1080/10508400701413443
http://dx.doi.org/10.1103/PhysRevSTPER.4.010107
http://dx.doi.org/10.1103/PhysRevSTPER.4.010107
http://dx.doi.org/10.1080/10508406.2015.1082912


[13] A. diSessa, B. Sherin, and M. Levin, Knowledge Analysis:
An Introduction, in Knowledge and Interaction, edited by
A. diSessa, M. Levin, and N. Brown (Routledge, New York
and London, 2016), pp. 30–71.

[14] A. diSessa, A Bird’s-Eye View of the “Pieces” vs.
“Coherence” Controversy, in International Handbook of
Research on Conceptual Change, edited by S. Vosniadou
(Routledge, New York and London, 2008), pp. 35–60.

[15] D. Hammer and A. Elby, On the form of a personal
epistemology, in Personal Epistemology: The Psychology
of Beliefs about Knowledge and Knowing, edited by B. K.
Hofer and P. R. Pintrich (Lawrence Erlbaum, Mahwah, NJ,
2002), pp. 169–190.

[16] D. Hammer, A. Elby, R. E. Scherr, and E. F. Redish,
Resources, framing, and transfer, in Transfer of Learning
from a Modern Multidisciplinary Perspective, edited by
J. P. Mestre (IAP, Greenwich, CT, 2005), pp. 89–120.

[17] E. F. Redish, in A Theoretical Framework for Physics
Education Research: Modeling Student Thinking, Pro-
ceedings of the International School of Physics “Enrico
Fermi” Course CLVI, (Varenna, Italy, Jul 15–25, 2003),
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/
servlet/ERICServlet?accno=ED493138.

[18] S. Rosenberg, D. Hammer, and J. Phelan, Multiple epis-
temological coherences in an eighth-grade discussion of
the rock cycle, J. Learn. Sci. 15, 261 (2006).

[19] W. Leonard, R. Dufresne, W. Gerace, and J. Mestre,Minds
on Physics—Complex Systems (Kendall/Hunt Publishing
Company, Iowa, 2001).

[20] L. Buteler, E. A. Coleoni, and M. A. Perea, Aprendiendo
empuje durante la resolución de problemas: un análisis
desde la Teoría de Clases de Coordinación, Enseñanza de
las Ciencias 32, 511 (2014).

[21] Preliminary results were reported in SIEF XII: L. Buteler
and E. Coleoni, Sobre el aprendizaje (y la enseñanza) del
concepto de empuje: un análisis de la dimensión cog-
nitiva y comunicativa de lo que ocurre durante una
entrevista grupal, Revista de Enseñanza de la Física 26,
17 (2014).

[22] A. diSessa and J. Wagner, What Coordination Has to
Say About Transfer, In Transfer of Learning: From a
Modern Multidisciplinary Perspective, edited by J.
Mestre (Information Age Publishing, Greenwich, 2005),
p. 121.

[23] The problem could be solved without considering buoyant
forces at all. However, these students approached the
solution including this force as a central component of
their reasoning.

[24] Partial encoding means that they will be used in some
circumstances, but not in others.

[25] R. Serway, Física, Tomo I (Interamericana Editores.
Distrito Federal, 1997).

[26] F. Sears and M. Zemansky, Física General (Aguilar, S. A.
de Ediciones, Madrid, 1966).

[27] A. Gupta and A. Elby, Beyond Epistemological Deficits:
Dynamic explanations of engineering students’ difficulties
with mathematical sense-making, Int. J. Sci. Educ. 33,
2463 (2011).

LAURA BUTELER and ENRIQUE COLEONI PHYS. REV. PHYS. EDUC. RES. 12, 020144 (2016)

020144-12

http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED493138
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED493138
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED493138
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED493138
http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?accno=ED493138
http://dx.doi.org/10.1207/s15327809jls1502_4
http://dx.doi.org/10.5565/rev/ensciencias.1309
http://dx.doi.org/10.5565/rev/ensciencias.1309
http://dx.doi.org/10.1080/09500693.2010.551551
http://dx.doi.org/10.1080/09500693.2010.551551

