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Abstract Vascular smooth muscle cells (SMC) are a highly
specialized cell type that exhibit extraordinary plasticity in
adult animals in response to a number of environmental cues.
Upon vascular injury, SMC undergo phenotypic switch from a
contractile-differentiated to a proliferative/migratory-
dedifferentiated phenotype. This process plays a major role
in vascular lesion formation and during the development of
vascular remodeling. Vascular remodeling comprises the ac-
cumulation of dedifferentiated SMC in the intima of arteries
and is central to a number of vascular diseases such as arte-
riosclerosis, chronic obstructive pulmonary disease or pulmo-
nary hypertension. Therefore, it is critical to understand the
molecular mechanisms that govern SMC phenotype. In the
last decade, a number of new classes of noncoding RNAs
have been described. These molecules have emerged as key
factors controlling tissue homeostasis during physiological
and pathological conditions. In this review, we will discuss
the role of noncoding RNAs, including microRNAs and long
noncoding RNAs, in the regulation of SMC plasticity.
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Abbreviations
SMC smooth muscle cells
EC endothelial cells
ncRNAs noncoding RNAs
miRNAs microRNAs
lncRNAs long noncoding RNAs
SRF serum response factor
SRE serum response element
MYCD myocardin
MRTF myocardin-related transcription factor
TGFβ transforming growth factor β
PDGF platelet-derived growth factor
SBE Smad-binding elements
bHLH basic helix-loop-helix
KLF Krüppel-like zinc finger
NAT natural antisense ncRNA
ceRNA competing endogenous RNAs
SENCR smooth muscle and endothelial cell enriched mi-

gration/differentiation-associated
SNP single nucleotide polymorphism

Introduction

Vascular smooth muscle cells (SMC) are a highly specialized
cell type present within the medial region of arteries and arte-
rioles. SMC express a repertoire of proteins that are important
for contractility, ion channels and signaling cascades that al-
low them to regulate systemic and local pressure through the
modulation of the vascular tone. In contrast to other terminally
differentiated cells, SMC maintain high phenotypic plasticity
throughout adulthood. In normal physiological conditions,
these cells stay quiescent. However, under different environ-
mental conditions, SMC are able to re-enter cell cycle and
undergo phenotypic switch from a differentiated/contractile
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phenotype to a dedifferentiated/proliferative phenotype [142,
144]. Dedifferentiated cells are characterized by high rates of
migration and proliferation, increased expression of the extra-
cellular matrix proteins (ECM) and low expression of contrac-
tile proteins. By contrast, contractile or differentiated SMC
exhibit low levels of proliferation and migration and express
a set of specific markers such as cytoskeleton and contractile
proteins, which comprise smooth muscle actin-α (α-SMA),
smooth muscle myosin heavy chain (SM-MHC), calponin,
caldesmon and sm22-α [143]. When repairing vascular injury
and after several rounds of unchecked proliferation, this
dedifferentiated SMC participate in the intimal thickening
and medial stiffening observed in vascular diseases like arte-
riosclerosis, chronic obstructive pulmonary disease (COPD)
or pulmonary arterial hypertension (PAH) [71, 139, 144]. A
recent report from Owens and colleagues, using cell-tracing
system, shows that more than 80 % of SMC in the vascular
lesion undergo phenotypic switch contributing to the intimal
hyperplasia seen in vascular pathologies [158]. For this reason,
much effort has been focused on identifying molecules that
regulate both global SMCdifferentiation and specific SMCgene
expression. Several observations have demonstrated that a com-
plex network of both protein and noncoding RNAs governs the
phenotypic switch process [4, 41, 98, 132, 143]. However,
despite the importance of SMC changes during vascular
diseases, the molecular mechanisms controlling them are not
yet fully understood, in part due to the versatile characteristics
of these cells. In this review, we briefly summarize the current
understanding of themolecular regulation of SMCdifferentiation
and phenotypic switch during physiological and pathological
remodeling with special focus on recent discoveries concerning
the contribution of the noncoding genome to this process.

Regulation of SMC phenotypic switch
by transcription factors

Figure 1 summarizes the main signaling cascades and tran-
scription factors that maintain SMC phenotypic states. The
study of SMC transcriptional regulation has been difficult
due to the high variation of SMC marker expression across
different tissues and the fact that SMC derive from multiple
precursors throughout the embryo [98]. Contrary to the skel-
etal muscle, in which myoD is the master regulator of its
differentiation, to date, there is no comparable transcription
factor governing SMC differentiation. The role of the C-Fos
serum response element-binding transcription factor (SRF) in
SMC homeostasis has been demonstrated by the ability of
dominant negative mutants of SRF to prevent differentiation
[118, 123]. SRF regulates most SMC differentiation marker
genes by binding as an homodimer to the highly conserved
CArG cis-element (CC(A/T)6GG) or serum response element
(SRE) present within nearly all of the SMC-specific promoters

[133]. Most of the SMC genes contain two or more CArG
boxes, which act cooperatively to promote transcription
[180, 181]. However, SRF cannot be considered a master
regulator because it is an ubiquitously expressed protein that
also regulates cardiac and skeletal muscle-specific gene ex-
pression, as well as the expression of a number of early re-
sponse and structural genes across different cell types [163].
How SRF is able to regulate specific genes in precise environ-
ments is not yet fully understood. SRF activity is regulated by
its association to different transcription factors, such as NkX
and GATA family members and cofactors, predominantly
myocardin (MYCD) and myocardin-related transcription fac-
tors A and B (MRTF-A and MRTF-B) [133]. Additionally,
posttranscriptional modifications of SRF, variation of SRF-
binding affinity among different CArG boxes as well as num-
ber, position and spacing of CArG boxes are now recognized
as the mainmechanisms regulating SRF activity [98].MYCD,
identified in 2001 by Olson and collaborators, form a ternary
complex with SRF and acts as a transcriptional co-activator of
almost all SMC-specific promoters including calponin,
caldesmon, SM-MHC, α-SMA, sm22-α and specific cell-
cycle-associated genes such as p21 [180]. Forced expression
of MYCD in a skeletal muscle-related cell line is sufficient for
the induction of the majority of SMCmarkers [116] but not to
initiate the complete differentiation programme in multipotent
stem cells [201]. MYCD is induced by angiotensin II, L-type
voltage-gated Ca2 channels/Ras homology gene family A
(RhoA) and transforming growth factor β (TGFβ) and
inhibited by platelet-derived growth factor-BB (PDGF-BB)
[152, 179, 199] (Fig. 1). This indicates that MYCD regulates
changes in SMC contractile mass in response to functional
demands. MYCD activity is subjected to regulation through
multiple mechanisms, including alternative splice variants,
and binding to regulatory proteins [74, 79]. For example, ac-
tivity of MYCD is inhibited by the inflammatory-related fac-
tor NFkB [167] and the insulin-like growth factor-1/AKT-de-
pendent phosphorylation of the transcription factor forkhead
O4 (FoxO4) inducing its translocation from the nucleus, there-
fore reducing SMC marker genes [114]. MYCD can be phos-
phorylated by glycogen synthase kinase-3-β and extracellular
signal-regulated kinase (ERK), resulting in decreased differ-
entiation marker expression [6, 168]. A decreased expression
of MYCD has been observed in several models of vascular
injury, and its re-expression prevents the neointima formation
in murine carotid arteries after injury [1, 166]. SRF/MRTF
complexes also bind to consensus CArG elements within the
promoters of contractile and SMC-specific target genes likeα-
SMA and sm22-α [175, 180, 181, 202]. RhoA-dependent
actin polymerization has been shown to be required for nucle-
ar localization ofMRTF-A and for SMC-specific gene expres-
sion [120]. RhoA activity is mainly mediated by angiotensin
II, sphingosine-1-phosphate, TGFβ, calcium, BMP2 and cell
tension [73].
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TGFβ signals through the type II TGFβ receptor and the
type I receptor ALK5. ALK5 activation results in the recruit-
ment and phosphorylation of Smads 2 and 3 that complex with
Smad4. The complex translocates to the nucleus and stimu-
lates gene expression [126]. TGFβ control element (TCE;
G(A/C)GT(T/G)GG(T/G)GA) has been found in several pro-
moters of SMC genes, and its deletion in the sm22-α promoter
blocks gene expression [66]. In concordance, TGFβ1 stimu-
lates the expression of SMC genes and enhances SRF binding
to CArG boxes [75] (Fig. 1), and several SMC genes contain
functional Smad-binding elements (SBE) that are conver-
gence points of TGFβ1 or myocyte enhancer factor 2
(MEF2) binding sites [44]. The related TGFβ family member
bone morphogenetic 4 (BMP4) also promotes SMC contrac-
tile genes through MRTF [99].

Notch plays an important role in SMC homeostasis and
vascular development [57]. In mammals, there are four trans-
membrane Notch receptors (1 to 4), being Notch 3 the most

strongly expressed in SMC. The transmembrane ligands for
Notch are Jagged 1 and 2 and delta-like 1, 3 and 5.
Recombination signal-binding protein for immunoglobulin
kappa J region (RBPJ) interacts with Notch intercellular do-
main (NICD), which is released upon Notch activation and
stimulates SMC contractile genes [23] (Fig. 1). NICD-RBPJ
target genes include α-SMA [140], SM-MHC [46] and
microRNA 143/145 [18]. In the absence of NICD, RBPJ re-
presses targets by recruiting histone deacetylases (HDACs). A
number of studies have reported that NICD blocks SMC dif-
ferentiation in part by regulating HEP/HEY family, which
inhibits SMC marker gene through SRF/MYCD-dependent
pathway [136, 149].

The GATA zinc transcription factors interact with the DNA
regulatory elements with a consensus sequence A/T GATA
A/G (WGATAR). The GATA-4, -5 and -6 are essential for
cardiovascular system and endoderm-derived tissues [48],
but only GATA-6 is expressed in the medial SMC of the
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Fig. 1 Signaling pathways controlling SMC phenotypic switch. In the
right panel, the differentiated/contractile SMC state is displayed, and in
the left panel, the proliferative/dedifferentiated SMC phenotype. SRF
serum response factor, MYCD myocardin, MRTF myocardin-related
transcription factor, RBPJ recombination signal binding protein for
immunoglobin Kappa J, NCID Notch intercellular domain, TGFβ
transforming growth factor β, IGF insulin growth factor, TK tirosin
kinasa, P phosphorylation, Jag Jagged, DII delta-like II, NFkB nuclear

factor kappa B, IkB inhibitor of kappa B protein, AngII angiotensin II,
ATR1/2 angiotensin receptor 1 and 2, PDGF-BB platelet-derived growth
factor-BB, PDGFRβ platelet derived growth factor receptor β, KLF4
Krüppel-like factor 4, BMP bone morphogenic protein, HDAC histone
deacetylase, TCF ternary complex factor,Ub ubiquitin, SP1 sphingosine-
1-phosphate, Id inhibitor of DNA binding/differentiation proteins [7, 31,
33, 55, 56, 81, 87, 88, 91, 92, 103, 105, 107, 108, 110, 113, 122, 129, 134,
150, 153, 154, 177, 182, 183, 186, 195, 196, 206, 210]
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vasculature [135] and regulates SMC phenotype in vivo pro-
moting the expression of SM-MHC, α-SMA and calponin
[124]. In addition, GATA-6 regulates SMC proliferation by
directly controlling cell cycle [148]. Preventing GATA-6
downregulation after vascular injury inhibits intimal hyperpla-
sia [124]. These data demonstrate that the effects of both
Notch and GATA signaling are cell-context dependent.

Many SM-specific promoters including SM-MHC [188],
sm22-α [141] and α-SMA [159] contain enhancer-box (E-
box)-binding sites (CAnnTG motifs). This element binds to
homo- or heterodimers of basic helix-loop-helix (bHLH) pro-
teins and to the snail family of transcription factors. Upstream
stimulatory factor (USF) binds to two E-boxes present in the
α-SMA promoter and activates its expression [85].
Overexpression of class I bHLH such as E2-2, E12 and
HEB stimulates α-SMA, while the inhibitory bHLH proteins
Id and Twist decreases α-SMA and sm22-α [151, 197]. The
bHLH Msx1 and Msx2 as well as HERP1/HEY2 directly
interact with MYCD and inhibit SMC marker genes [46, 67].

SMC phenotypic switching is also determined by factors
that suppress SMC gene expression [144]. Although the fac-
tors mediating injury-induced phenotypic switching in vivo
have not been clearly defined, PDGF-BB seems to play an
important role. PDGFRβ triggers the Ras/Raf/MEK/ERK
cascade leading to the SRF-dependent upregulation of early
response growth genes as well as the phosphorylation of sev-
eral SMC genes, including MYCD and MRTFs [187].
Furthermore, PDGF-BB induces suppression of SMC marker
genes after vascular injury [9, 28] by promoting the expres-
sion of the Krüppel-like zinc finger family 4 (KLF4) or KLF5
[42, 125] (Fig. 1). KLF4 is normally absent in differentiated
SMC in vivo but is rapidly induced in neointima after vascular
injury [112, 158, 200] and promotes SMC phenotypic modu-
lation by repressing multiple SMC marker genes like MYCD
and sm22-α, as well as a group of genes that regulate pro-
inflammatory responses [112, 158].

Noncoding RNAs

In the last years, great advances in transcriptome sequencing
and analysis have allowed the identification of many types of
noncoding RNAs (ncRNAs) molecules. Interestingly, around
98 % of all RNA transcripts do not possess protein-coding
capabilities [45, 64]. It is now clear that many (if not all) of
them regulate individual steps of gene expression including
transcription, RNA processing and translation [24]. In addi-
tion, ncRNAs are able to guide DNA synthesis or genome
rearrangement among other functions [24] constituting the
most versatile molecules that participate in the regulation of
the genome. Broadly, ncRNAs can be classified according to
their size. Small ncRNAs are conformed by less than 200 nu-
cleotides (nt) while long ncRNAs (lncRNAs) are longer than

200 nt and can range up to tens or even hundreds of thousands
of nucleotides in length [162].

Small noncoding RNAs

The most prominent small ncRNAs are the Bhousekeeping^
ncRNAs that are represented by ribosomal RNA (rRNA) and
transfer (tRNA), which are required for protein translation [53,
137]. Small nuclear RNAs (snRNAs) are essential for mRNA
splicing [14], small nucleolar RNAs (snoRNAs) for RNA
modification [94] and YRNAs appear to be implicated in
chromosome replication and cell proliferation [95]. Recently,
much attention has arisen in a class of ncRNAs that
posttranscriptionally regulates protein-coding genes. These
include microRNAs (miRNAs), endogenous small interfering
RNAs (endo-siRNAs) and PIWI-interacting RNAs (piRNAs),
which interact with the RNA interference machinery [58].
Very little is known about small RNAs in vascular SMC ho-
meostasis. The most studied small RNAs during SMC pheno-
type alterations are the miRNAs, which will be summarized
here.

miRNAs are well-conserved 21-nt single-stranded RNA
molecules. The miRNAs biosynthesis is initiated by the tran-
scription of a long transcript by RNA polymerase II, which
give rise to a primary miRNA capped and poly-adenylated
[93]. In a sequential double step process, the RNA III enzymes
Drosha and Dicer cleave the miRNA precursor, giving rise to
a mature miRNA or guide strand and a passenger strand,
which is removed by cellular nucleases [10]. The mature
miRNA is incorporated into the RNA-induced silencing com-
plex (RISC) where it binds to a member of the Argonaute
(Ago) protein family and guides RISC to partially comple-
mentary target sites on mRNAs [47]. After the recruitment
of downstream factors, the target mRNA is translational re-
pressed and/or degraded by exonucleases [128]. miRNA gene
regulation has been implicated in a number of cellular pro-
cesses. They are expressed in a stage- or tissue-specific fash-
ion and modulate cell differentiation, proliferation and apo-
ptosis [51]. Consistent with their essential role in cellular func-
tions, homozygous deletion of Dicer in mouse results in le-
thality at embryonic day 8.5 [15].

The microRNAs in SMC homeostasis and phenotypic
switch Direct evidence of the importance of miRNAs medi-
ating SMC differentiation in vivo is derived from conditional
knockout mice studies. Defective blood vessel formation and
loss of pluripotent cells have been observed in Dicer-knockout
(KO) mice [13, 198]. Vascular SMC-specific deficiency of
Dicer also induced defective blood vessel formation causing
late embryonic lethality at E16–17 [3, 145]. Specifically, loss
of Dicer in vascular SMC during development induced dilat-
ed, thin-walled blood vessels, as a consequence of the reduc-
tion in the proliferation state. The arteries of these mice exhibit
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impaired contractility most likely due to a decreased expres-
sion of SMC contractile genes [3]. In accordance, conditional
deletion of Dicer in adult mice shows a marked reduction in
systemic blood pressure and an increase in vascular remodel-
ing [2]. This phenotype shares a lot of similarities with the
SMC-associated miR-143/145 cluster-deficient mice [16, 49].
However, the SMC-Dicer KO mice present a more complex
and severe phenotype, indicating that additional miRNAs are
involved in the regulation of postnatal SMC differentiation.
miR-143 and miR-145 have been shown to be enriched in
SMC progenitor cells during development [16, 36] and play
a key role in SMC differentiation by targeting KLF4 and
KLF5, with the subsequent increase of MYCD [32, 36]. In
addition, miR-145 controls the establishment of key ion chan-
nels necessary for a proper contractile phenotype [173].
miRNA-143 andmiR-145 are transcribed as a bicistronic tran-
script from a common promoter [49] that contains different
binding sites for transcription factors involved in SMC differ-
entiation, such as CArG [36, 194], Smad response element
[117] and RBPJ [18]. Indeed, the SRF cofactors MYCD and
MRTF-A/B activate the miR-143/145 in vivo and in vitro [36,
194]. Several studies associate the reduction of miR-143/145
with the decrease in SMC contractile markers, SMC pheno-
typic modulation and neointima formation [32, 36]. In con-
trast, increased levels of miR-145 have been described in
PAH, both in cultured SMC from patients and in animal
models. In this study, the authors show that adenoviral-
mediated reduction of miR-145 attenuated the progression of
the disease [22]. On the other hand, in vivo and in vitro ectopic
expression of miR-145 reduces neointimal hyperplasia after
injury [32, 49, 119] and partially rescues the SMC contractile
gene reduction generated by the loss of Dicer, respectively [3].
Interestingly, TGFβ stimulates the transfer of miR-143/145
from SMC to endothelial cells (EC) through tunnelling nano-
tubes modulating the angiogenesis response through the de-
crease of both EC proliferation and tubulogenesis [34].
Analogously, laminar shear stress induces miR-143/145 ex-
pression in a KLF2-dependent fashion. These miRNAs are
then transported through exosomes from EC to SMC confer-
ring an SMC atheroprotective phenotype [70]. These data
demonstrates that there is an exchange of miRNAs, and pos-
sibly other RNA products, from one vascular cell to another in
response to cellular cues. These messengers trigger
programmes of gene expression, locally or distantly, in order
to modulate vascular homeostasis.

The miR-10a has been reported to mediate retinoic acid-
induced SMC differentiation from ES cells by targeting the
histone deacetylase HDAC4 [76]. The miR-1 and miR-133
family is another group that participates in SMC differentia-
tion. Specifically, miR-1 is induced by MYCD and blocks
contractile SMC expression impairing cytoskeletal organiza-
tion of human aortic SMC in vitro [84]. In addition, miR-1
blocks proliferation by targeting Pim1 [29]. There is also

evidence that miR-1 directs the differentiation of embryonic
stem cells into SMC-like cells by targeting KLF4 [193] and
miR-1 knockout mice show aberrant SMC differentiation
[68]. These different outcomes in the action of miR-1 during
SMC differentiation showed that the effects of specific
miRNAs is cell-context dependent. There are two miR-1
genes located in different chromosomes both of which are
stimulated by MYCD in a conserved SRF-CArG boxes-de-
pendent fashion mostly in cardiac and skeletal muscle [208].
Both miR-1 genes are co-transcribed with homologous miR-
133a genes. Similar to the response observed with miR-1, the
suppression of miR-133a resulted in aberrant expression of
SMC markers during heart development [109]. Later studies
demonstrated a correlation between miR-133a levels and the
differentiation state of vascular SMC. miR-133a targets the
transcription factor SP1 [171], a well-known repressor of
SM-MHC [121]. Accordingly, miR-133a overexpression ex-
periments resulted in the upregulation of SM-MHC and the
decrease of other SMC genes such as calponin and α-SMA,
demonstrating that miR-133a does not fully direct SMC dif-
ferentiation [171]. Further studies showed that neointimal for-
mation can be attenuated with the overexpression of miR-
133a, which blocks SMC proliferation andmigration, whereas
miR-133a inhibition exacerbates this condition [171]. Other
miRNAs stimulated by MYCD, miR-24 and miR-29a, have
shown to regulate cell proliferation and migration through
regulating PDGFRβ levels indirectly and directly, respective-
ly [166]. Another well-known target of miR-24 is the
Tribbles-like protein 3 [26]. In response to PDGF-BB, miR-
24 increases, promoting the downregulation of Tribbles-like
protein 3, which in turn induces the Smurf1-mediated de-
crease of Smad1 and the consequent switch to a SMC prolif-
erative phenotype [26, 27]. The miR-29b is also associated
with the inhibition of SMC proliferation and migration, but
its target is yet to be described [20]. Quantification analyses
have determined that the level of miR-29b is much lower than
miR-29a and miR-29c in SMC, highlighting differences in
miRNA processing between family members [20]. In this
study, aldosterone is described as a direct factor controlling
the expression of the mature miR-29b, but not of the other
mature miRNAs [20]. miR-24 is transcribed together with
miR-23b and miR-27b [54]; therefore, they are likely to have
related functions in SMC homeostasis. As expected, miR-23b
inhibits SMC proliferation and migration and promotes SMC
markers in vitro and neointimal hyperplasia in a model of
balloon-injured arteries in vivo. miR-23b directly targets
FoxO4 [78].

miR-34a is also associated with SMC differentiation of
both mouse and human embryonic stem cells by activating
SIRT1, which activates SMC genes in a CArG-dependent
fashion [203]. How miR-34a activates SIRT1 needs further
studies. The activation of target genes by miRNAs was also
reported for miR-145, which directly binds and activates

Pflugers Arch - Eur J Physiol (2016) 468:1071–1087 1075



MYCD [36]. More recently, miR-34a has been shown to in-
hibit proliferation and migration by regulating Notch 1 protein
expression [30]. Overexpression of miR-34a resulted in inhi-
bition of neointima formation in wire-injury femoral arteries
[30].

Another important miRNA in determining the SMC fate
after vascular injury and neointima formation is the miR-21,
which has been shown to be upregulated in balloon injury and
to be pro-proliferative and anti-apoptotic in SMC [83].
In vivo, miR-21 inhibition reduces the neointimal response
through the de-repression of PTEN [83]. In contrast, Davis
and collaborators demonstrated that miR-21 stimulates SMC
contractile proteins by targeting PDCD4 [39]. In this study,
the authors showed that BMP4 or TGFβ1-Smad signal
transducers are recruited to the pri-miR-21 (primary
miRNA) in association with a member of the DROSHA
microprocessor complex promoting its processing into
pre-miR-21 (precursor miRNA) and the consequent in-
crease of the mature sequence during SMC differentiation
[39]. In a recent study, genetic ablation of the miR-21 stem
loop attenuated neointimal formation in mice post-stenting
probably via the enhancement of the anti-inflammatory M2
macrophage levels together with an impaired sensitivity to
vascular responses of SMC [127].

The miR-221/222 cluster was shown to be induced by
growth factors and to mediate SMC proliferation in vitro and
in vivo, targeting key negative growth regulators [40, 111].
The miR-146a stimulates SMC proliferation via KLF4, which
in turn regulates the expression of this miRNA [164]. Gain-of-
function and loss-of-function experiments showed that miR-
146a regulates SMC proliferation in vitro. Transfection of an
antisense oligonucleotide against miR-146a into the balloon
injury rat carotid arteries attenuates neointimal hyperplasia
[164]. Another miRNA that regulates SMC proliferation is
miR-130a. This gene targets MEOX1, a growth arrest-
related gene [192].

miR-26a promotes SMC proliferation and attenuates serum
starvation-induced SMC differentiation. The authors identi-
fied Smad1 and Smad4 as direct targets of miR-26a [100].

Courboulin et al. found that miR-204 was downregulated
in PAH in humans and in rat models of PAH. Decreased miR-
204 stimulates SHP2 expression and activates the STAT path-
way contributing to SMC proliferation and pulmonary vessel
wall thickening [37].

miR-155 has been shown to regulate genes required for
differentiation of stem cells into smooth muscle cells, since
exogenous overexpression of miR-155 inhibits expression of
SM-MHC and abrogates SMC differentiation [38, 209].

miR-663 is associated with SMC marker expression, and
the transcription factor JunB was identified as a target of this
miRNA [104]. Transduction of an adenovirus anti-miR-663
partially suppresses the neointimal response to injury [104].
The hsa-miR-424 or its ortholog in rat miR-322 (miR-424/

322) was found to inhibit SMC proliferation by targeting cy-
clin D1, while miR-424/322 overexpression in vivo protected
against restenosis [131].

Table 1 summarizes the miRNAs genes implicated in the
regulation of SMC plasticity and their validated targets.

Long noncoding RNAs

Currently, the faster growing area of noncoding RNAs re-
search is the study of lncRNAs. The ENCODE project, to-
gether with the improvement of bioinformatics analysis and
the new powerful RNA sequencing technologies, has revealed
pervasive transcription of the majority of the human genome
[35, 64]. The use of RNA capture followed of tilling arrays to
target and sequence selected portions of the transcriptome has
detected additional transcripts that are rare or transiently
expressed [130]. lncRNAs are transcribed by RNA polymer-
ase II, undergo 5′ capping and splicing, can be or not
poliadenylated and, in general, are not well conserved across
species [155]. In general, although the expression of these
transcripts is very low, they exert important and different reg-
ulatory roles in a wide range of biological processes in health
and disease [165, 174]. However, the number of lncRNAs
with functional characterization is limited and the majority
of the new annotated transcripts are derived from fibroblasts.
Considering that specific transcripts or even alternative spe-
cies of the same gene are expressed specifically in different
cell types [130], the description and functional characteriza-
tion of those transcripts in specific cells and states are neces-
sary to better understand their function. The strongest support
of lncRNAs as biologically relevant molecules that regulate in
vivo functions comes from knockout studies in mice [157].

Classification of lncRNAs species has been difficult due to
the high heterogeneity in their biogenesis, structure and func-
tion [162]. Based on the genomic position relative to other
genes, they can be divided in several sub-classes including
intronic ncRNA, circular RNA (cirRNAs), sense ncRNA, nat-
ural antisense ncRNA (NAT), chromatin-interlinking RNA
(ciRNA) and others. Based on their association with other
DNA elements of known function, they are classified into
enhancer-associated RNA (eRNA), promoter-associated long
RNA (PALR), upstream antisense RNA (uaRNA) and others
(for a review, see Hangauer et al. [162]).

The current challenge in the study of lncRNAs is the elu-
cidation of their mechanisms of action. These molecules ex-
hibit unpredictable and diverse functions. They are able to
influence gene expression in different manners, being able to
stimulate or repress transcription, translation and signaling as
well as to influence the structure and function of chromo-
somes [17, 24, 155, 190]. The problemwith the understanding
of lncRNA function is that there are not known features that
correlate lncRNA sequence with specific function. The de-
scription of a novel RNA motif (AGCCC plus A/T at −8 and
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Table 1 Different known miRNAs and their functions in SMC homeostasis

miRNA Target Functions References

1 Pim1 (−) SMC proliferation Chen et al. [29]

1 Unknown (−) SMC contractility Jiang et al. [84]

1 KIf4 (+) SMC differentiation in ES cells Xie et al. [193]

10a Hdac4 (+) SMC differentiation in ES cells Huang et al. [76]

15b/16 Yap (+) SMC differentiation Xu et al. [195]

21 Pdcd4 (+) SMC differentiation Davis et al. [39]

21 Pten (−) SMC differentiation/(+) neointima Lin et al. [108]; Ji et al. [83]

21 Pten (+) SMC proliferation Green et al. [56]; Liu et al. [113]

21 Dock (+) SMC proliferation Kang et al. [87]

22 Mecp2 (+) SMC differentiation Zhao et al. [206]

23b Foxo4 (−) SMC proliferation/(−) migration Iaconetti et al. [78]

24 Chi3l1 (−) SMC inflammation/(−) SMC differentiation Maegdefessel et al. [122]

24 Trb3 (−) SMC proliferation Chan et al. [26]

24 Pdgfrb (−) SMC migration Talasila et al. [166]

26a Smad1 (+) SMC proliferation/(−) SMC differentiation Leeper et al. [100]

26a Smad4 (−) SMC apoptosis Leeper et al. [100]

26a Pdgfrb (−) SMC migration Talasila et al. [166]

29a/29c Cav1 (+) insuline resistance/alterations in lipid metabolism Chen et al. [31]

29b Unknown (+) SMC proliferation/(+) SMC migration/(−)
apoptosis necrosis ratio

Bretschneider et al. [20]

30a Ca(v)1.2 (−) Vascular tone Rhee et al. [154]

30b/30c Runx2 (−) SMC calcification Balderman et al. [7]

31 Lats2 (+) SMC proliferation Liu et al. [110]

31 Creg (−) SMC differentiation Wang et al. [183]

34a Sirt1 (+) SMC differentiation Yu et al. [203]

34a Notch1 (−) SMC proliferation Chen et al. [111]

96 Trb3 (−) SMC differentiation Kim et al. [92]

124 Nfatc1 (−) SMC proliferation/(+) SMC differentiation Kang et al. [88]

125b Suv39h1 (+) SMC inflammation Villeneuve et al. [177]

126 FoxO3/Bcl2/Irs1 (+) SMC proliferation/(+) neointima Zhou et al. [210]

130a Meox1 (+) SMC proliferation Wu et al. [192]

132 Lrrfip1 (−) SMC proliferation/(−) neointima Choe et al. [33]

133a Sp1 (−) SMC proliferation/(−) SMC migration Torella et al. [171]

138 Mst1 (−) SMC apoptosis Li et al. [105]

138 Sirt1 (+) SMC proliferation/(+) SMC migration Xu et al. [196]

143/145 KfI4/EIk1/Camk2d (−) SMC proliferation/(+) SMC differentiation Cordes et al. [87]

143/145 KfI5 (+) SMC differentiation/(−) neointima Cheng et al. [32]

143/145 KIf4/Kif5/Add3 Cytoskeletal dynamics Xin et al. [194]

143/145 KIf2 (+) SMC differentiation Hergenreider et al. [70]

146a KIf4 (+) SMC proliferation/(+) neointima Sun et al. [164]

146b Unknown (+) SMC proliferation/(+) SMC migration Wang et al. [182]

195 Cdc42/Ccnd1 (−) SMC proliferation/(−) SMC migration Wang et al. [186]

200 Zeb1 (+) SMC inflammation in Diabetes Reddy et al. [153]

203 c-Abl (−) SMC proliferation Liao et al. [107]

204 Shp2 (−) SMC proliferation/(+) SMC apoptosis Courboulin et al. [37]

205 Runx2 (−) SMC calcification Quiao and Zhang [150]
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G/C at −3), which mediates nuclear localization signal, is
one exception [204]. It is likely that our understanding
about these versatile molecules is only beginning to
emerge and new technologies are needed to unravel their
mechanisms. Uncovered functions of lncRNAs are reca-
pitulated briefly as follows:

Regulation of imprinting
The general definition of imprinting is Bparental-spe-

cific gene expression in diploid cells^ [8].Most imprinted
clusters contain protein coding genes and noncoding
RNAs (microRNAs, snoRNAs and lncRNAs), which
are essential for mechanisms of imprinting regulation.
X-inactive specific transcript (XIST) was the first
lncRNA described to have functionality, and it is current-
ly known that regulates X-inactivation mainly by binding
polycomb-repressive complex 2 (PRC2) [72, 160]. Other
well-studied lncRNAs that regulate imprinting include
H19 [11], Airn [161] and KCNQ1OT1 [170].
Regulation of transcription

Nuclear lncRNAs play important tasks in the nucleus-
modulating transcriptional regulation either in cis or in
trans. A function as a scaffold or guides of histone mod-
ification complexes was first described by Chang and
collaborators and confirmed later by genome-wide stud-
ies [59, 172]. In the last, by using RNA immunoprecipi-
tation (RIP), the authors concluded that lncRNAs func-
tion as a cell-context-specific scaffold to guide protein
complexes, such as the polycomb repressor complex
followed by regulation of transcription [155]. Another
described function for nuclear lncRNAs is their role as
enhancers. The eRNAs are smaller than 2000 kb and are
transcribed in correlation with their related gene. The
mechanisms of eRNA action are not well understood,
and several mechanisms have been proposed, including
the facilitation of enhancer-promoter communication by
promoting loop formation, the promoter remodeling via
nucleosome depletion or acting as decoys for key tran-
scription factors or transcription factor binding sites [17].
Nuclear organization

The genomic organization at the three-dimensional
level may facilitate, at a short scale, the formation of
loops that bring distant regulatory regions, enhancers
and their specific targets into contact. At larger scales,
the compaction of higher-order chromosomal domains

may affect the accessibility to the transcriptional machin-
ery [52, 96]. Several lncRNAs have been connected with
the regulation of nuclear organization, including
MALAT1, NEAT1 [77], XIST [50] and Firre [60].
Studies using chromatin conformation capture analysis
may contribute to find new transcripts that modulate ei-
ther local structures or higher-order structures [43].
Molecular sponges

Cytoplasmic lncRNA transcripts can induce changes
in protein expression by acting as competing endogenous
RNAs (ceRNAs) for miRNAs. Recently, the characteri-
zation of endogenous cirRNAs, which harbour a number
of miRNA-binding sites, promised their function as mo-
lecular sponges [65]. This type of lncRNA is difficult to
detect, but the improvement in sequencing technologies
with the use of better algorithms for mapping RNA has
enabled the identification of more candidates [82]. A
number of linear lncRNAs have also been proposed as
sponges, such is the case of the linc-MD1, which captures
miR-133 to regulate muscle differentiation [25].
Interestingly, noncoding function of known coding
mRNAs has been also described for the regulation of
the tumour suppressor PTEN [169].
Coding for micropeptides

Recently, two independent groups reported the pres-
ence of small, conserved, open-reading frames in anno-
tated lncRNAs that encode for functional micropeptides
[5, 147]. It is probable that many annotated lncRNAs are
indeed concealed mRNAs and their precise function is
yet to be described.
Other functions

Another proposed function of lncRNAs is the regula-
tion of protein localization and translocation between the
nucleus and cytoplasm [189] and the regulation of coding
genes stability [97, 184].

Long noncoding RNAs in SMC function

Early in the 1990s, H19 was identified as a molecule that acts
as a RNA product [19]. Shortly after its discovery, H19 was
reported to be expressed in SMC during blood vessel devel-
opment reaching low levels in adult vessels [62]. Following
acute vascular injury or in atherosclerotic lesions, this lncRNA
is upregulated [61, 90]. H19 gene is located immediately

Table 1 (continued)

miRNA Target Functions References

206 Notch 3 (−) SMC proliferation/(−) SMC differentiation Jalali et al. [81]

210 E2f3 (−) SMC apoptosis Gou et al. [55]

221/222 Kit/Cdkn1b (+) SMC proliferation/(−) SMC differentiation Davis et al. [40]
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downstream of insulin-like growth factor II (IGF2) and com-
prises 2.3 kb. Both IGF2 and H19 are imprinted in a reciprocal
manner where the paternal chromosome transcribes IGF2 but
not H19 and the maternal chromosome transcribes H19 but
not IGF2. Apart from its involvement in imprinted regulation
of IGF2, the function of H19 is intriguing. A number of re-
ports have described H19 as either an oncogene or a tumour
suppressor in different cell systems. In addition, it has been
shown that miR-675 is contained within the first exon of H19,
which is expressed specifically in the placenta to promote
growth [89]. Recently, a role as a sponge for let-7 family of
miRNAs has been reported [86]. H19 depletion promotes pre-
cocious skeletal muscle differentiation in vitro by influencing
let-7 targets expression [86]. The function of H19 in patho-
logical SMC is unknown, but in this regard, it has been de-
scribed that let-7a blocks proliferation and migration in vitro
and in vivo by targeting myc [21]. It is possible that high
levels of H19 following vascular injury sequester let-7
miRNAs. In consequence, proliferation and migration is aug-
mented through modulation of its targets.

Another lncRNA described in SMC is an overlapping an-
tisense to NOS3 gene (NOS3 NAT-lncRNA). This lncRNA
has a discordant expression with its sense NOS3, with higher
levels of the lncRNA over NOS3, and they do not display co-
localization in assays of in situ hybridization. Knockdown of
NO3NAT-lncRNA results in an increase of NOS3 expression,
suggesting a posttranslational mechanism of regulation [156].

The lncRNA termed antisense noncoding RNA in the
INK4 locus (ANRIL) is localized in the 9p21.3 region. This
locus has been associated with genetic susceptibility for cor-
onary diseases, intracranial aneurysms and type II diabetes in
genome-wide association studies (GWAS) [146]. It has been
reported that human SMC carrying single nucleotide polymor-
phism (SNP) variants in the ANRIL locus displayed elevated
cell proliferation in vitro [138], and its deletion in mice con-
firmed this result [178]. ANRIL is a nuclear antisense lncRNA
that regulates cell cycle genes in cis by recruiting the
polycomb repressor complex.

The lncRNA-p21 is downregulated in the ApoE null model
of atherogenesis and in human atherosclerotic lesions. This
lncRNA represses SMC proliferation while its downregula-
tion exacerbates the neointimal hyperplasia following acute
injury. Mechanistically, the lncRNA-p21 interacts with
the E3 ubiquitin protein ligase, which acts de-repressing
p53-dependent target genes [191].

The transcript natural antisense to HIF1α (HIF1A-AS1)
was found to be increased in serum of patients with aortic
aneurysms, and its downregulation in SMC in vitro reduces
the apoptotic genes caspase 3 and caspase 8 and increases
BCL2 [207]. Another research group, found that HIF1A-
AS1 regulates the expression of Brahma-related gene 1
(BRG1), a gene that is increased in thoracic aortic aneurysm,
by an unknown mechanism [185].

Leung and collaborators reported the first study using
RNA-seq technology to evaluate lncRNA in SMC derived
from rat. They found that treatment with angiotensin stimu-
lates expression changes in a number of lncRNAs, including
the lncRNA-362. This transcript contains the miR-221/222
cluster. lncRNA-362 downregulation results in a reduction
of miR-221/222 expression and a decreased SMC prolifera-
tion [101].

More recently, the Miano Lab reported the first lncRNA
that seems to be specific of SMC and EC [12]. They screened
human aortic SMC by RNA-seq and found a lncRNA anti-
sense to the EC-restricted FLI1 genewhich they called smooth
muscle and endothel ia l cel l enr iched migrat ion/
differentiation-associated (SENCR) lncRNA. They confirmed
the expression of two variants highly enriched in EC, SMC
and in tissues like arteries, lung and skeletal muscle. SENCR
knockdown in SMC led to a dedifferentiated phenotype with
the downregulation of SMCmarkers and the increase ofMDK
and PTN, two pro-migratory genes. Simultaneous inhibition
of these genes prevented the migratory phenotype induced by
SENCR silencing, suggesting that these genes mediate
SENCR action [12]. The mechanism by which SENCR regu-
late its targets is unknown. SENCR is localized in the cyto-
plasm and does not control the expression of FLI1. The study
of protein-RNA association using pull-down assays may help
to discern its function.

Genome-wide studies using microarray revealed a number
of lncRNAs differentially expressed in varicose saphenous
with respect to control veins. Many of the identified tran-
scripts are antisense lncRNAs and display a concordant ex-
pression with their associated gene [106]. More recently, the
authors demonstrated a correlation between reduced expres-
sion of the snoRNA-containing GAS5 in varicose veins with
an enhanced proliferation and migration of SMC [102].
Mechanistically, GAS5 interacts with ANXA2, a calcium-
dependent RNA binding protein. Simultaneous knockdown
of ANXA2 with GAS5 rescue the proliferative /migratory
phenotype, suggesting that ANXA2 mediates the function of
GAS5 in SMC [102]. The NAT HAS2-AS1 that is transcribed
opposite to HAS2, a hyaluronan synthase, was reported to
directly mediate the transcription of its overlapping gene.
The authors showed that O-GlcNAcylation stimulates
HAS2-AS1 promoter activity by recruiting p65. In turn,
HAS2-AS1 activates HAS2 transcription by promoting an
open chromatin structure specifically in the promoter region
of HAS2 [176]. The exact mechanism by which HAS2-AS1
exerts its role is unclear.

Recently, a number of putative ceRNAs have been identi-
fied for MYCD using human vascular samples from patients
with intracranial aneurysm [205]. The authors concluded that
depletion of ARGHEF12, FGF12 and ADCY5 transcripts
resulted in the reduction of MYCD levels, in a miRNA-
dependent manner.
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Table 2 summarizes the lncRNAs genes described in SMC,
and their suggested mechanism.

Perspectives

In the next years, many other miRNAs will probably be iden-
tified as important players in the regulation of SMC homeo-
stasis, given the recent identification of new miRNA tran-
scripts [115]. The next step will be to elucidate more accurate-
ly the identification of target genes. This is complicated due to
the fact that many miRNAs bind to its target genes in a non-
canonical manner [69], difficulting their identification through
bioinformatics analysis. Another important topic for future
research is the identification of nucleotide variations in non-
coding regions, including promoters, miRNA sequence, their
target 3′UTR and lncRNA sequences and their functional im-
pact in vivo. For example, a SNP that has been associated to
cardiovascular disease located in the 3′UTR region of TCF21
creates a binding site for miR-224 which in turn suppresses its
expression in human coronary SMC [134]. Other examples
include the SNP in a susceptible locus for myocardial infarc-
tion that encodes for MIAT, a lncRNAwith unclear functions
[80], and variants in the ANRIL locus [138]. The study of
Bmaster regulators^ of noncoding RNAs is another poor ex-
plored area of research that needs more attention. Finally, the
exploration of other small ncRNAs is an underdeveloped field
in the study of SMC differentiation. For example, we have
observed that the small ncRNA YRNA3 regulates a number
of SMC marker expression (unpublished observations).
Interestingly, EC and platelets produce and secrete micropar-
ticles full of this small ncRNA (unpublished observations) and
other RNA products that may influence SMC fate. Therefore,
the study of the noncoding genome in the understanding of
SMC phenotype modulation is still in its infancy. Clustered
regulatory interspaced short palindromic repeats (CRISPR)
technologies of genome editing will surely help to discern

the function of noncoding regions in vivo [63]. The major
challenge in understanding SMC homoeostasis is being able
to integrate the whole genome regulation under normal phys-
iological states and during the development of vascular
diseases.
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