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Abstract
For many parallel applications of Next-Generation Sequencing (NGS) technologies short

barcodes able to accurately multiplex a large number of samples are demanded. To

address these competitive requirements, the use of error-correcting codes is advised. Cur-

rent barcoding systems are mostly built from short random error-correcting codes, a feature

that strongly limits their multiplexing accuracy and experimental scalability. To overcome

these problems on sequencing systems impaired by mismatch errors, the alternative use of

binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these

codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrin-

sic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened

binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced.

Simulation results show that although accurate barcoding systems of high multiplexing

capacity can be obtained with any of these codes, using quaternary LDPC codes may be

particularly advantageous due to the lower rates of read losses and undetected sample mis-

identification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes

can be used to multiplex roughly 2000 samples with a sample misidentification error rate in

the order of 10−9 at the expense of a rate of read losses just in the order of 10−6.

Introduction
Molecular barcoding provides the opportunity to multiplex next-generation sequencing [1]
capacity across multiple individuals at specific portions of the genomes [2, 3]. As a result, cost-
effective solutions able to accommodate a wide range of coverage demands can be accom-
plished [4]. Molecular barcoding lays on the ability of rather short oligos, known as barcodes,
to tag DNA fragments belonging to different samples. Barcodes, which can be deployed either
as part of adapters [5–7] or amplification primers [2, 4, 8], are expected to simultaneously offer
negligible interference with DNA sequencing reactions, high resilience against sequencing
errors and high multiplexing capacity.

Current barcoding systems are mostly designed with exhaustive methods. Large sets of ran-
dom DNA sequences of size N are first screened to ensure the satisfiability of chemistry
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constraints imposed by the target sequencing technology, e.g., barcodes designed for pyrose-
quencing platforms must avoid homopolymer regions. Candidate barcodes are then screened
to ensure a minimum pairwise distance dmin that guarantees the unambiguous correction of
dmin�1

2

� �
sequencing errors. The choice of the distance metric is determined by the type of

sequencing errors. Pairwise Hamming distance evaluations of linear time complexity are
required for mismatch sequencing errors. On the other hand, pairwise Levenshtein distance
evaluations [9] of nearly-quadratic time complexity [10] are required for mismatch, insertion
and deletion errors. In either case, a trade-off between dmin and the numberM of legal barcodes
must be accepted [11]. To overcome this problem, the straightforward use of larger random
barcodes has been advocated. However, as N grows, exhaustive pairwise distance evaluations in
search spaces of exponential growth are required. To simultaneously improve the multiplexing
accuracy and the experimental scalability of random barcoding systems while keeping an
acceptable computational complexity at the design time, combinatorial barcoding schemes
have been proposed. In this regard, the paired-end-sequencing of hundreds of samples with
few tens of barcodes tagging both ends of individual samples has been considered in [12–14].
However, although doubling the barcoding overhead roughly squares the multiplexing capacity
of the initial set of barcodes and likely reduces multiplexation errors to some extent, the exact
trade-off cannot be anticipated.

Demultiplexing of random barcodes relies on table-lookup decoding algorithms. For each
received barcode, the closest legal barcode in a lookup table may be selected. Provided all bar-
codes are equally likely, such a decoding algorithm is a brute-force Maximum-Likehood (ML)
decoder. A ML decoder minimizes the probability pe of barcode identification error. For this
purpose, a ML decoder always associates a legal barcode to a received barcode, although it may
be other than the intended. Thus, ML decoding errors always go undetected, a feature that may
seriously compromise barcoding applications requiring high specificity or equivalently, a strict
control of the rate of false positives. Furthermore, since time complexity of ML decoding scales
with the codebook sizeM, it should be only used in barcoding applications involving tens of
barcodes built from a handy number of bases [15]. For more demanding barcoding applica-
tions involving tens of thousands of barcodes [16], ML decoding may be prohibitively time-
consuming. Although several computational strategies may be used to alleviate ML decoding
complexity of random barcodes, cumbersome data-dependent adjustments may be required
[17]. Furthermore, for many important applications like the detection of rare mutations occur-
ring at rates as low as 10−8 per base [18] or the counting of DNA/RNA templates [19, 20] at
raw sequencing error rates of 10−2 per base [21–24], ML decoding may not be always the best
choice: all decoding errors go undetected and result in samples misassignments.

To help in the fight against the rate of false positives in critical barcoding applications, unde-
tected multiplexation errors must be controlled. For this purpose, incomplete decoders can be
considered. For such decoders, pe is split into the probability pu of undetected multiplexation
errors and pd, the probability of erasure decoding errors due to decoder failures, i.e., the
decoder rejects to decide and data along the codeword, e.g., a sample identity, gets lost. Incom-
plete decoders can lower pu at the expense of increasing pd. Hence, incomplete decoders allow
us to exchange multiplexing accuracy by read losses, a feature that properly used can open the
door to the design of highly accurate barcoding systems of overwhelming multiplexing capac-
ity. A good example of this strategy can be found in the Illumina bcl2fastq demultiplexing soft-
ware where only index reads with zero or one mismatch to a small reference index set are
recovered. Although we expect that the pu accomplished with the perfect match option is much
lower than that with the one mismatch, we also expect that the corresponding pd is much
higher. Note that since pd measures the expected rate of read losses, its behavior must be
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carefully monitored, especially for ultra-high-throughput sequencing systems where more
stringent pd requirements are necessary.

The DNA barcoding problem is indeed an instance of a largely studied problem in Commu-
nication Theory, the error-free transmission of discrete patterns in the presence of random
noise [25], a problem which leads to the theory of error correcting codes. Since the recognition
of this fact in 2008 [8], few works [26, 27] have considered the systematic design of coding-
based barcoding systems, perhaps owing to the inherent difficulties of dealing with a problem
which falls at the intersection between two quite different fields, Communication Theory and
Molecular Biology.

In this paper, we attempt one step at bridging the gap, showing how state of art linear error
correcting codes can be used for the systematic design of DNA barcodes able to accurately sustain
the experimental scalability of current and upcoming sequencing technologies [28]. With main
focus on sequencing systems impaired by mismatch errors, we generalize the design of BCH bar-
codes [26] by introducing shortened BCH barcodes, a class of barcodes built from binary BCH
codes allowing otherwise prohibited barcoding sizes. To improve the design flexibility accom-
plished with shortened BCH barcodes, we further introduce LDPC barcodes, a class of barcodes
built from quaternary LDPC codes [29]. Aiming to overcome the problem of undesirable homo-
polymer regions [11, 30] that likely reduces barcodes multiplexing capacity, and by the way to
satisfy the key independence assumption between sequencing errors of BCH and LDPC decoding
algorithms, the use of interleavers [31] is introduced. Simulation results show that using these
design guidelines, highly accurate barcoding systems of high multiplexing capacity can be
obtained with both BCH or LDPC codes. However, owing to their lower rates of read losses,
LDPC barcodes may be particularly well suited for ultra-high-throughput sequencing systems.

Results
Multiplexing capacity of barcoding systems is hampered by sequencing errors. Error correcting
codes provide forms for redundant information representation and thus, the opportunity to cor-
rect random errors with high probability. Let us assume barcodes inGF(4) and some one-to-one
mapping between field elements {0, 1, 2, 3} and each of the four DNA bases. To uniquely tagM
samples, at least k = dlog4Me bases are needed and thus, if n> k bases are used, them = n − k
bases in excess can be used for error correction purposes. Sequencing errors can be broadly cate-
gorized into insertion, deletion, mismatch or substitution and erasure or ambiguous base-call
errors. It is well-known that Roche/454 pyrosequencing platforms are prone to insertion and
deletion errors over mismatch ones [32, 33] while Illumina reversible dye terminator chemistry
platforms are definitely prone to mismatch errors over insertion and deletion ones; erasure errors,
i.e., ambiguous base calls, are present in both platforms. In this paper, the design of barcodes for
high-throughput sequencing systems mainly impaired by mismatch errors is considered.

On the design of coding-based barcodes in GF(q)
Although sequencing errors occur in GF(4) [34], the systematic design of barcodes has been
mostly confined to GF(2), the mathematical field where most successful Communication The-
ory results have been developed. This can be observed in recent proposals for the construction
of barcodes from well-known binary linear codes equipped with algebraic decoding algorithms,
e.g., Hamming, BCH and Golay codes [26, 35, 36]. Algebraic decoding of binary linear codes
allows the correction of at least t� 1 binary errors per corrupted codeword. By using one-one
mappings between binary tuples {00, 01, 10, 11} and the four DNA bases, binary codewords
can be mapped into candidate barcodes and thus, the correction of at least bmismatches in GF
(4) can be mapped into the correction of at least t = 2b binary errors in GF(2).
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Binary Hamming codes of size n = 2m − 1 withm� 4 able to carry k = n −m informative
bits can be used to construct 2k candidate barcodes of size N = (n + 1)/2. Asm is increased,
remarkable high multiplexing levels can be achieved with Hamming barcodes [8]. However,
since t = 1 holds for all binary Hamming codes, Hamming barcodes cannot guarantee the cor-
rection of even b = 1 mismatches. To overcome this problem, barcodes built from quaternary
extensions of binary Hamming codes have been proposed [27]. Note, however, that these bar-
codes, called BY in [37], do not conform to truly quaternary Hamming codes ([38] p. 55) and
thus, their actual barcoding performance cannot be formally anticipated.

On the other hand, binary BCH codes of size n = 2m − 1 withm� 4 can be used for the con-
struction of barcodes of N = 8, 16, 32. . . bases [26]. Since for a fixed code size n, multiple t> 1
options are possible, BCH barcodes can be used for the correction of at least b ¼ bt

2
c base mis-

matches. However, since for a fixed code size n, increasing t lowers k, increased error correction
power of BCH barcodes can only be accomplished at the expense of diminished multiplexing
capacity.

To improve the design flexibility of BCH barcodes allowing intermediate N settings, short-
ened binary BCH codes can be considered. Shortening BCH codes with parameter s> 0
reduces the number of informative bits from k to k0 = k − s preserving the number of redundant
bits. By means of shortening, BCH barcodes of size N ¼ nþ1�s

2
for s even or N ¼ n�s

2
for s odd

can be designed. To recover from sequencing errors, shortened BCH barcodes must be first
demapped to the binary domain where earlier removed bits must be reinserted. Although
shortening improves the design flexibility of BCH barcodes by permitting otherwise prohibited
N settings, it does not allow arbitrary k0 and t settings and thus, suboptimal barcoding systems
may be still obtained with shortened BCH codes. Beyond binary BCH codes, the famous binary
extended Golay code [39] of size n = 24 able to carry k = 12 informative bits and to correct at
least t = 3 binary errors can be also considered. Extended binary Golay codes can be used for
the construction of barcodes of size N = 12 able to correct at least b = 1 base mismatches.

Recent years have witnessed a significant progress in the field of coding theory. This prog-
ress has been mainly boosted by the (re) discovery of binary LDPC codes [40, 41], a class of
capacity approaching codes allowing an easy generalization to higher order fields [42], e.g., GF
(4). LDPC codes are distinguished by their ability to exploit the statistic of symbol errors in a
remarkable efficient way. As mentioned in [29], “it should be pointed out that all the errors
were detected errors: the (LDPC) decoder reported that it had failed”, i.e., LDPC codes could be
good candidates for the systematic design of highly accurate barcoding systems of high multi-
plexing capacity. Briefly, LDPC codes are linear block codes built from sparse pseudo-random
bipartite graphs allowing a divide and conquer interpretation of the coding-decoding problem.
The biggest difference between LDPC and both BCH and Golay codes is the way they are
decoded. While binary BCH and Golay codes are decoded by algebraic methods, LDPC codes
are iteratively decoded using their bipartite graph representation and the statistic of symbol
errors, e.g., the mismatch error rate of sequencing machines. Note, however, that while long
LDPC codes involving thousands of symbols are required for standard communication appli-
cations, short LDPC codes involving at most tens of symbols are required for DNA barcoding
applications. As a result, an adaptation of well-established methods for the construction of
good long LDPC codes is required. Taking into account that good short LDPC codes should
resemble random counterparts [43, 44], a novel scoring system for the identification of quater-
nary LDPC codes with highly diverse parity check matrices was designed.

Good short LDPC codes for DNA barcoding applications. Parity check matrices for
LDPC codes can be designed by random or structured methods. In the former case, the posi-
tion and value of non-zero entries are determined by computer search. In the latter case,
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combinatorial methods over special classes of mother matrices are used. While structured
methods are well-suited for constructing LDPC codes of large and moderate length, random
methods are preferred for constructing short ones. Since LDPC codes required in the DNA
barcoding framework are definitely short, random construction methods were used.

To minimize the impact of cycles at the iterative decoding stage, the positions of non-zero
entries in quaternary LDPC matrices withm rows, n columns and j = 3 non-zero entries per
column were first optimized with the Progressive Edge Algorithm (PEG) [45]. Resulting binary
matrices were then used as templates for the generation of quaternary LDPC matrices by filling
non-zero entries with elements carefully chosen from the set {1, 2, 3}. Regarding this important
design issue, main focus of research has been put on the design of non-binary LDPC codes for
binary communication channels [46]. In this regard, Mackay [47] proposed selecting non-zero
entries to approximate an optimal decoder by maximizing the marginal entropy of parity
check variables; under the assumption of a binary communication channel of the symmetric
type, decoding improvements over the random assignment approach were observed. Similarly,
Poulliat at al. [48] proposed selecting non-zero entries of non-binary LDPC codes based on the
algebraic properties of their binary image representations.

We note, however, that the design criteria of quaternary LDPC codes for binary communi-
cation channels might not be applicable for quaternary ones. For example, for equiprobable
quaternary errors like those assumed in our DNA barcoding framework, the marginal entropy
of parity check variables of regular quaternary LDPC codes turns to be invariant to any selec-
tion of non-zero entries performed with the MacKay method. Since LDPC codes required for
DNA barcoding applications are natively quaternary, and, so are the ideal equiprobable
sequencing errors, alternative design approaches are required.

A novel score D designed to capture quaternary LDPC matrices H with the highest diversity
between columns and between rows was devised. Regarding diversity between columns, we
note that the minimum Hamming distance (dmin) of a linear code equals the smallest number
of linearly-dependent columns inH ([49] p. 13). Hence, a simple way to maximize dmin is to
maximize the number of independent columns inH, e.g., by maximizing the number of dis-
tinct columns. Regarding diversity between rows, we built upon the optimization idea of Poul-
liat [48] that by maximizing the coding diversity between component parity check sub-codes
defined by eachH row, the more distinguishable the messages passed from check nodes to vari-
able nodes will be so that improved iterative decoding performance should be expected.

An insight onto the diversity ofH columns can be obtained from the vector of normalized

pairwise Hamming distances between columns. This vector has size n� n�1ð Þ
2

and can be character-

ized by its mean μh,c and standard deviation σh,c: we desireHmatrices with the highest μh,c and
the lowest σh,c. Similarly, an insight onto the diversity ofH rows can be obtained from the vec-

tor of pairwise cosine dissimilarity between rows. This vector has size m� m�1ð Þ
2

and can be charac-

terized by its mean μd,r and standard deviation σd,r: we desireHmatrices with the highest μd,r
and the lowest σd,r. Hence,Hmatrices were scored as follows:

DðHÞ ¼ ðmh;c � sh;cÞ � ðmd;r � sd;rÞ ð1Þ

In practice, multiple random quaternary parity check matricesH were generated from
binary PEG templates and ranked with the D-scoring system. The best D-scoringHmatrix was
then selected for the generation of the corresponding LDPC barcoding system.

Interleaved coding-based barcodes. Naive elimination of barcodes with undesirable
homopolymer regions [11] reduces the multiplexing capacity of general barcoding systems. To
alleviate this problem in the design of BCH barcodes, the use of optimal position dependent
mappings between binary tuples and quads in GF(4) has been proposed in [26]. Note, however,
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that such mappings may be difficult to obtain even for barcodes of modest size. To overcome
this problem, the alternative use of interleaved coding-based barcodes is proposed. Hence, can-
didate barcodes coming from either binary BCH or 4-ary LDPC codes are first passed through
an interleaver module [50] where undesirable homopolymer regions are hopefully broken. An
interleaver simply permutes symbols from an input sequence according to a mapping. Interlea-
vers can be constructed by pseudorandom or deterministic methods. Pseudorandom methods
require to store the interleaving pattern in tables, which might be a problem for long barcodes.
Since our barcodes are definitely short, interleavers were constructed with the semirandom
permutation method described in [51]. Interleaved barcodes must be deinterleaved before their
demultiplexation. By the way, deinterleaving helps to satisfy the key independence assumption
between symbol errors required by standard decoding algorithms of BCH and LDPC codes.
Since this assumption may be difficult to satisfy in current sequencing systems, interleavers
provide a simple way to randomize otherwise correlated sequencing errors.

Besides limiting homopolymer regions and observing the independence assumption
between symbol errors, the design of coding-based barcodes must also take into account well-
known chemistry constraints, e.g., the G + C content and possible interference of barcodes with
primer sequences. Most of these constraints have been already taken into account in the design
of Barcrawl [52], a tool for the ab-initio design of primer barcodes for pyrosequencing applica-
tions. Hence, before their deployment, candidate barcodes are passed through an adapted ver-
sion of the Barcrawl tool. In the modified Barcrawl version, the ab-initio generation of primer
barcodes is suppressed and candidate barcodes are taken from interleavers output.

DNA barcoding over mismatch sequencing channels
Barcoding systems built from binary BCH, binary Golay, quaternary LDPC and BY barcodes
were evaluated using a Quaternary Symmetric Channel (QSC) model [53]. Under the QSC
model, the i−th barcode symbol is ideally mutated from base a to base b with probability
pi b; að Þ ¼ ps

3
for a 6¼ b and remains unchanged with probability pi(a, a) = 1−ps. Following [54,

55], ps 2 [0.010, 0.075] was considered.
For practical purposes, N was limited to 25 bases. For each barcoding system of size N built

with an error correcting code of size n, a wide range of error correction and multiplexing abili-
ties were evaluated. This was accomplished by varying parameter t of binary BCH codes and
parameterm of quaternary LDPC codes. For BCH barcodes, binary BCH codes of size n 2 {15,
31, 63} and shortened versions of them were considered. For LDPC barcodes, quaternary
LDPC codes of size n� 16 were considered. LDPC codes of size n< 16 were disregarded due
to difficulties in satisfying the mandatory LDPC sparse constraint. In addition, BY barcodes of
size N 2 {7, 8, 15} and Golay barcodes of size N = 12 were considered. For the sake of complete-
ness, random barcodes reported in [56] of size N 2 {8, 9, 10} and minimum edit (Levenshtein)
distance dL 2 {3, 5, 7} were also considered. Recalling that the Hamming distance is an upper
bound of the edit distance, random barcodes were further screened to determine their mini-
mum Hamming distance dH. Similar values were observed, i.e., dH 2 {3, 5, 7} so that the correc-
tion of at least t 2 {1, 2, 3} mismatch sequencing errors can be guaranteed.

Barcoding systems were evaluated through their multiplexing capacityM, their barcoding
rate B, their probabilities pe of barcode identification errors and their probabilities pu of unde-
tected multiplexation errors. For each N,M was defined as the maximum number of barcodes
which were compatible with the given sequencing chemistry. Similarly, B was defined as the

actual fraction of informative quads per barcode, i.e., B ¼ log4M
N
; we expect B is close as possible

to r ¼ k
n
, the chemistry unconstrained coding rate of underlying error correcting codes.
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PLOS ONE | DOI:10.1371/journal.pone.0140459 October 22, 2015 6 / 17



BCH, LDPC, BY, Golay and Random barcodes. Let us consider an ideal sequencing
channel of the QSC type that generates mismatch sequencing errors with a probability ps. For a
given set of sequencing chemistry constraints, theM and B accomplished by BCH and LDPC
barcodes of size N will depend on the desired pe and pu for the given ps. With main focus on
boosting experimental scalability without compromising multiplexation accuracy, BCH and
LDPC barcodes of size N� 25 able to fulfill the operational constraintM>� 24 and pu �
10−8 at ps = 10−2 were identified. For BCH barcodes, simulation results showed that the desired
operational constraint could be only satisfied by shortening binary BCH codes of size n = 63.
For LDPC barcodes, the desired operational constraint could be only satisfied by LDPC bar-
codes of size N� 19.

As shown in Table 1, BCH barcodes of size N = 21 can be used to multiplex up toM = 86
samples with pe � 10−5 and pu � 10−8. By letting N to increase up to 25, one additional satisfac-
tory configuration with pu � 10−8 can be identified at N = 22 withM = 384 and pe � 10−5. Note
that for pu � 0, pe essentially bounds the probability of read losses. Taking into account that
the number of Illumina reads per flow cell currently ranges from 25 × 106 to 300 × 109, we may
be interested in further pe reductions.

Simulation results showed that to accomplish pe � 10−6, shortened BCH barcodes of size N
at least 24 are required. BCH barcodes of size N = 24 can be used to multiplex up toM = 73
samples with pe � 10−6 and pu � 10−9. By letting N = 25, one additional satisfactory configura-
tion with pu � 10−9,M = 295 and pe � 10−6 can be obtained. Details about the pe performance
of BCH barcodes beyond ps = 0.01 are shown in Fig 1.

As shown in Table 2, LDPC barcodes of size N = 19 can be used to multiplex up toM = 65
samples with pe � 10−5 and pu � 10−9. By letting N to increase up to 25, three additional satis-
factory configurations with pu � 10−9 can be identified at N = 21, 23, 24 withM = 210, 648,
1911 and pe � 10−6. To further reduce pe in one order, LDPC barcodes of size N� 23 are
required. LDPC barcodes of size N = 23 can be used to multiplex up to 56 samples with pe �
10−7 and pu � 10−9. By letting N = 25, one additional satisfactory configuration with pu � 10−9,
M = 118 and pe � 10−7 can be obtained. Details about the pe performance of LDPC barcodes
beyond ps = 0.01 are shown in Fig 2.

Neither BY barcodes of sizes N = 7, 8 (see Table 3) nor Golay barcodes of size N = 12 could
satisfy the operational constraint pu � 10−8 andM� 24. Only BY barcodes of size N = 15
could satisfied it but at the expense of a remarkable increment in the bound pe of the rate of
read losses which approximates 10−2. Although Golay barcodes were able to improve BY bar-
codes by allowingM = 1545 with pe = 8.1 10−4, they exhibited an inferior pu performance—pu

Table 1. The performance of BCH barcodes.

ps = 10−2

N M B (n, k, t, s) pe pþ
e pu pþ

u

21 86 0.153 (63, 30, 6, 21) 6.94 10−6 6.99 10−6 1.00 10−8 1.02 10−8

22 384 0.195 (63, 30, 6, 19) 8.33 10−6 8.34 10−6 1.00 10−8 1.02 10−8

24 73 0.128 (63, 24, 7, 15) 1.84 10−6 1.85 10−6 0 2.00 10−9

25 295 0.165 (63, 24, 7, 13) 2.68 10−6 2.69 10−6 0 2.00 10−9

BCH barcodes of size N � 25 constrained to accomplish M � 24 and pu � 10−8 over a QSC model where mismatch errors occur with probability ps =

10−2. M, B, pe and pu are respectively the empirical estimates of the multiplexing capacity, the barcoding rate, the probability of barcodes identification

error and the probability of undetected multiplexing errors; pþ
e and pþ

u are the upper error bars of the two latter ones. Underlying codes are binary BCH

codes of size n shortened to n − s able to carry k − s informative bits and to correct at least t binary errors.

doi:10.1371/journal.pone.0140459.t001
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= 2.4 10−5. Finally, among random barcodes, only those with dH = 5 (see Table 4) were able to
satisfy the operational constraint. Similarly to BY barcodes, this was accomplished at the
expense of high rates of read losses, in the order of 10−2.

Discussion
Simulation results suggest that regarding the design of critical barcoding systems for NGS plat-
forms mainly impaired by mismatch errors, barcodes built from quaternary LDPC codes may

Fig 1. The empirical probability pe of decoding error accomplished by BCH barcodes of sizeN, multiplexing capacityM and barcoding rate B.
Sequencing errors follow aQSCmodel with probability ps. Binary BCH codes of size n shortened with parameter s able induce 2k−s candidate barcode
sequences and to correct at least t binary errors at a coding rate r are used.

doi:10.1371/journal.pone.0140459.g001

Table 2. The performance of LDPC barcodes.

ps = 10−2

N M B (n, k) pe pþ
e pu pþ

u

19 65 0.158 (19, 4) 5.43 10−6 5.44 10−6 0 2.00 10−9

21 210 0.183 (21, 5) 5.70 10−7 5.72 10−7 0 2.00 10−9

23 648 0.203 (23, 6) 5.10 10−7 5.11 10−7 0 2.00 10−9

24 1911 0.227 (24, 7) 1.66 10−6 1.67 10−6 0 2.00 10−9

23 56 0.126 (23, 4) 9.10 10−8 9.11 10−8 0 2.00 10−9

25 118 0.137 (25, 5) 1.10 10−7 1.11 10−7 0 2.00 10−9

LDPC barcodes of size N � 25 constrained to accomplish M � 24 and pu � 10−8 over a QSC model where mismatch errors occur with probability ps =

10−2. M, B, pe and pu are respectively the empirical estimates of the multiplexing capacity, the barcoding rate, the probability of barcodes identification

error and the probability of undetected multiplexing errors; pþ
e and pþ

u are the upper error bars of the two latter ones. Underlying codes are quaternary

LDPC codes of size n able to carry k informative quads.

doi:10.1371/journal.pone.0140459.t002
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perform better than those built from powerful binary BCH and Golay codes, pseudo-quater-
nary Hamming codes and random designs. As a result, careful planning of ubiquitous multi-
plex sequencing projects may be accomplished with LDPC barcodes. It may be argued that
LDPC barcodes are two or three times larger than commercial random barcodes currently in
use and systematic barcoding designs based on Hamming or Golay codes, which at most
require a handy number of bases. In agreement with [57], our results suggest that there could
be a high price to paid for using such small barcoding systems, either high rates of critical
undetected multiplexation errors or high rates of read losses must be tolerated.

It may be also argued that BCH, or even Golay, barcoding performance may be improved
with more sophisticated decoding algorithms, e.g., with those able to exploit the reliability of

Fig 2. The empirical probability pe of decoding error accomplished by LDPC barcodes of sizeN, multiplexing capacityM and barcoding rate B.
Sequencing errors follow aQSCmodel with probability ps. Quaternary LDPC codes of size n = N able induce 4k candidate barcode sequences at a coding
rate r are used.

doi:10.1371/journal.pone.0140459.g002

Table 3. The performance of BY barcodes.

ps = 10−2

N M B (n, k, t) pe pþ
e pu pþ

u

7 117 0.491 (7, 4, 1) 2.20 10−3 2.21 10−3 2.12 10−4 2.13 10−4

8 111 0.424 (8, 4, 1) 2.87 10−3 2.88 10−3 2.37 10−6 2.38 10−6

15 2880 0.383 (15, 11, 1) 9.94 10−3 9.95 10−3 0 2.00 10−9

BY barcodes of size N over a QSC model where mismatch errors occur with probability ps. M, B, pe and pu are respectively the empirical estimates of the

multiplexing capacity, the barcoding rate, the probability of barcodes identification error and the probability of undetected multiplexing errors; pþ
e and pþ

u

are the upper error bars of the two latter ones. Underlying codes are quaternary extensions of binary Hamming codes of size n able to carry k informative

bits and to correct at least t binary errors.

doi:10.1371/journal.pone.0140459.t003
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received symbols [58]. We note, however, that in the DNA barcoding framework, reliability
information about received symbols is only available at the quaternary sequencing layer.
Although reliability information of quaternary symbols might be easily exported to higher
order fields, e.g., if pairs of DNA bases were packed into hexadecimal symbols of GF(16), it
cannot be exported to lower order fields, e.g., to the binary level where actual demultiplexing of
BCH or Golay barcodes takes place. In other words, mapping DNA bases to binary tuples by
means of BCH or Golay codes implies the mandatory use of, probably suboptimal, binary alge-
braic decoding algorithms at the demultiplexing stage.

The promising performance of quaternary LDPC barcodes is built upon the introduction of
a novel method for the selection of suitable sparse and short quaternary parity check matrices
and the use of iterative decoding algorithms. The selection method subsumes convenient struc-
tural properties of general non-binary LDPC matrices into a simple score thus allowing the
rapid generation of candidate LDPC barcodes involving few tens of bases. Candidate LDPC
barcodes can then be checked for the satisfaction of a variety of sequencing chemical con-
straints. Since barcodes verification is expected to be easier than their ab-initio design, quater-
nary LDPC barcodes bring an affordable computational solution for the design of practical
barcoding systems with stringent constraints on the probability of read losses and the probabil-
ity of undetected multiplexation errors.

In this paper, LDPC barcodes demultiplexing was performed with the iterative decoding
algorithm used for decoding non-binary LDPC codes for magnetic recording applications
[59]. Hence, LDPC barcodes demultiplexing complexity scales withO(m × q × j × (log2 q+j))
per iteration, beingm = n − k the number of redundant symbols of the regular non-binary
LDPC in GF(q) and j the number of non-zero entries per column of the LDPC matrix [60,
61]. This demultiplexing complexity, which can be considered manageable up to q = 16 [62],
is amenable for hardware implementation [63]. For example, for LDPC barcodes of size
N = 19 allowing the multiplexation of up toM = 65 samples using a quaternary regular
(n = 19, k = 4) LDPC code with j = 3, the recovery of 12M identities in an Illumina MiSeq
platform with a 177 MIPS processor using a maximum of 50 iterative decoding steps would
take less than an hour.

Along this paper we have restricted our attention to sequencing errors of the mismatch
type. Readers might reasonable argue that challenging sequencing errors are those dominated

Table 4. The performance of Random barcodes.

ps = 10−2

N dH M B pe pþ
e pu pþ

u

8 5 24 0.286 2.75 10−2 2.76 10−2 0 2.00 10−9

8 3 531 0.565 7.72 10−2 7.73 10−2 5.80 10−7 5.81 10−7

9 7 6 0.143 1.94 10−3 1.95 10−3 0 2.00 10−9

9 5 62 0.330 3.11 10−2 3.12 10−2 0 2.00 10−9

9 3 1936 0.606 8.64 10−2 8.65 10−2 8.80 10−7 8.82 10−7

10 7 13 0.185 2.42 10−3 2.43 10−3 0 2.00 10−9

10 5 164 0.367 3.47 10−2 3.48 10−2 1.01 10−8 1.02 10−8

10 3 7198 0.640 9.56 10−2 9.57 10−2 1.13 10−6 1.14 10−6

Random barcodes of size N with minimum edit distance [56] equal to their minimum Hamming distance dH over a QSC model where mismatch errors

occur with probability ps. M, B, pe and pu are respectively the empirical estimates of the multiplexing capacity, the barcoding rate, the probability of

barcodes identification error and the probability of undetected multiplexing errors; pþ
e and pþ

u are the upper error bars of the two latter ones.

doi:10.1371/journal.pone.0140459.t004
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by insertions and deletions. We note, however, that these errors might be also tackled with
short non-binary LDPC codes. Specifically, concatenated watermark codes [64] built from an
outer non-binary LDPC code and an inner sparse code, to which a watermark sequence has
been added, could be used. Concatenated watermark codes rely on the ability of the inner
decoder to transform insertion/deletion errors into mismatch errors and on the ability of the
outer non-binary LDPC decoder to correct them. Regarding DNA barcoding applications of
concatenated watermark codes, we expect samples identities are first mapped to hexadecimal
strings, that these strings are LDPC encoded with a short hexadecimal LDPC code already opti-
mized for transmissions over a quaternary symmetric channel, that hexadecimal LDPC code-
word symbols are mapped to the quaternary sequencing layer with a non-linear quaternary
sparse code and that resulting sparse quaternary sequences are finally perturbed with the addi-
tion of a well-known quaternary pseudorandom sequence defined as the pilot watermark sig-
nal. After this non-trivial processing of samples identities is performed, candidate barcode
sequences able to deal with mismatch and indel sequencing errors could be obtained. We are
currently putting together these pieces, looking forward to the design of concatenated water-
mark barcodes for the third generation Single-Molecule Real-Time (SMRT) long-read
sequencing technology [65], for which indel and mismatch error rates may range up to 14 and
1% respectively [66]. We thus conclude that barcodes derived from generalized LDPC codes in
GF(q) may be good candidates for improving the multiplexing capacity of current 2/3G and
upcoming 4G [67] sequencing technologies.

Methods

LDPC codes in GF(q)
Let us start with a brief revision of LDPC codes in GF(q), q = 4u and u� 1. Let Γ be a bipartite
graph with n left nodes called message nodes andm< n right nodes called check nodes. Let us
map one-to-one the nmessage nodes of Γ to the n coordinates of q − ary codewords c = (c1,. . .,
cn), ci 2 {0, 1, 2, . . .,q−1}, i = 1,. . .,n. Provided the sum of neighboring positions for all check
nodes among neighboring message nodes is zero in GF(q), Γ defines a q-ary linear code of size
n able to carry k = n −m informative symbols. Thus, the code structure can be dissected intom
component parity subcodes. In addition, if Γ is sparse, i.e., each message node is constrained by
j<<m check nodes and each check node constraints v<< nmessage nodes, the code turns
to be an LDPC code in GF(q). Finally, if n � j =m � v holds, a regular LDPC code is obtained.

LDPC codes can be depicted by means of factor graphs [68]. Circles are used to represent
original codeword symbols ci and their noisy observations ri, i = 1, . . ., n. Rectangles are used
to represent parity constraints over codeword symbols. Edges are put between codeword sym-
bols and parity constraints. Legal LDPC codewords must fulfill the complete set ofm parity
constraints. On regular LDPC codes, any codeword symbol participates in exactly j� 3 parity
constraints. Rectangles are also used to represent probability functions pi(a, b) = P(ri = ajci = b)
modelling the transmission channel, i = 1. . .n. For a QSC model, pi(a, a) = 1−p and pi b; að Þ ¼ p

3

for a 6¼ b holds. Iterative decoding provides estimates ĉi given p and ri, i = 1,. . .,n (see Fig 3).
The construction of barcodes from quaternary LDPC codes is straightforward once Γ is

given. Formally, Γ is described by the so-called parity check matrixH, an sparse matrix withm
rows and n columns conveying j<<m non-zero entries per column and v non-zero entries
per row, j � n = v �m. For quaternary LDPC codes, non zero-entries inH are taken from the set
{1, 2, 3}. FromH, the so-called generator matrix G with k = n −m rows and n columns can be
obtained. Practically, G allows the straightforward generation of LDPC codewords c from mes-
sage vectors s = (s1, . . ., sk), si 2 {0, 1, 2, 3}, i = 1,. . .,k, by means of c = s � G.
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Good short quaternary LDPC codes
To shed light into the ability of the D score to discriminate between prospective good and bad
short quaternary LDPC codes, 20 sets of 50 random quaternary LDPC matrices were built
from binary PEG templates withm rows, n columns and j = 3 non-zero entries per column.
For each set, the best D-scoring code was selected and its barcoding performance assessed at ps
= 10−2. The Spearman correlation coefficient S2 was then used to evaluate the correlation
between D scores and the empirical log10 pe accomplished by selected LDPC codes. Moderate
negative associations were observed suggesting that the D score was indeed useful for the iden-
tification of prospective good short quaternary LDPC codes for barcoding purposes. For exam-
ple, the observed correlation at ps = 10−2 for LDPC barcodes of size N = 24 carrying k = 5
informative quads was S2 = −0.52, p-value< 0.05. Practically, prospective good short quater-
nary LDPC codes were selected from sets of 1000 random instances. For each selectedH, the
corresponding generator matrix G with k rows and n columns was computed using the con-
straint G �Ht = 0. This was accomplished by means of an adaptation of I.V. Kozintsev software
[69] for the inversion ofHmatrices in GF(q) using Gaussian elimination.

Estimation of pe and pu
Simulation experiments were performed to analyze the robustness of BCH, Golay, LDPC, BY
and Random barcodes over the QSCmodel. Corrupted BCH barcodes were first deinterleaved,
mapped to the binary domain using inverse mapping tables and decoded with the implementa-
tion of the Berlekamp-Massey decoding algorithm in [70]. Decoded codewords in GF(2) were
then mapped to GF(4) to recover original barcode sequences. A similar procedure was used to

Fig 3. The factor graph of an LDPC barcoding system built from a 4-ary LDPC code of size n = 12 able to carry k = 3 informative quads and thus, to
induce 64 candidate barcode sequences. Each codeword symbol ci, i = 1, . . ., 12, is constrained by exactly j = 3 parity subcodes. The LDPC code is built
fromm = 9 parity subcodes, e.g., c1 + c8 + c11 + 2 c12 = 0 holds. AQSC generates mismatch sequencing errors with probabilities pi = ps and thus, corrupted
barcode bases ri are observed after sequencing, i = 1, . . ., 12. At ps = 0.01 this system can multiplex up toM = 15 samples with pe = 10−4 and pu� 0.

doi:10.1371/journal.pone.0140459.g003
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recover corrupted Golay, LDPC and BY barcodes. Golay barcodes were first deinterleaved,
mapped to the binary domain and then decoded with the implementation of the arithmetic
decoding algorithm in [71]. LDPC barcodes were first deinterleaved and then decoded with the
iterative decoding algorithm for quaternary LDPC codes described in [29] and implemented in
[72]. The LDPC decoding algorithm was set to work with a maximum of 50 iterations with the
probability ps of a base mismatch used as input to the QSC channel model. BY barcodes were
first deinterleaved and then decoded as indicated in [27]. Finally, random barcodes taken from
[56] with experimentally determined minimum Hamming distance were simply decoded with
a bounded distance decoder.

The probability pe of barcode identification error was then estimated by Montecarlo simula-
tion. For this purpose, T = 100 random samples comprising C = 107 barcode sequences were
used. Samples were obtained by performing sampling with replacement over the sets of valid
barcode sequences obtained after the Barcrawl filtering stage. For each sample Si, the proportion

pe,i of barcodes identification errors and sample variances s2i ¼ 1
C
� pe;i 1� pe;i

� �
were com-

puted, i = 1, . . ., T. At the end, the pooled sample mean �pe ¼
P

ipe;i
� �

=T , the pooled sample

standard deviation sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

is
2
i

� �
=T

q
and the pooled standard error sep ¼ sp

ffiffiffiffiffiffiffiffiffi
T=C

p
were com-

puted. If �pe 6¼ 0, then 95% confidence intervals �pe�; �peþ
� �

were computed as �pe � 2� sep. On

the other hand, if �pe ¼ 0, then �pe� ¼ 0 and �peþ ¼ 1� exp �2=CTð Þ were used [41]. A base 10
logarithmic scale was used to graphically report pe estimations and thus, 95% confidence inter-

vals for the case �pe 6¼ 0 were graphically reported as log10ð�peÞ � 2� 0:434log10
sep
�pe
[73]. A similar

procedure was used for estimating the probability pu of undetected multiplexation errors.

Estimation ofM and B
The multiplexing capacityM and the barcoding rate B are fundamental properties of any cod-
ing-based barcoding system. They follow from counting all candidate barcode sequences that
are compatible with a predefined set of DNAmanipulation constraints. For random barcodes of
size N, 4N candidate barcode sequences must be first individually screened to remove those with
undesirable composition patterns. Concerning their posterior use for error correction purposes,
remaining sequences must be then globally analyzed to ensure a predefined minimum distance.
Hence, for random barcodes, the estimation ofM and B scales exponentially with N both in
time and memory. On the other hand, the minimum distance is a built-in property of candidate
barcode sequences when systematic error correcting codes are used and thus, only the presence
of undesirable composition patterns must be controlled. For barcodes of size N built from linear
codes of size n able to carry k informative symbols in GF(q), just qk sequences must be individu-
ally screened, k<< n. For modest k and q settings, e.g., k< 8 for q = 4, exact estimation ofM
and B can be accomplished. For larger k settings, a Montecarlo approach is required.
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