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In this work, we overview time-reversal nuclear
magnetic resonance (NMR) experiments in many-
spin systems evolving under the dipolar Hamiltonian.
The Loschmidt echo (LE) in NMR is the signal
of excitations which, after evolving with a forward
Hamiltonian, is recovered by means of a backward
evolution. The presence of non-diagonal terms in
the non-equilibrium density matrix of the many-
body state is directly monitored experimentally by
encoding the multiple quantum coherences. This
enables a spin counting procedure, giving information
on the spreading of an excitation through the Hilbert
space and the formation of clusters of correlated spins.
Two samples representing different spin systems with
coupled networks were used in the experiments.
Protons in polycrystalline ferrocene correspond to an
‘infinite’ network. By contrast, the liquid crystal N-
(4-methoxybenzylidene)-4-butylaniline in the nematic
mesophase represents a finite proton system with
a hierarchical set of couplings. A close connection
was established between the LE decay and the spin
counting measurements, confirming the hypothesis
that the complexity of the system is driven by the
coherent dynamics.
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1. A brief history of time reversal
Time reversal and rejuvenation have always been among the most cherished human fantasies.
Science has not eluded establishing their possibilities and limits. That is why the debate between
Boltzmann and Loschmidt on the irreversible fate of the universe was not free from mathematical
subtleties [1]. Loschmidt pointed out that as fundamental laws of physics are time reversible,
one could recover an initial ordered state simply by reverting the state, e.g. the velocity of each
molecule in a gas. Boltzmann’s short answer was that the reversal was an impossible task that
might be reserved for a hypothetical ‘Loschmidt’s daemon’ [2]. The problem was brought into
scene by the nuclear magnetic resonance (NMR) experiments performed by Hahn in the 1950s [3].
His procedure, known as spin echo, reverses the precession dynamics of each independent spin
around its local magnetic field. In practice, it is equivalent to inverting the sign of the Zeeman
energy, represented by a phase in the evolution operator. This opened a new spectrum for time
reversal experiments. In quantum systems, it is enough to invert the sign of the Hamiltonian
of each of the involved particles or spins. In the Hahn case, the sign associated with the spin–
spin interactions could not be inverted and, accordingly, the individual precessions become
randomized (decoherent) and the Hahn echo is degraded. Such a decay occurs within the time scale
T2 that characterizes the spin–spin interactions. Indeed, these interactions determine that survival
probability of a spin excitation should decay at short times as ∼1 − (t/T2)2 with a later complex
dynamics generating a diffusive spreading. By the early 1970s, Kessemeier, Rhim, Pines and
Waugh implemented the reversal of the dynamics induced by the spin–spin dipolar interaction
[4,5]. This resulted in the so-called magic echo signal which indicates the recovery of the sample’s
initial polarization state. Since then, achieving time reversal of specific evolutions remained part
of the standard toolbox of every NMR experimentalist. Special attention is deserved by the
‘polarization echo’ (PE) introduced by Ernst and co-workers two decades later [6]. There, a local
excitation injected in a many-spin system is let to evolve for a given lapse of time. Then, it is time-
reversed and locally detected as it returns to the initial spin. It soon became clear that one was in
the presence of an experimental realization of a quite powerful Loschmidt daemon [7,8]. While the
success of these time-reversal echoes unambiguously evidenced the deterministic nature of spin-
dynamics in NMR, it is clear that the reversal is unavoidably degraded by uncontrolled internal
or environmental degrees of freedom or by imperfections in the pulse sequences. Furthermore,
in the later experiments the degradation in the recovered signal seems to occur in a time scale,
that we could call T3, much shorter than a naive estimation of the characteristic scale of these
perturbations, say τΣ [9]. Then, the question that arises is whether the complexity inherent to a
large number of correlated spins would enhance the fragility of the time-reversal procedure under
perturbations.

A next generation of experiments to test the fragility of many-body dynamics were initiated
by a team lead by Patricia Levstein at National University of Córdoba (Argentina). These
used mainly the interacting 1H nuclei in organic crystals and liquid crystals in a number of
configurations and settings [7,8,10]. As a whole, the experiments were consistent with the fact
that the experimental T3 never exceeds more than a few times T2. In other words, T3 keeps
tied to the time scale that characterizes the reversed many-body interaction. This led one to
postulate that in an infinite many-spin system the complex dynamics could favour the action
of any small non-inverted interaction that perturbs the reversal procedure. Thus, reversible
interactions become determinant for the irreversibility rate. This constitutes the Central Hypothesis
of Irreversibility that has remained the main paradigm for the Cordoba group. Such a cognizance
was further reinforced by the natural association of many-body complexity with a form of chaos
[11,12], and the confirmation [13] that quantum dynamics of classically chaotic systems should
manifest a dynamical instability [14], that shows up as a perturbation independent decoherence
rate. In summary, we expect that a complex many-body dynamics could rule an emergent mechanism
of decoherence and irreversibility in the thermodynamic limit. With emergent phenomenon, we refer
to the kind of phenomena arising when the number of interacting entities is large enough to be
treated within the thermodynamics formalism.
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From the whole variety of experimental and theoretical work mentioned above, the concept
arises of Loschmidt echo (LE) as a measure of the revival of the initial state after a time
reversal procedure performed through a change in the sign of the Hamiltonian [15]. As the
LE is directly affected by experimental imperfections and interactions with an uncontrollable
environment, it constitutes a direct test for the robustness or fragility of quantum or classical
evolution [13]. As energy determines the phases in the evolution operator, it is clear that
irreversibility and decoherence are two sides of the same coin, and we will use these terms almost
interchangeably.

From the discussion above, it is clear that solid-state NMR is a sort of ‘quantum simulator’,
much of the type proposed by Feynman, to test many-body dynamics through natural or
specifically designed interactions [16]. At this point, we should recall that in NMR one can
often design Hamiltonians by means of the average Hamiltonian theory (AHT) [17]. Thus, the
detailed observation of non-equilibrium many-body dynamics [18,19] and the ability to perform
echoes in a variety of time reversal experiments [6,7,20] while assessing the loss of coherence
[21–24] have attracted much attention in the last few decades. As decoherence is responsible for
the degradation of the information contained in a quantum state, its understanding promises
a strong impact on novel technologies. Conversely, it has been suggested that nature uses
decoherence to enhance and optimize certain processes such as electron transfer [25,26]. Thus,
comprehension of decoherence mechanisms should open new opportunities for basic and applied
sciences.

In NMR, the LE can be implemented easily in magnetization experiments. It has been
evaluated locally in individual spins acting as ‘spies’ of the abundant spin dynamics [27,28], or
globally, by using the total magnetization of the system [24,29]. In particular, the LE has been used
to normalize the experimental data to highlight the coherent many-body quantum dynamics of
the system, filtering the decoherence effects [24,30,31]. In numerical simulations, it is also of great
utility in handling otherwise too complex datasets [32].

Quite often, the LE can be complemented with a more detailed study of the multi-spin
quantum dynamics. This would involve the study of the evolution of different collective states.
For this purpose, the experimental generation, detection and analysis of quantum correlations can
be quantified through the distribution of the intensities of those elements of the density matrix
that involve quantum transitions of a given order, i.e. the multiple quantum coherences (MQCs)
[21,24,33,34]. Conceptually, different forms of excitation of MQC imply different degree of access
to collective states in the many-body Hilbert space whose excitation is time reversed in order to
be detected. In practical terms, a more useful information that can be extracted from the MQC
distribution is the number of correlated spins achieved through the ‘forward’ evolution, usually
known as spin counting [35]. In recent years, the spin counting and the study of decoherence has
been performed for a variety of topologies of the coupling network in liquid crystals and organic
crystals, by using different Hamiltonians [24,29,36,37].

The paper is organized as follows. In §2, we discuss the main properties of the Hamiltonians
responsible for spin dynamics in solid-state NMR. In §3a, we address the way in which the
manipulation of the effective Hamiltonians leads to the implementation of LE experiments and in
§3b, different implementations are introduced. In §3c, we discuss the quantum mechanics behind
the experiments aimed to obtain the distribution of the MQC. The spin counting procedures are
discussed in §3d. In §4, we present the two sets of experiments reported in this paper. One of
these systems corresponds to protons in polycrystalline ferrocene, which displays an enormous
set of dipolar couplings, as every molecule will eventually connect to any other in the crystal.
These are presented in §4a. There, the spin counting behaviour is treated by the distribution of
clusters approach. In §4b, we studied the evolution of the proton system in the liquid crystal N-(4-
methoxybenzylidene)-4-butylaniline (MBBA) in the nematic mesophase, which is characterized
by a finite and distinct set of couplings. The correlation between the LE decay and the coherent
dynamics in both systems is discussed. Finally, §5 is devoted to a discussion that overviews our
work and suggests possible extensions.
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2. Designing nuclear magnetic resonance Hamiltonians
from dipolar interactions

Let us first consider a set of N spins in the presence of a strong magnetic field B0, subjected to the
Zeeman Hamiltonian and the dipolar interaction [38],

H = −ω0Iz + Hzz
d , (2.1)

where, to differentiate between global and individual operators, we denote by Iαi the component
α = x, y, z of the angular momentum of each of the uncorrelated spins, and by Iα = ∑

i Iαi the
total angular momentum in the α direction. Additionally, Hzz

d is the secular part of the dipolar
Hamiltonian (i.e. the part commuting with the Zeeman Hamiltonian),

Hzz
d =

∑
i<j

dij(3Iz
i Iz

j − Ii · Ij) =
∑
i<j

dij{2Iz
i Iz

j − 1
2 (I+i I−j + I−i I+j )}. (2.2)

The parameters in the above equations are given by dij = (μ0/4π )(γ 2h̄/r3
ij)((1 − 3 cos2(θij))/2),

where rij is the internuclear vector and θij the angle between rij and the external magnetic field
direction. In equation (2.2), we have dropped non-secular terms of the form I+i I+j + I−i I−j , which
connect states that differ in the Zeeman energy and are thus ineffective. If, in addition, a radio-
frequency (r.f.) field in the +x direction is applied, the total Hamiltonian, referred to a frame
rotating with frequency ω0 = γ B0 (usually known as Larmor frequency), can be expressed as

H′ = −ΩIz − ω1Ix + Hzz
d , (2.3)

where ω1 = γ B1 is the intensity of the r.f. field in rad s−1 and Ω = γ b0 = ω0 − ω is the off-
resonance, the difference between the Larmor frequency of the spins and the irradiation
frequency. This complete Hamiltonian is the starting point for several experimental realizations
that test quantum many-body dynamics. In what follows we will express the Hamiltonians and
energies in units of frequency, as customarily used in the context of NMR.

Rhim et al. [20] pointed out that when irradiating precisely on resonance (i.e. ω = ω0), it results

H′ = −ω1Ix + (− 1
2 )

∑
i<j

dij{2Ix
i Ix

j − 1
2 (I+′

i I−′
j + I−′

i I+′
j ) − 3

2 [I+′
i I+′

j + I−′
i I−′

j ]}

� −ω1Ix + (− 1
2 )Hxx

d , (2.4)

where the primed operators are referred to the new basis aligned with the x-axis. Despite the axis
labelling, and after truncation of the non-secular terms in square brackets, the new Hamiltonian
has the same structure as the original of equation (2.2) multiplied by a (− 1

2 ) factor. This change in
sign will become crucial to obtain the reversal of a complex state created after a period of forward
evolution with an initial Hamiltonian. Note that the symbol � implies discarding non-secular
terms with respect to ω1, the Zeeman energy in the rotating field.

Recently, a new pulse sequence with a symmetric character has been proposed to study the
evolution under a scaled dipolar Hamiltonian. The scaling can be achieved by applying a r.f. field
off-resonance, i.e. Ω �= 0, that produces a secular dipolar Hamiltonian with a factor k = (3 cos2(θ ) −
1)/2, where θ is the angle between the external field and the effective field. The scale factor k can
be varied continuously between ± 1

2 . This is better understood within the AHT [16,39], where a
constant effective Hamiltonian representing the dynamics during a period of the time-dependent
Hamiltonian is obtained. In this case, the zeroth order for forward and backward periods results

HF,B
d (k) = ±|k|Hxx

d . (2.5)

In this pulse sequence, the durations of forward and backward blocks are equal [40]. Again,
this equality involves a truncation of non-secular terms which is only effective if the dipolar

interactions are small compared with
√

ω2
1 + Ω2, the Zeeman energy in the effective rotating field.
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We should mention that another application of the AHT is to use a specific r.f. pulse sequence
to transform the natural dipolar Hamiltonian into an effective double quantum Hamiltonian

HDQ =
∑
i<j

dij(I
+
i I+j + I−i I−j ). (2.6)

A particularly useful procedure is the eight-pulse sequence popularized by Pines et al. [21], which
has been used in numerous investigations [22,29,34]. This Hamiltonian can be sign reversed
simply by changing the pulse phases. In this work, however, we will exploit the double quantum
terms of the dipolar interaction as shown in equation (2.4).

3. Implementations of time-reversal in nuclear magnetic resonance

(a) Basis of time reversal of many-spin dynamics
Given an excited system evolving forward under a Hamiltonian HF during the lapse of time τF,
the excitation can be recovered as an echo generated by an equivalent evolution during τB under
an inverted Hamiltonian HB, as schematically shown in figure 1a. If HB = −sHF, with s being a
positive scalar, the revival of the initial condition occurs when τB = τF/s. In other words, an echo
is obtained when the forward and backward evolutions satisfy

HFτF + HBτB = 0. (3.1)

The total evolution during τT = τF + τB is represented by the propagator U(τT) = UB(τB) × UF(τF),
where UF,B(τF,B) = exp{−iHF,BτF,B}.

In terms of a general time reversal scheme, an initial state is obtained by exciting the high-
temperature equilibrium state in NMR described by the density operator, ρ(0) ∝ Iz. In the simplest
case, the excitation could be a π/2 r.f. pulse that transforms Iz

0 → Ix
0 or Iz

0 → Iy
0. Let us assume,

with no loss of generality, the r.f. field being applied in the x-direction of the rotating frame.
In the first case mentioned above, the polarization becomes aligned with the r.f. and continues
evolving under a Hamiltonian that conserves the polarization. In the second case, the polarization
is aligned perpendicularly to the acting quantizing field and in consequence, it will not be a
conserved magnitude. These alternatives are, respectively, associated with the PE and the magic
echo (ME) that we discuss later on. The final density operator after the full pulse sequence as
function of τT is

ρ(τT) = U(τT) × Ix(y)
0 × U†(τT). (3.2)

An NMR signal S(τT) accounts for the polarization perpendicular to the magnetic field

described by the observable Ix(y)
0 :

S(τT) = Tr{Ix(y)
0 ρ(τT)} = Tr{Ix(y)

0 U(τT)Ix(y)
0 U†(τT)}. (3.3)

This signal is the LE for the forward evolution time S(τT) = MPE(ME)(τF). If this procedure could
be applied to a linear chain with XY interaction, it would yield a LE equal to the modulus square
of the overlap between single particle wave function of a local initial state and the state resulting
from the evolution with the total propagator [41,42], i.e. the standard definition of the LE [13]. In
the ideal case where forward and backward evolutions fulfil equation (3.1), UF = [UB]−1, and the
total propagator becomes U(τT) = I. The LE is therefore MPE(ME)(τF) = 1, provided that the signal
is normalized to the initial condition.

Nevertheless, if the reversion is not perfect, the overlap between final and initial state
represents a measure of the loss of information during the process, given by uncontrolled
factors. In this case, it is possible to write UF,B = exp{−iτF,B(HF,B + ΣF,B)}, where ΣF,B includes
non-controlled degrees of freedom and experimental errors, leading to MPE(ME)(τF) < 1, ∀τF. For
example, the discarded non-secular terms in equation (2.4) can become a source of decoherence
when treated through the Fermi golden rule [43]. Also the interactions with the environment
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excitation pulse read-out pulse

read-out pulse90° 90°180°

HF
(HB)f

r(0)

r(0)

r(tT)

r(tT)

tF

tF

tB

+w1 -w1

tB

(a)

(b)

Figure 1. (a) Schematic of the time-reversal pulse sequences used in NMR. The figure displays the blocks with forward and
backward evolutions and the read-out pulse. (b) Magic echo pulse sequence as implemented in our experiments.

could be described by ΣF,B, but in this case equation (3.2) is no longer valid but should be replaced
by a quantum master equation satisfying the Lindblad restriction [16].

(b) Loschmidt echoes in many-spin systems: magic and polarization echoes
As pointed out above, the LE in a many-spin system presents two versions. Although our group
has much exploited MPE, the PE type along the previous decade, in this paper we will report
results on LE of the ME type, MME or simply, M. The ME pulse sequence was one of the
first realizations of a LE that evidenced the quantum character of the multi-spin dynamics. In
this paper, we will implement variants of this concept (figure 1b). An experiment starts with
a forward evolution during τF that corresponds to a free-precession Hamiltonian (equation
(2.1)). The addition of a π pulse at the middle refocuses the Zeeman term. The initial and
intermediate π/2 pulses that surround the free evolution period can be thought of as producing
an effective dipolar Hamiltonian quantized in the x-direction. The forward propagator results
in UF = exp[−iτFHxx

d ], where Hxx
d is the rotated dipolar Hamiltonian. The backward evolution

is achieved by applying a r.f. field on-resonance in the ±x direction during 2τF, leading to
HB = ±ω1Ix − 1

2 Hxx
d , considering only the zeroth order of the average Hamiltonian [38]. The

backward propagator is UB = exp[−i(2τF)(−Hxx
d /2)] = exp[iτFHxx

d ], then fulfilling the condition
to refocus the initial state. In general, there is no final consensus about what is the physical
mechanism that would control the decay time T3 of this echo. An initial hint by Rhim, Pines
and Waugh was that this time scale can be identified with the dipolar interaction characterized
by T2.

One of the main conclusions of the work of Buljubasich et al. [40] was that non-secular
terms, when acting at high order [43], produce the proliferation of effective secular terms. This
reinforces the effect of the secular terms of equation (2.5) without its spin selectivity, and hence can
contribute substantively to T2 and also to the decoherence time T3, which has little dependence
on k.

In any case, the crucial point in the experiments of the ME family is that the polarization
is always perpendicular to the acting Zeeman field (either static or rotating) and thus is not
conserved during the separate periods of evolution. This contrasts with the LE employing pulse
sequences that are variants of the PE experiments, [6,7,10]. There, an initial local polarization
is oriented along the acting field (either the external magnetic or the r.f. field) and thus
polarization is a conserved quantity. The relaxation time T2 is directly related to the secular



7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150155

.........................................................

dipolar Hamiltonian and the same holds for T3. This is precisely the case that motivated the
Central Hypothesis of Irreversibility [8], which essentially manifests that the many-body dynamics
amplifies the effect of experimental imperfections and uncontrolled degrees of freedom. In an
isolated molecule this would yield some characteristic time scale TΣ , but in a crystal presents
a decoherence time T3, proportional to T2 instead of TΣ . In other words, 1/T3 emerges as a
perturbation independent decoherence rate in a crystal.

(c) Keeping track of the Hilbert space: multiple quantum coherences
In the presence of the external magnetic field, the N spins − 1

2 system has 2N stationary states.
Referred to the Zeeman basis, each stationary state can be classified according to the magnetic
quantum number m = ∑N

i=1 mi, where mi = ± 1
2 is the eigenvalue of the Iz

i . For non-degenerate
stationary many-spin states, there are 22N−1 possible transitions of finite energy between any
two levels of energy Ems and Emr . The difference in spin projection between the coupled states
is referred to as the coherence number n = ms − mr. In other words, the presence of a non-zero
density-matrix element 〈r|ρ|s〉 indicates the presence of a n quantum coherence.

Assuming that the initial density operator describes a polarization along the y-direction
while the Hamiltonian, either of the form of equation (2.4) or equation (2.6) would impose
a quantization axis perpendicular to it, the polarization will not be conserved and multi-
spin correlations described by non-diagonal elements of the density matrix will be created
by the Hamiltonian dynamics. In order to transform these non-diagonal matrix elements of
the density matrix back into an observable magnitude, a time-reversal procedure is needed.
Previously, a rotation around the quantization axis z with an angle φ ensures that each order
of coherence reached is properly encoded through adequate phases, 〈r| exp(−iφIz)ρ exp(iφIz)|s〉 =
exp(iφn)〈r|ρ|s〉, a tool customarily used in NMR experiments [21,33,35].

The pulse sequences for MQC encoding in NMR can be split into three parts representing the
excitation of MQC through evolution, reversion and detection periods. During the reversion period,
phase shifts are introduced in order to encode MQC orders. The phase shifted Hamiltonian (HB)φ
(figure 1a) leads to a phase-dependent signal. By using the properties of the rotation around z
and given that forward and backward evolutions are related by equation (3.1), the signal can be
expressed as

Sφ(τF) =
∑

ms−mr=n

exp{iφ(ms − mr)} ‖ ρn(τF) ‖2, (3.4)

where ρ(τF) = exp(−iHFτF) × Iz × exp(iHFτF) is the density matrix after the forward evolution.
This signal is a combination of the MQC order distribution in the Zeeman basis developed during
the forward evolution, Sn(τF)

Sφ(τF) =
∑

n
exp(iφn)Sn(τF). (3.5)

Then, Sn(τF) can be obtained by Fourier transforming the acquired signals. This summation,
which in an ideal experiment is encoded in the φ = 0 signal, acquires a tentative interpretation
as a LE,

SLE(τF) = Sφ=0(τF) =
∑

n
Sn(τF).

If a reference signal (FID), obtained by applying a single π/2 pulse, is used for normalization, it
results Sφ=0(τF = 0) = 1, as described in §3a.

(d) Spin counting
From Sn(τF) it is possible to obtain information of the cluster of interacting spins that have become
correlated with one of the spins conforming the initial polarization, say Iz

0, as function of the
evolution time. A traditional model to extract the number of correlated spins was proposed by
Baum et al. [17,35], relying on the assumption that all pathways contributing with an allowed
coherence order are weighted with the same probability. To understand the excitation of MQC
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orders from an initial density operator Iy
0 (i.e. after the excitation pulse), one may approximate the

evolution operator with the Hamiltonian of equation (2.4) with a Trotter dynamics for a short time
step, say δt ≤ 1/3d, d being the dipolar strength. Thus every process that involves the spin labelled
as ‘0’, such as that described by I+0 I+j or I−0 I−j , has an appreciably probability to occur in this time.
Some important features of the evolution can already be appreciated. First of all, an interaction
between two spins j and k requires a finite propagation time of the order 1/djk to become
significant. Second, the evolution in successive time steps develops a nested hierarchy of quantum
transitions. Thus, operators that reflect multiple quantum transitions arise simultaneously with
the growth in the number of spins in the coupled cluster. The product of K-spin operators describe
the modes in which K spins are interconnected, being able to generate numerous combinations of
MQCs, depicted in the Liouville space (n, K) [17,35]. Further details depend on the Hamiltonian
and the selection rules. The key assumption behind the theoretical prediction resides in the fact
that the probability of achieving a given combination of spin operators rendering a final state
depends only on the number of pathways leading to such state [17]. This can be assimilated to
a form of a multidimensional Galton board [44]. This is justified in a system with an appreciable
number of interacting neighbours which remains more or less constant, where their interaction
strength fixes a definite time scale. Thus, one expects that specific interferences become irrelevant
and a probabilistic description is appropriate. Under this approach, the strength of each coherence
in the spectrum is directly related to the number of elements of the density matrix with a certain
coherence order, given by a binomial distribution. According to this model, the spectral intensity
of a n-quantum mode Sn is given by a combinatorial formula which has a Gaussian shape for
large number of interacting spins K,

S(n, K) ∝ e−n2/K. (3.6)

From this equation, it can be inferred the instantaneous effective size of the correlated cluster, K.
Motivated by the experiments in the highly structured adamantane, we have observed that

in the cases where the interaction determines a specific hierarchical structure, the experimental
MQC distribution is better represented by a distribution of Gaussian functions [30]. This is in
contrast with [45] where an exponential behaviour is proposed, only taking into account small
coherence orders (n ≤ 8). We have proposed the general form of equation (3.6) consisting of a
superposition of L Gaussian functions representing clusters of different size Ki, given the large
amount of correlated spins

Sn =
L∑

i=1

2Ãi√
Kiπ

e−n2/Ki . (3.7)

The parameters 2Ãi are the areas of each Gaussian. As the experimental data are normalized to a
reference FID, the parameters Ãi represent the fraction of spins involved in all clusters of size Ki,
relative to the total number of spins detected before any evolution. Let us label as N the number
of spins contributing to the FID at τF = 0. If the sample consists of ci clusters of size Ki at arbitrary
time τF > 0, the total number of spins involved in clusters of size Ki is ciKi. These ci clusters of size
Ki contribute with a fraction Ãi = ciKi/N with respect to the total initial spins N. The sum of the
parameters Ãi represents the total signal acquired, and is equivalent to SLE = Sφ=0 = ∑L

i=1 Ãi. On
the other hand, the total number of detected spins NτF decreases for τF > 0 due to decoherence
effects and experimental errors. Then, by normalizing the experimental data to the LE at a given
time, we retrieve the fraction of spins involved in each cluster size with respect to the total spins
detected at that time. The MQC order distribution can be expressed as

Sn =
L∑

i=1

2Ai√
Kiπ

e−n2/Ki . (3.8)

The new parameters are Ai = ciKi/NτF . In this case, the sum of the areas is normalized,
∑L

i=1
Ai = 1.
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dipolar interaction strength

O N

(a) (b)

Figure 2. Schematic of the samples used in the experiments. (a) Four single ferrocene molecules highlighting the crystalline
structure. (b) The MBBAmolecule and the dipolar interactions shown schematically. (Online version in colour.)

4. Loschmidt echoes in different spin networks
In what follows, we apply the preceding concepts to protons under dipolar Hamiltonian
interactions, in two systems displaying different dipolar networks. Firstly, we analyse the case of
polycrystalline ferrocene where the spin network is unbounded with a repeating motif containing
ten spins arranged in two parallel fivefold rings. As a second example, we consider the case of
the liquid crystal MBBA consisting of 15 spins per molecule. As we will see, both the forward
dynamics and the decoherence rates will behave very differently in these two dipolar networks.

We develop the analysis of the LE and the MQCs for a dipolar evolution Hxx
d , encoding the

MQCs in the Zeeman basis, as schematically depicted in figure 1a. The Hamiltonians HF and HB
are developed as in the ME pulse sequence described in §3b. By applying this sequence, only even
quantum coherence orders are observed. All the experiments have been performed with a Bruker
Avance II spectrometer operating at 300 MHz Larmor frequency for protons.

(a) Quantifying the formation of clusters of correlated spins and decoherence in ferrocene
Crystalline ferrocene presents two non-equivalent molecules per unit cell. Each molecule,
(C5H5)2Fe, is conformed by two cyclopentadienyl rings separated by an iron nucleus, as depicted
in figure 2. The cyclopentadienyl rings perform fast rotations around the fivefold symmetry axis
averaging the intra-molecular dipolar interactions. Their nearest-neighbour interaction results
d12/2π = 1.576 × (3 cos2(θ12) − 1) kHz, where θ12 is the angle between the external magnetic
field and the symmetry axis of the molecule. The interaction between second near-neighbours
is d13 ∼ 0, 24 × d12, while the interaction between spins in opposite rings is dIR ∼ −0, 27 × d12
[46], where IR denotes inter-ring. As the experiments were performed at room temperature in
polycrystalline samples, all the possible orientations with respect to the external magnetic field
contribute to the global signal.

In the experiments, the signal Sφ(τF) for each value of φ was recorded with a phase increment
of φ = 2π/64, which allows one to encode up to 32 coherence orders (raw data are available as
electronic supplementary material). By means of a fast Fourier transform with respect to the angle
φ, the MQC distribution is obtained for a given evolution time, Sn(τF). The evolution times in this
work are in the range 10–400 µs.

Figure 3a shows the LE as a function of the evolution time, normalized to the FID collected
after a single 90◦ pulse, along with its decomposition in MQCs. The LE followed a monotonic
decrease for τF < 300 µs. For longer evolution times the information is manifestly affected by



10

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150155

.........................................................

1.0

T3

ec
ho

 in
te

ns
ity

 (
no

rm
.)

ec
ho

 in
te

ns
ity

 (
no

rm
.)

ec
ho

 in
te

ns
ity

 (
no

rm
.)

Z-QC
2-QC
4-QC
6-QC
8-QC
10-QC
12-QC
14-QC
LE

0.8

0.6

0.4

0.2

0
1.0

0.8

0.6

0.4

0.2

0

0.4

0.2

0

0 50 100 150
time (tF (ms))

200 250 300

(a)

(b)

(c)

Figure3. Dipolar evolution in ferrocene. (a) Experimental Loschmidt echo SLE andMQCs Sn. (b)NormalizedMQC, Sn(τF)/SLE(τF).
(c) Re-normalized MQC, Sn(τF)/MME(τF). (Online version in colour.)

the experimental resolution due to signal-to-noise limitations, hindering the discrimination
of the different coherence orders. Therefore, we will restrict our analysis to the range
0–300 µs. The behaviour of the MQCs as a function of τF show initial build-ups followed by a
marked decay. This decay is a result of a combination of two mechanisms: the redistribution
of the coherence orders imposed by the Hamiltonian evolution and the decay produced by
decoherence processes. As the LE accounts for a global decoherence, it is used to normalize
the MQC data and filter out the decoherent effects. The resulting curves, Sn(τF)/SLE(τF), display
the quantum dynamics of the coherence orders. This is shown in figure 3b. In particular, the
behaviour of the zero order of coherence (ZQC) presents an unexpected increase for τF >

200 µs. The ZQC curve collects information from zero-quantum coherence order (originated
from correlated spins) and net magnetization from uncorrelated spins. Thus, for long time
evolutions some spins which lost correlation due to decoherence might still contribute to the
ZQC curve as a form of net magnetization, although they do not account for an effective time
reversal.
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Figure 4. Dipolar evolution in ferrocene. (a) Experimental MQC distribution at 200µs. The global fitting (the addition of the
two Gaussians) is displayed. The arrow marks the zero-order difference (ZOD) described in the text. (b) Experimental MQC
distribution at 200µs together with the 2 Gaussians fitting (L= 2) and 1 Gaussian fitting (L= 1). (c) Number of correlated
spins by the dipolar Hamiltonian as a function of the evolution time, showing the tendency of large cluster and small cluster for
L= 2 and for the single cluster for L= 1. (d) Fraction of spins involved in the small and large clusters for L= 2. (Online version
in colour.)

The experimental normalized MQC distribution functions were fitted with the multi-Gaussian
model of equation (3.8). For τF < 75 µs, the fittings with a single Gaussian (L = 1) yield accurate
results whereas for longer evolution times two Gaussians (L = 2) are necessary to achieve similar
quality. This is illustrated in figure 4a, which shows the experimental points for the MQC
distribution at τF = 200 µs together with the fittings using L = 2. Fittings with L = 1 and L = 2
are displayed in figure 4b (data corresponding to τF = 200 µs), for the sake of comparison. The
fact that a single Gaussian is insufficient to represent the MQC for all the orders becomes
evident.

Returning to figure 4a, the two-Gaussian fitting yields a good agreement with the experimental
data for all coherence orders n �= 0. As discussed above, S0(τF) carries information not only on the
ZQC intensities resulting from correlated spins, but also polarization attributable to spins that
become decorrelated by decoherence and various non-idealities. Consequently, the experimental
data of ZQCs were excluded from the fittings at long evolution times. The fact that SLE(τF) decays,
indicates that not all the decorrelated spins are detected and therefore the contribution to ZQC is
partial. In order to evaluate the actual effectiveness of the time reversal procedure, we define the
zero-order difference (ZOD) as the distance between the experimental value and the fitted curve
evaluated in n = 0, ∀τF. The LE incorporating the new definition is

MME(τF) = SLE(τF) − ZOD(τF). (4.1)
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This new definition of the LE is used to re-normalize the MQC curves, i.e. Sn(τF)/MME(τF).
The results are presented in figure 3c. For short times, there is no differences with Sn(τF)/SLE(τF)
behaviour, because ZOD is not large enough to produce a remarkable effect in the experimental
results. Important differences can be observed for long evolution times, where the re-normalized
zero order does not present the anomalous increase. The curves Sn �=0 displayed certain
stabilization that could indicate having reached a hierarchy in the crystal structure.

From the cluster size extracted after the fittings with equation (3.8), relevant information about
the multi-spin system evolution can be inferred. Figure 4c displays the evolution of the number
of correlated spins within each ensemble of clusters for L = 2 (labelled as large and small). In
the same plot, the development of the cluster size when the data are fitted with equation (3.6)
(i.e. L = 1, or single cluster) is included for comparisons. The fraction of spins involved in each
kind of cluster (Ai parameters in equation (3.8)) are displayed in figure 4d. The two-clusters
model (L = 2) discloses some remarkable behaviour of the multi-spin dynamics: in particular,
the existence of large clusters of correlated spins displaying a nearly exponential increase at all
times, reaching up to K = 160 spins at 300 µs. This large cluster captures an increasing fraction of
detected polarization, as becomes clear when observing figure 4d. The rest of the detected signal
accounts for small clusters of correlated spins, whose size grows at a much slower rate involving
40 correlated spins at 300 µs. Note that the fractions of spins in both clusters at any evolution time
fulfil the condition enunciated in equation (3.8), i.e. A1 + A2 = 1.

Restricting to single cluster fitting (corresponding to L = 1 in equation (3.8)), its dynamical
behaviour is similar to the small clusters for times shorter than 100 µs. For longer evolution times,
the single cluster shows a trend which can be understood as a kind of ‘average’ between the small
and the large clusters. For τF ∼ 300 µs, considering a single Gaussian it would tell that only about
100 spins are correlated.

In ferrocene it is not evident a specific interaction hierarchy or geometry that implies a small
cluster of around 40 spins. Besides, we are dealing with an observable averaged over dynamical
behaviour related to very different interactions that limit the possibility of identifying specific
molecular structures. Nevertheless, the presence of two clusters suggests that the spin system is
organized in two sets interacting with different time scales, that are not directly related to the
molecular structure.

(b) Effects of the interactions hierarchy in a liquid crystal on spin dynamics
and decoherence

The liquid crystal under analysis is MBBA. The molecular structure is displayed in figure 2b,
along with the hierarchy of dipolar interactions. This liquid crystal is in a nematic mesophase
and presents a molecular director mostly aligned with the external magnetic field in the range
294–319.5 K. Rotations and diffusion of the single molecules eliminate the intermolecular dipolar
interactions. Then, the 1H spin system can be considered as a finite set with different intra-
molecular dipolar interactions [47]. In particular, both phenyl groups are separated by a HC=N
group. The remaining carbon nuclei in the molecule are strongly interacting or bonded with
two or three protons. The dipolar interactions between protons in the same phenyl groups are
dominant. The interactions between the phenyl protons and the proton in the HC=N are different.
This carbon bonded to a single proton motivated our historical interest in MBBA, as it could
be addressed individually through the 13C–1H interaction [28]. The MBBA molecule can be
considered as composed of 15 strongly interacting protons as the fast rotating methyl groups
can be disregarded.

The experiments were performed in similar way as with ferrocene. The phase increment was
different for this molecule: φ = 2π/32 in order to encode up to 16 coherence orders only. The r.f.
irradiation power during backward evolution was set to ω1/2π = 60 kHz. The range of evolution
times was 10–600 µs (raw data are available as electronic supplementary material). We should
emphasize that the motion of the nuclei in the tails is too fast (τtails approx. 10−9 s) compared
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Figure 5. Dipolar evolution in MBBA. (a) The evolution of the spin system for fixed forward times τF = 16, 64, 128µs, as a
function of τB/2. (b) Loschmidt echo (MME) as a function of τF. (c) Multiple quantum coherences normalized with the LE as a
function of τF, Sn(τF)/SLE(τF). (d) Number of correlated spins as a function of the evolution time τF. (Online version in colour.)

with the relevant times of this experiment (1–100 µs) and consequently the dipolar interactions
are averaged giving rise to residual dipolar couplings.

Figure 5a displays the echo formation for fixed forward evolution times τF = 16, 64, 120 µs,
as a function of τB/2. These data confirm that the initial condition is refocused at τB/2 ∼= τF
[48]. Notably there is a decrease in the intensity of the top of the echoes as a function of the
evolution time, due to decoherence. It is interesting to note the presence of secondary echoes at
τB/2 = 120, 180 and 220 µs, separated around 100 µs of the first echoes. These revivals resemble the
mesoscopic echoes observed in the local polarization of ferrocene when addressing the LE [10].
Mesoscopic echoes were also observed in MBBA when an initial condition at a single spin was
used instead [28]. In those experiments, the polarization was a conserved quantity as it evolved
parallel to the quantizing field. In this case, however, the quantizing field is perpendicular to
the polarization, thus the Hamiltonian is much more complex and mixes portions of the Hilbert
space making impossible to establish a specific correspondence between molecular structures and
relevant terms in the Hamiltonian. These mesoscopic echoes reflect, however, the finite nature of
the most relevant part of the spin system.

In figure 5b, the LE for this sample is shown plotted as a function of τF. The evolution showed
three well-defined temporal regimes characterized by different decoherence rates. First, there is
a short-time regime for τF < 70 µs (reg. I) displaying a fast decay. For times within the range 70–
140 µs (reg. II), a sort of ‘plateau’ can be observed with an intensity representing approximately
60% of its initial value. The final regime (reg. III) involves times longer to 140 µs, where the
LE decays more slowly. This long times behaviour is associated with the finite size of the set of
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interactions in the MBBA molecule that prevents the growth of high coherence orders associated
with those states more sensitive to decoherence processes.

Figure 5c displays the evolutions of the MQC orders under the action of the dipolar
Hamiltonian in the MBBA system, normalized to the LE intensity. As only low-order coherences
are expected in this finite system, the correction of equation (4.1) is not much relevant, thus we
can safely use MME(τF) ∼= SLE(τF). The normalization with MME substantially eliminates the global
decoherence leading to a non-zero asymptotic value for all the coherence orders, as expected
for a finite system. The results confirm that only low coherence orders are developed, as the
magnetization is constrained to a finite system of 15 spins. Note that an important short-time
oscillation can be observed for S0 and S2 with the first maximum and minimum occurring at
� 40 µs. This gives an evidence of the presence of two strongly coupled spins that remain quite
isolated during short times. The evolution of such density operator can be solved exactly, and is
a function of product operators that involve coherence orders n = 0 and n = 2

ρ(τ ) = cos
(

3d12

2
τ

)
(Iz

1 + Iz
2) − sin

(
3d12

2
τ

)
(I+1 I+2 − I−1 I−2 ), (4.2)

i.e. there is a sort of Rabi oscillation among those coherence orders. By fitting the exact solution
to the normalized MQCs up to 100 µs, the value of d12 can be determined, yielding d12/2π =
(4.0 ± 0.2) kHz. This strong coupling corresponds to protons bonded to adjacent carbons in the
same phenyl group, as displayed in the scheme (figure 2b). This is in agreement with values
determined experimentally in previous works [28]. Recently, Fernández-Alcázar & Pastawski [49]
have solved the LE for a Rabi oscillation in the presence of local fluctuating fields that produce
decoherence. In that case the LE time dependence presents plateaus if time reversal occurs while
the system is in a ‘pure state’, e.g. | ↑↓〉 or | ↓↑〉. By contrast, the decay rate is strong while the
system is in the superposition state | ↑↓〉 + eiφ | ↑↓〉. Thus, local fluctuations act as an important
decoherence source for the more ‘entangled’ states. This is related with the Rabi oscillation among
| ↑↑〉 and | ↓↓〉 observed in these experiments.

Figure 5d shows the number of spins correlated by the dipolar Hamiltonian. It has been
obtained by fitting a single Gaussian to the MQC distribution Sn ∼ exp (−n2/Neff) for each
evolution time τF. A single Gaussian was used here due to the small size of the spin system
meaning that only low coherence orders are developed. The behaviour of Neff(τF) is notably
correlated with the three regions defined above for the behaviour of the LE, as can be observed
in figure 5d. In particular for region I, the spin count grows rapidly until around five spins are
correlated, whereas an abrupt decay is observed in LE. This can be understood as a strong proton
interaction within each of the phenyl groups (figure 2b). In region II the plateau in the LE is
observed, and at the same time a change in the rate of the Neff growth is observed, reaching a
saturation of around seven to eight spins at 140 µs. The plateau is given by the intermediate limit
of the strongly interacting protons in the aromatic part of the molecule. In region III, the LE decays
in a slow exponential manner and for the spin counting curves a new growth is observed, giving
evidence that the correlated spin system includes the protons belonging to the aliphatic tail. At
long evolution time values the system reaches a steady state of around 14 correlated spins.

Then, by observing figure 2b, the described behaviour gives clear evidence that the loss of
the signal in the LE is directly related to the way in which the quantum dynamics become more
complex by incorporating correlations with other spins, i.e. weaker coupled.

5. Final discussion
The many-body quantum dynamics was studied and decoherence was quantified in time-reversal
NMR experiments through the LE. MQCs in two systems that represent extremes of possible
dipolar interaction networks have been analysed. On the one hand, ferrocene has a hierarchical
structure with near and far neighbour interactions and forming an ‘infinite’ system. On the
other hand, liquid crystal MBBA represents, to a good approximation, a finite system with a few
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sets of different interactions. Owing to its particular geometry it presents both strong and weak
interactions in a well-defined topology.

The LE was used for normalization in order to obtain a close knowledge of the non-equilibrium
density operator of the many-spin system encoded in different coherence orders. As mentioned
before, the LE in a many-spin system presents two main possibilities. In this paper, we focused
our attention in the ME type MME, where the polarization is always perpendicular to the direction
of the quantizing effective field. The other variant, MPE, was the centre of our work during more
than a decade. In particular, MPE in the initial condition is ‘local’, with a fraction of the spins
having their polarization aligned parallel to the direction of the quantizing effective field.

In the liquid crystal, the LE displayed three different regimes characterized by different decay
rates and specific interferences. In the polycrystalline ferrocene, however, the LE decayed in a
monotonic way. This absence of features and time scales could be assigned to the fact that our
experiments involve an average over all possible microcrystalline orientations in the polycrystal.
In both samples, when assessing the relative importance of the different MQC orders, the LE
proved to be a useful tool in order to remove the decoherent behaviour. This not only facilitates
the comparison among the build-up rates of the different MQC orders observed in ferrocene but,
more important, it highlights information that otherwise would be hidden in the background
noise of long-time behaviour.

As a complement for our MQC experiments, the spin counting for both systems was
performed. In the case of ferrocene, we introduced a two-cluster model that successfully allowed
us to separate the growing correlations of the many-spin system into a small and a large
cluster of correlated spins. Owing to the ensemble average implicit in a global magnetization
experiment, the information about geometrical crystal structures and the relation with the clusters
of correlated spins are not fully evident. Indeed, there is an initial build-up of small clusters
that, as the time progresses the spins start forming larger clusters. This can be considered as an
exchange of spins between the two reservoirs or clusters. That information is absent when using
a single-Gaussian model. Further focusing on structure–dynamics correlations could be obtained
through experiments considering oriented single crystals and/or the study of MME in 13C bonded
protons. In the latter case, one can use the cross-polarization time between the 13C and the 1H
proton to select a specific orientation within the crystal.

For the liquid crystal, a single cluster of correlated spins was enough to reproduce the spin
counting behaviour. The intensity of the LE for MBBA presented a highly structured behaviour
displayed in three marked regimes, associated with the different set of interactions in the
molecule. In previous works, MPE experiments were performed in MBBA by transferring the
polarization from the HC=N carbon (see figure 2b for details on the liquid crystal structure) to its
near neighbour proton to yield the initial density operator corresponding to a local magnetization
[28]. The LE MPE displayed a monotonic Gaussian decay without evidence of a hierarchy of
interactions between spins that could manifest in the decoherence rate [28]. In that case, the
polarized proton is weakly connected to the rest of the network. Thus, it only perceives the
network through the filter of this weak interaction which acts as a bottle-neck. Thus, polarization
survival during a forward dynamics is exponential as described by the Fermi golden rule [50].
The PE, MPE, is Gaussian and has a longer time scale which gives information of a weak ‘effective’
complexity in this polarization conserving setting. This explains the differences observed in both
cases, MME and MPE. The MME data showing different decay regimes can be connected with
the spin counting evolution which also displays different regimes of correlation. As normalizing
with MME retrieves information from uncontrolled decoherence processes, the multiple quantum
coherent distribution can better reflect the coherent dynamics of the system. Then, for example,
when only the more strongly interacting spins are correlated (short times), we encounter a
fast decay rate for a LE. In a second step, when the spin correlation reaches the limit of the
close neighbour interactions, there is an approximate freeze in the LE. Finally, when the system
comprising strong and weak interacting spins has evolved enough to make the whole molecule
correlated, the LE has a slow decay rate. This suggests the possibility that the coherent dynamics
makes MME more sensitive to uncontrolled factors producing decoherence, and that, in our finite
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system, both dynamics and complexity soon reaches a limit leading to a steady decoherence rate.
Finally, this is consistent with the hypothesis that some specific hierarchies of interactions produce
entangled states whose very nature of non-local superposition makes them more sensitive to
environmental action and uncontrolled errors in the pulse sequence [31].

Summarizing, the behaviour of LE in both systems studied here suggests that decoherence
is driven by the coherent dynamics given by the dipolar interactions between spins, i.e. by a
sample’s structure. Therefore, LE is not only an excellent quantifier of decoherence that allows one
for instance to normalize and remark the true behaviour of multiple quantum build-ups, but it
also carries information about the molecular structure reflecting the dipolar interactions network.
For example, in systems displaying a regular set of interactions the dipolar evolution of ME pulse
sequence leads to a monotonic decrease with a characteristic decay, as in the cases of adamantane
[30], ferrocene or hydroxyapatite [29]. By contrast, a system such the liquid crystal characterized
by markedly different interactions displays a LE decay with different regimes, directly related to
the molecular structure.

At this point, it is interesting to remark that non-inverted interactions do not necessarily imply
a decoherence process. If they exceed some critical value, they could even lead to a new dynamical
phase as occurs in many-body localization. This was tested recently both theoretically [51,52] and
with experiments quite similar to those described here [32,51,53]. Such emergent ‘localization’
phenomenon can be interpreted as a quantum dynamical phase transition [54].
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