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h i g h l i g h t s

• We study complex systems whose components have a hierarchical sub-structure.
• The system is partitioned into cells to which a generalized entropy S is associated.
• The different regimes of S define an entropical classification of the components.
• This classification is independent of the observer’s criteria.
• The normalized S can be associated to an evolution in the absence of control.
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a b s t r a c t

General properties of N-dimensional multi-component or many-particle systems exhibit-
ing self-similar hierarchical structure are presented. The entire system is partitioned into
cells, which have an associated generalized entropy S(D) that is shown to be a universal
function of the fractal dimension D of the configurations, exhibiting self-similarity proper-
ties which are independent of the dimensionality N . This provides a general way to classify
the components of the system according to entropical reasons, independently of the ob-
server’s criteria. For certain complex systems, the normalized S(D) may also be associated
with the large time stationary profile of the fractal density distribution in the absence of
external fields (or control).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-component, strongly correlated systems, often exhibit non-linear behavior at the microscale leading to emergent
phenomena at themacroscale. As P.W. Anderson stated back in 1972, it often happens that ‘‘the whole becomes not only more
but very different from the sum of its parts’’ [1]. Fingerprints of such emergent phenomena can be identified in hierarchical
behavior [2,3] or constraints [4,5], sometimes associated with fractal behavior [6].

Hierarchical behavior exhibiting self-similarity has been identified in physical, social, biological and technological
systems [7]. Employing theoretical tools, such as the singularity spectrum or its equivalent, multiscaling exponents (via a
Legendre’s transformation), etc., fractal analysis has been applied to geophysics, medical imaging, market analysis, voice
recognition, solid state physics, etc. (see e.g. Refs. [8–12]). Recently, high quality spatio-temporal fractal behavior in
connectionwith built-up areas in planar embeddings [13] has been unraveled,whose diversity of fractal dimensions covered
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the entire [0, 2] dimensionality spectrum, reflecting the presence of self-organizing principles which strongly constrain the
spatial layout of the urban landscape. Nevertheless, the ideas developed in Ref. [13] are by no means restricted to the study
of Urban Dynamics. This is the starting point of the present work, which introduces a general framework to describe the
behavior ofmulti-component complex systems constrained to exhibit fractal behavior in a space of arbitrary dimensionality
N . New properties, ideas and concepts applicable to the study of Complex Systems arise from this generalization, which will
be developed as follows.

Section 2 outlines the classes of complex systems studied, the hierarchies associated to its components, and the central
role that the concept of entropy will play in this article. Section 3 shows many estimates that enable us to numerically
analyze and compute the entropy function for N > 2. Section 4 introduces self-similar properties that are used to carry
out a pattern analysis of the components. All the ideas developed in the previous sections will be finally applied to study
Complex Systems evolving in the absence of control in Section 5.

2. Classes of complex systems studied and entropy function

2.1

It is assumed that the complex systems of this article will be constituted of many interacting components. Every
component will have a kind of hierarchical internal sub-structure [14], whose associated hierarchy will be indexed by some
number D, ranging between a pair of minimum and maximum values, say D = 0 and D = N > 0, respectively. Thus, the
hierarchies will be ordered and the components of the system could be classified according to D. Even for many systems,
the hierarchy D may not only indicate something about the structure of the component, but it could also define a specific
type of dynamics (or pattern of behavior) that the component follows, as it interacts with the rest.

Physics often needs to define ideal models ranging from say, spherical horses in vacuum [15] to symplectic structures
of dynamical laws of any kind (relativistic, Newtonian, quantum, etc.). Clearly, all these structures cannot be applied to
complex systems. In contrast, the systems of this nature seem to follow so complex dynamical laws that a good idea could
be – perhaps – setting our point of reference at the opposite side, i.e. at a kind of worst possible ideal scenario, which will
be out-of-control, in the sense that our knowledge about what is inside each component is minimal. This scenario may be
represented by a distribution functionρ∗(D),1 so that the number of componentswith hierarchy indexDwill be proportional
to our ignorance of the particular dynamics represented by D. Given that the physical notion of entropy corresponds to a
measure of how much one does not know about something, we shall assume that ρ∗(D) is given by:

ρ∗(D) =
S(D) N

0 S(x) dx,
(1)

where S(D) is an entropy function in a generalized sense. Of course, how one could precisely define a hierarchy index D and
its entropy function S(D) for a general complex system, is a difficult question to answer. An alternative to this can be found
in the article [13].

The article is about Urban Dynamics and Complexity. In it, a metropolitan area is visualized as composed of many cells
(squares of 1 km side), each one indexed by a number associated to the way the structure of the built-up area inside of it
is hierarchically organized. The number is the fractal dimension D of the built-up area of the cell. Similarly, throughout the
present article, it will be assumed that the fractal dimension D indexes the hierarchies and their associated dynamics of the
components. This is just one of the reasons why the letter Dwas chosen at the beginning of this section.

The second reason has to do with Fig. 1, which was not included in Ref. [13]. Every red curve corresponds to the plot of
an entropy function S(D) defined (in Refs. [13]) as the log-number of the possible cell built-up area configurations, having
fractal dimension equal to D. The successive proximity of the distribution of cells ρ(D) to ρ∗(D) = S(D)/

 2
0 S(x) dx (N = 2,

see Eq. (1)) is a subtle fact that is worth mentioning. The city under consideration in the article is Lisbon, for which there is
a well-documented urban sprawl together with a number of urbanistic problems, due to either weak regulations or vague
governmental controls in urban planning (see also Ref. [16]) during a period of more than 40 years. Clearly, urban sprawl is
an out-of-control situation and I suggest that Fig. 1 could be seen as a signature of this, due to the notion that what cannot be
controlled is precisely what is ignored. Then, given that S(D) measures ignorance, it could be interpreted as proportional to
the maximum degree of uncontrollability of the cells having dimension D. Thus, ρ∗(D) represents the ideal worst possible
scenario mentioned above, in which the amount of cells of some type D is proportional to howmuch out of control they can
be. In connection with the title of the present work, we will get back to this issue in Section 5.

2.2

First of all, it is important to understand why the characterization presented in Ref. [13] in terms of counting the number
of cell fractal configurations, is an idea very plausible to apply to many other higher dimensional complex systems, having
– in principle – nothing to do with Urban Dynamics.

1 I.e. satisfying
 N
0 ρ∗(D) dD = 1 and such that ρ∗(D)dD is the fraction of components with a hierarchy index equal to D.
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Fig. 1. The distribution ρ(D) of fractal dimensions of Lisbon for the years 1960, 1990 and 2004. In this article, a connection between the well-documented
urban sprawl of the city and the successive proximity of ρ(D) to the normalized entropy function S(D) is suggested. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

It will prove convenient to represent our multi-component system in terms of black pixels (each one a hypercube of side
1) embedded in a space of dimensionality N otherwise filled with white pixels. Let us assume the entire system is divided
into a grid of cells (bigger hypercubes) of side λ (see Appendix D), to each ofwhich the standard box-countingmethod (BCM)
is applied in order to assess the (local2) fractal dimension D of the part of the system lying on it [19].

For each cell, the total number of possible configurations is 2λN . The volume V of the pixels in each cell that belong to
the system can in principle vary between 0 and λN . However, if the system exhibits a local fractal dimension D, the number
of system configurations is strongly reduced, and it will also depend on the fraction of the cell volume occupied by the
system. This conforms with the notion that an emerging property of a complex system provides a constraining condition
regarding its ‘‘entropy’’ (in a generalized sense), viewed here as the log-number of possible configurations of the system
compatible with the specified value of the emergent macroscopic variable [20]. Before dwelling on the problem of the
number of configurations, we shall start by determining lower L(D) and upper U(D) bounds for the volume of a given cell
compatible with a pre-defined fractal dimension D.

According to the BCM, there exists a minimal number Nk of hyper-boxes of side 2k (k = 0, 1, 2, . . .) that cover the pixels
of the system inside the cell, which approximately satisfies:

logNk = −Dk + B (2)

(throughout this article, ‘‘log’’ will be used as a shorthand for ‘‘log2’’) where D is the fractal dimension and B is a constant
which is not associated to the fractal behavior [6].

Clearly, since this article is an attempt to represent real-world systems, the number of scales involved in the fractal
behavior will always be finite. Thus, we will assume that Eq. (2) holds for k = 0, . . . ,m, with

m = [log(λ/2)]. (3)

The constant B just shifts the linear fitting up or down, according to the multiple values that V can have. Taking k = 0 in
Eq. (2) one has that logN0 = B, whereN0 is the number of pixels that belong to the system, i.e. its volume V ; thus, B = log V .

Hence, in particular we have that log V = Dm + logNm. On the other hand, Nm is just the number of boxes of edge 2m:
1 ≤ Nm ≤ (λ/2m)N . Put together, we obtain,

L(D)
.
= 2mD

≤ V ≤ λN(2m)D−N .
= U(D). (4)

Thus, there is no configuration with fractal dimension D and with a volume V outside of the bounded region defined by
Eq. (4) (Fig. 1 of Ref. [13] and Fig. 4 of Ref. [17] are examples of this, for N = 2). It is quite remarkable that the lower bound

2 As in the particular fractal system studied in Ref. [13], the general systems studied in this article are assumed to be (in part) randomly generated and
having a fractal dimension that depends on the position (like many other real-world complex systems: deforested areas [17], 3D cancerous tissues [18]
or any other multi-dimensional imaginable complex system). Thus, these systems have nothing to do with the classical mathematical fractals that can be
found in the literature (like Cantor’s set, Sierpinski’s carpet, etc.) to which it is possible to assign a (single) fractal dimension.
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L(D) is independent of the embedding dimension N . Knowledge of these constraints on the cell volume compatible with a
given fractal dimension D considerably simplifies the determination of the total number of configurations accessible to the
system in a cell exhibiting a fractal dimension D. Let us denote this quantity by Ω(V ,D), where V is the volume occupied
by the system in the cell.

From Eq. (2), taking B = log V , the number of boxes covering the part of the system inside the cell at the kth stage of the
BCM satisfies Nk = Nk−12−D. Nk is thus defined by V and D, but does not depend on the final configuration. In addition, the
previous equation defines a recursive sequence in which each of the Nk boxes is sub-divided into 2N sub-boxes; of them,
Nk−1 will be picked up to enclose the system at the previous k − 1th stage. The number of ways this procedure can be done
is equal to f (2N ,Nk,Nk−1) (see Appendix A), leading to

Ω(V ,D) =

m
k=1

f (2N , V2−kD, 2DV2−kD) (5)

whereas the total number of configurations having dimension D is given by:

Ω(D) =

U(D)
V=L(D)

Ω(V ,D). (6)

For a given cell of the grid, the function

S(D) = logΩ(D) (7)

defines a generalized entropy compatible with a cell dimension equal to D.

3. Estimates of S(D)

This section is about the computation ofmany estimates of S(D), whichwill enable the analysis of this quantity forN > 2,
the visualization of the usual orders of magnitude involved with it, as well as the study of the robustness of its definition in
terms of the coarse-graining level. All these estimates turn out to be very important for the ideas discussed in the following
two sections.

3.1

In order to study the general properties of S(D) for spaces of arbitrary dimensionality N , Eq. (7) must be computed
accurately. Function f plays an important role in the definition of S(D) (Eqs. (5) and (7)). f can be generalized in a
straightforward way (from the case N = 2 of Ref. [13]), as it is shown in Appendix A. However, its numerical evaluation
takes toomuch time just for N = 3, increasing doubts about its precision and becoming an impossible task for higher N . The
reason is that Ω(D) is a huge number. For instance, just for N = 2 and λ = 100 (m = 5 steps in the BCM), it turns out that
maxD Ω(D) ∼ 101300. A way to avoid these difficulties is to find a good approximation of f that, at the same time, should be
easier to evaluate. Actually, in Appendix B.2 it is shown that

log f (x, y, z) ≈ log
xy

z


(8)

if y and z are large numbers, which is all what we need, as it is explained below.
For simplicity, we shall use U = U(D) and L = L(D), except where explicitly indicated. From (5), (6) one has that:

S(D) ≥ log f (2N ,U2−D,U) ≈ log

2N−DU

U


because U is the largest possible volume V , so we can use Eq. (8). This indicates that

S(D) & log(2N−D)U = λN(2m)D−N(N − D), (9)

then, maximizing:

max
D

S(D) &
λN

e ln 2m
≥

λN

e ln λ
2

, (10)

i.e. the maximum of S(D) grows exponentiallywith N . In contrast, the local minima of S(D) at D = 0 and D = N will usually
be very small in comparison with the maximum. For instance, due to f (x, y, y) = xy (see Appendix A), for D = 0 one has
from Eqs. (4) and (6) that

S(0) = log

(λ/2m)N
V=1

2mNV

 ≈
mN
2mN

λN
≪ λN

∼ max
D

S(D), (11)
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Fig. 2. Comparison between S(D) defined by Eq. (7) and its estimate given by Eq. (18), for the case N = 2 and λ = 100.

for reasonable N and m. Similarly, because f (x, y, xy) = 1 (see Appendix A), for D = N one has that S(N) = log(U(N) −

L(N) + 1) = log(λN
− 2mN

+ 1) > 0 (Eq. (3)), independently of N . Then, given that L ≥ 1 one has that

S(N) ≤ N log λ ≪ λN
∼ max

D
S(D). (12)

On the other hand, as usual, replacing Ω(D) by the largest of Ω(V ,D) constitutes a good approximation. Indeed, Eq. (B.1)
implies that givenD, f (2N , 2NV/2kD, 2DV/2kD) is an increasing function of V (k = 0, . . . ,m) aswell asΩ(V ,D) (see Eq. (5));
hence, from Eqs. (5) and (6), one has that:

S(D) ≤ log (U − L + 1) + logΩ(U,D). (13)

Then, given that L ≥ 1:

0 ≤ S(D) − logΩ(U,D) ≤ logU ≤ N log λ (14)

(see Eq. (4)). In other words, the upper bound of Eq. (14) matches the value of the estimate of the local minimum of S(D) at
D = N (Eq. (12)). Thus, Eq. (14) provides a good estimate for S(D), by just assuming the summation in (6) to be approximately
equal to its greatest summand Ω(U,D), i.e.:

S(D) ≈ logΩ(U,D). (15)

Now, according to Eq. (5), the above formula becomes:

S(D) ≈

m
k=1

log f (2N ,U2−kD, 2DU2−kD) ≈

m
k=1

log

2NU2−kD

2DU2−kD


(16)

because of the fact that every 2nd and 3rd arguments at which f is evaluated are large numbers (i.e. V = U , so we can use
Eq. (8) again).

Stirling’s approximation log


x
y


≈ xH(y/x) works well if x and y are large, where

H(t) = −t log t − (1 − t) log(1 − t) (17)

is the Shannon’s binary entropy function. This useful relationship can be applied to Eq. (16), arriving at an explicit, easy-to-
analyze and excellent approximation of the formula of S(D) (see Fig. 2):

S(D) ≈


λ

2m−1

N

H(2D−N)
2mD

− 1
2D − 1

. (18)

3.2

Let us analyze the robustness of the definition of S(D), an important point that was not studied in Ref. [13]. Actually, for
another length λ̄ of the side of the boxes of the grid, that does not differ in orders of magnitude with λ (that is, ifm remains
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Fig. 3. Plot of maxD S(D)/λN form = 4, . . . , 10 and N = 2, . . . , 10.

invariant, see Eq. (3)), one can similarly define the number of configurations as well as the associated entropy, say Ω̄(D) and
S̄(D), respectively. Whatever be the case, from Eq. (18) we have that

S(D) ≈ (λ/λ̄)N S̄(D) (19)

so, S(D) and S̄(D) will be approximately proportional to each other3; consequently, it is possible to conclude the definition
of S(D) is robust to the choice of λ because the shape of this function is independent of that parameter.

4. Pattern analysis

This section describes a general classification of patterns based on entropical reasons which, consequently, does not
depend on the observer’s criteria. First, in connection with this, it is worth inquiring into the total number of patterns that
we are talking about.

4.1

The fractal behavior assumed here, together with the existence of a coarse-graining scale λ and its associated S(D),
strongly constrains the number of possible overall configurations the system cells may explore, dramatically reducing this
number compared to an uncorrelated multi-component system. Let us illustrate these ideas, quantitatively. If our fractal
analysis is carried outwith a precision – in dimensionality – of δD, the total number of configurations of a given cell exhibiting
a fractal behavior can be roughly bounded by:

Ωtotal
.
=


0≤D≤N

Ω(D) ≤
N
δD

max
D

Ω(D). (20)

On the other hand, from Eq. (18), it is very easy to obtain (numerically) maxD S(D) (see Fig. 3). Clearly, the figure shows that
maxD S(D) is always strictly less than λN . Thus, for a given cell, the number of fractal configurations will always be just a
tiny fraction of the total number of possible, uncorrelated configurations, given by 2λN . For example, it is easy to see from
Fig. 3 and Eq. (7) that for N = 2 and λ = 100 (m = 5):

Ωtotal .
101300

δD
. (21)

The right member of the previous equation, despite being a very big number, is absolutely negligible with respect to 2λN
≈

103000, for every reasonable δD. This result quantitatively explains why almost every random imaginable configuration of
(black/white) pixels will not look fractal. In other words, the whole universe of patterns is comparatively really small. This
fact may have important applications in Pattern Recognition Theory, e.g. for sizing some hypothetical storage of images (or
even texts, etc.), if it was possible to know in advance, that they are (or are composed of) patterns and not just a mere set of
pixels (or letters, etc.).

3 Intuitively, one will arrive to the same conclusion by just observing that Ω̄(D) ∼ Ω(D)(λ̄/λ)N .
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Fig. 4. Dependence of Di (i = 1, . . . , 6) on N (λ = 100). Note that Di − Di+1 ≈ const. = 0.237, independently of N and i.

4.2

Eq. (19) is clearly a self-similar relation (multiplication by a constant). A similar case occurs between every pair (SN1 , SN2)
of entropy functions, associated to different embedding dimensions (N1,N2). In general, from Eq. (18), it is easy to check
that the shape of S(D) approximately depends only on the difference N − D. Then, for D ≥ 3 (and reasonablem):

SN1(D) ≈ λ−N2+N1SN2(D + N2 − N1) (22)

meaning that the entropy functions SN1 and SN2 are related via a translation in D and a multiplication by a constant, clearly
a self-similar relationship again. The most important lesson that we can learn from this is that the shape of S(D) is virtually
independent of the dimensionality N . This opens the doors to a convenient characterization of the components of the system,
by means of the values Di satisfying

diS(D = Di)

dDi
= 0, i = 0, 1, 2, . . . . (23)

Indeed, while S(D0) = 0 for

D0 ≈ N, (24)

D1 provides the location of the maximum of the generalized entropy, D2 is associated with the dimension at which entropy
reaches its maximum growth rate, etc. Note that according to Eq. (19), the points Di have a robust definition in terms of λ.
The location of the points Di is, in a very good approximation, evenly spaced (see Fig. 4), independently of the embedding
dimension N . This can be seen as a consequence of another self-similar relation, now shared by S(D) and its derivative:

S ′(D) ≈ AS(D + b), (25)

where A and b minimize the quadratic norm of the difference of both members over the range 0 ≤ D ≤ N − b, as Fig. 5
shows.4 From the figure, it can be observed that the self-similarity is very accurate. Clearly, by differentiating iteratively
Eq. (25), one has that the points Di satisfy:

Di − Di+1 ≈ b, i = 0, 1, 2, . . . (26)

(see Fig. 4).
In the fractal system of Ref. [13], embedded in the spatial dimension N = 2, the authors have associated the zeros Di

of the derivatives of S(D), with the edges of different classes or types of urban layouts, exhibiting different levels of risk
regarding urban expansion, thus requiring different planning actions from expert policy-makers.5 In the fractal system of
Ref. [17], equivalent ideas were applied for controlling deforested areas in the Amazon.

Now, let us think about a given cell. Let us imagine we only know that its fractal dimension D follows a random evolution
that is approximately increasing in time. Actually, for cancerous tissues, deforested areas and built-up areas (etc.), this is a
reasonable assumption because all of them evolve by increasing their sizes (volumes), becoming more and more compact
and, consequently, can be considered as having approximately increasing local fractal dimensions (see e.g. Refs. [13,17]).

4 An analytical explanation of this, can be found in Appendix C.
5 One can check that the Di proposed in that paper are approximately evenly spaced as Eq. (26) predicts, though this fact was not explained there.
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Fig. 5. Qualitative self-similarity shared between S(D) and its derivative (N = 50, λ = 100). Numerically, it turns out that A = 1.430 and b = 0.237.
D1,D2 and D3 are the zeros of the first three derivatives of S(D) and approximately satisfy Eq. (26).
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Fig. 6. Plot of N −D1 for many possible BCM stepsm and dimensionality N . According to Eqs. (24) and (26), N −D1 ≈ bwhich goes asm−1 (see Eq. (C.5)).

Within the range D < D1, S(D) is an increasing monotonous function so, every time D gets higher, we know less about
what is going on inside the cell than before. The opposite occurs for D > D1: just increasing D a bit makes the number of
possible configurationsΩ(D) to decrease several orders ofmagnitude (see Figs. 2 and 5),meaning that the cell becomesmore
andmore predictable. Actually, [D1,N] is a short interval of length decreasing asm−1 (see Fig. 6), i.e. an abyss throughwhich
Ω(D)usually decays thousands of orders ofmagnitude (see Eq. (10)), until reaching the almost absolutely predictable state at
D = N (S(N) ≈ 0, see Eq. (18)). This classification can be enhanced by taking into account D2. For D < D2, the rate of change
of S(D) increases,whichmeans that not only our ignorance is rising but, it also does it every time faster. The opposite happens
for D > D2 in which, despite dS(D)/dD decreases, there isn’t so much that we can do in order to control the cell because
first, our ignorance S(D) about its dynamics will go through a range in which it is maximized (i.e. say D2 < D < D̂2 < N ,
with S(D̂2) = S(D2)), going later (D > D̂2) into the increasingly predictable (good or bad) regime mentioned above. Thus,
D2 may define a theoretical limit for steering the component before the things go wrong, as it is concluded both in Refs. [13,
17]. Actually, [D3,D2] may be the unique problematic interval in which the chances of controlling the system are still not
low because, the range D < D3 can be seen as a regime of low entropy being – perhaps – highly controllable.6 Of course, it is
possible to continue classifying further regimes by also taking into account D4,D5, etc., developing a classification that will
be consistent with the different regimes found in the entropy and independent of the observer’s point of view.

6 The analogy with cancerous processes is remarkable: [D3,D2] may be associated with the stage of having microscopic clusters of cancer cells inside a
living tissue, when usually the odds of saving the patient are still not low; while [D2,D1] represents a regime in which there are (sometimes macroscopic)
metastatic chunks of cancerous tissue that almost no treatment can stop.
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5. Entropically driven systems

Section 2.1 introduced the concept of idealworst possible scenario, whichwas represented by the stateρ∗ defined in Eq. (1).
Now, with the help of the ideas and mathematics developed in the previous sections, we shall study general properties
associated to systems evolving in time towards ρ∗, which we will call from now on, entropically driven systems.

Sciences often attempt to define ideal situations but, as it was commented in Section 2.1, in the case of complex control
systems it may be very helpful to set the point of reference at the worst ideal situation because, roughly speaking, this kind
of systems almost always tends to behave as we don’t want.7

Given that entropy is a measure of ignorance/uncertainty, and assuming that what cannot be controlled is precisely
what is ignored, S(D) may provide a way to assess how much out-of-control the cells having dimension D can be. By
analogy to Newton’s concept that a body can ideally move at a constant velocity through a non-friction media, the friction
for the complex systems studied here may be represented by every possible constraint, that keeps the system apart from its
natural most uncontrolled state, in which the number of components of each type is determined by its maximum degree of
uncontrollability. Thus, Eq. (1) may be seen as a metastable state, resulting from a hypothetical evolution in the absence of
control (fields/constraints of any kind). In addition, this state may also be recognized as a self-organized one, because ρ∗ is
a non-uniform density and it is assumed that the system can reach it, being – purely – driven by its own entropy.

5.1

It is remarkable that independently of N , if the system distribution is given by ρ∗, the intervals [D3,D1] and [N − 1,N]

will approximately incorporate more than 50% and 76% of the cells, respectively (see Figs. F.8 and F.10). Consequently and
specially for large N , an entropical evolution of the system could ultimately imply a potential lack of robustness and fault-
tolerance, in the sense that some external force could affect a big part of the system, despite acting on the components of a
narrow interval of patterns.

Even worse, according to the patterns’ classification developed in Section 4.2, which is independent of the density
distribution, ρ∗ will have half of its total population lying at the problematic interval [D3,D1], and a bit more than this
will be lying beyond the theoretical steering limit D2 (Fig. F.9). Thus, controlling a system like this may be a very difficult
task. Clearly, this reinforces the idea of the worst possible scenario associated to ρ∗.

On the other hand, it is noteworthy that the rate of growth, as a function of N , of the number of possible configurations
is by far faster than exponential (see Eq. (10)). This means that every time that the embedding dimension increases, the di-
versity of configurations for fixed Dwill increase significantly. Thus, assuming that the density of the system ρ had reached
a self-organized equilibriummimicking ρ∗ – which is not necessarily the case – and, if it was possible to lessen the inherent
constraints associated with the embedding dimension, by increasing the dimensionality from N to N + ∆N , it could let the
components of the system evolve following higher dimensional patterns, opening the possibility for significant diversifica-
tion. Furthermore, in some cases, even under an entropical evolution, the new equilibrium given by SN+∆N(D) will initially
act to increase the variance σ 2 of the patterns, improving the robustness of the system, in the sense mentioned above.8

In addition, because of Eq. (22), every Di will be shifted by ∆N . This means that every component lying initially beyond
the steering limit point D2 (Section 4.2), will automatically lie on the left of the new D2 (associated to SN+∆N(D)), becoming
more controllable, in principle. This suggests that, if itwas possible to increment the dimensionality by∆N –whatever be the
way this could be done –, it should not be imagined as the mere fact of (e.g.) taking into account a geometrical axis that had
been neglected – for simplicity – while one wasmodeling the system, but as a huge expansion of the space of configurations
into which every component of the system is now able to go (and not before), together with a notable improvement in the
system’s controllability.9

However, since the system is entropically driven, the ultimate state will be determined by SN+∆N(D), so it will lack
robustness and controllability in the same way as the initial state (Eqs. (1) and (22)). Thus, in the absence of control and
– as a metaphor of what is observed in many complex control systems –, the hypothetical improvements both in robustness
and controllability mentioned above are not something that will last forever, so the system will tend to be out-of-control
again.

5.2

I conclude by providing some suggestions of problems and systems for which I believe it could be possible to create
concrete applications from the general ideas developed here; besides, the issue of how increasing complexity may evolve
in this realm is addressed.

Let us consider a given cell of themulti-component system having fractal dimension D. Per se, the hyper-pixels of the cell
encode all the information about this particular part of the system. This encoding is whatwemay designate as strategy in the

7 I.e., the complex control systems that behave as we already want are not usually recognized as problematic.
8 This will be the case e.g., if the variation of σ 2 occurs mainly in the direction of the normalized SN+∆N (D) (see Appendix E).
9 Note that this idea still may work for ∆N < 1 (whatever that means) because ρ∗ is concentrated for high dimensions.
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sense that it may describe a kind of pattern of behavior of the part (or agent) belonging to the system associated to the cell
(sometimes, it could be related to away to accomplish some goal). For instance, in urban planning [13], each strategy encodes
a specific pattern of urban layout and land use. In other words, we may associate a given (interval of) fractal dimension(s) D
to each strategy. If we assume a population of individuals, then different individuals may adopt diverse varieties of a given
strategy, that is, different sequences of hyper-pixels leading to the sameD. As I have demonstrated here, there is a number of
configurations accessible to eachD, which is given by S(D) and it is constrained by L(D) andU(D). Furthermore it is clear that,
at least in some systems10 and in the absence of control, the systems will evolve in time in such a way that the population
density of strategies ρ(D) will tend to mimic the normalized S(D). Given the behavior of S(D) mentioned above, this means
that the majority of the population will employ strategies lying in a short interval of high dimensions, which corresponds
to a lack of diversity in the number of strategies used, as well as with a low degree of system controllability.

If we think in terms of economics, this means that the natural tendency countrywide will be to specialize in connection
with a narrow set of activities (say, related to farming and/or textile, or to oil production). In the context of international
commerce, this may reflect a tendency for themajority of the commercial actors to find partners or allies in the same area of
theworld. This, in turn, may be undesirable, and governments and/or agenciesmay implement policies which constitute the
necessary external field to ensure that the systems remain ‘‘far from equilibrium’’, with an associated ρ(D) significantly more
uniform than S(D) (that is, diversifying the systems portfolio [21]), being it by fostering the increase of ‘‘production means’’,
being it by increasing the number of ‘‘partners’’, so as to improve systems robustness, fault-tolerance and controllability. It
is also worth mentioning that by increasing the dimensionality of a (hierarchical) system from N to N + ∆N , one not only
increases its inherent complexity but, given the rise of a new available set of strategies, it also paves the way for a potential
diversification. This may be related to the open problem of understanding the major transitions in evolution [22].

All these last ideas are not the main issue of this article but, naturally, they could be the topic of future research.

6. Conclusion

Despite the N-dimensional generalization of S(D) originally defined in Ref. [13] is straightforward, neither clear nor
explicit formula for this function had been known until now. Thus, Eq. (18) enabled us both to compute it numerically for
higher dimensional systems, and to discover many self-similar relations this quantity satisfies. All these manifestations of
self-similarity are the foundation of the general framework for representing complex systems introduced in this article,
which provides a quantitative way to classify the components of the system according to its degree of uncontrollability
(given by the function S(D)), that is independent of the observer’s point of view (Section 4). For many complex systems,
setting our point of reference at the state distribution ρ∗ may also help to assess11how far is the system from becoming
out-of-control, an aspect that many times it seems hard to be unraveled, mainly when these scenarios represent emergent
phenomena.12

This work neither points out which part of a given real complex control system can be modeled as one having local
fractal dimensions, nor indicates the way to define theN-dimensional space in which it is embedded.13 Even so, hierarchical
systems are ubiquitous in the natural world and, given that the hypothesis on the basis of the ideas studied here are so
general, it is likely that the multi-component systems we were dealing with may comprise a non-negligible fraction of the
hierarchical systems observed, and to which the principles discussed here do apply.
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Appendix A. Number of configurations for fixed V and D

The function f (x, y, z) used in Eq. (5) corresponds to finding out the number of ways of setting z balls into y boxes with
x compartments, leaving at least 1 ball per box. This is given by [13]:

f (x, y, z) =

xy
z


p, (A.1)

10 These will be systems to which the concept of energy does not apply in a strict sense, in such a way that system’s evolution is purely entropical.
11 E.g., by computing ∥ρ − ρ∗∥, for a given norm ∥ · ∥.
12 From some point of view, ρ∗ may contribute to know a bit about the unknown but knowable part of the complex system dynamics [23].
13 Although, in hindsight, the models of Refs. [13,17], besides providing a proof of principle of how this formulation can be applied to real cases, also offer
some clues of how to address multi-component systems from this perspective.



M.E. Gaudiano / Physica A 440 (2015) 185–199 195

where 0 ≤ p ≤ 1 and it is given by p=x Fx−1(u; v; 1), being F a generalized hypergeometric function, and u and v vectors
defined by:

uj =
z − 1 + j

x
− y, j = 1, . . . , x,

vj =
j
x

− y, j = 1, . . . , x − 1.

This leads to a closed formula for the total number of configurations Ω with fixed V and D [13]:

Ω(V ,D) =

m
k=1

f (2N , V/2kD, 2DV/2kD) (A.2)

=

m
k=1


2NV/2kD

2DV/2kD


2N
F2N−1(u; v; 1) (A.3)

where

uj = V
2D−N

− 1
2kD

+
j − 1
2N

, j = 1, . . . , 2N ,

vj =
j
2N

−
V
2kD

, j = 1, . . . , 2N
− 1. (A.4)

Appendix B. Some estimates and properties of f (x, y, z)

B.1. f (x, ty, tz) is an increasing function of t

Clearly, the number of ways of arranging tz balls into ty boxes (with x compartments), leaving non-empty boxes, cannot
be less than the number of ways obtained by doing it leaving z balls every y boxes. Thus, f (x, ty, tz) ≥ f (x, y, z)t so,

f (x, ty, tz) ≥ f (x, y, z). (B.1)

B.2. log f (x, y, z) ≈ log
 xy

z


for y and z being large numbers

Let us take advantage of the alternative formula for f introduced in Ref. [13]

f (x, y, z) =

[y−z/x]
k=0

(−1)k
y
k

 
x(y − k)

z


(B.2)

and valid for y ≤ z ≤ xy. Without loss of generality, we can assume that K .
= y − z/x is integer, even and greater than 3.

Then, the above equation can be written as follows:

f (x, y, z) = g(K/2) +

K/2−1
r=0

(g(r) − g(r + 1/2)) (B.3)

where g(r) =
 y
2r

 
x(y−2r)

z


. The second summand of the right member of (B.3) can be seen as a Riemann’s sum for

−dg(r)/dr; thus, it follows that:

f (x, y, z) ≈
g(K/2) + g(0)

2
=

1
2

xy
z


+


y

z/x


. (B.4)

By taking into account that
 xy

z


≥


y

z/x

x
and the fact that x = 2N > 1, it is possible to neglect the 2nd summand of the

last equation, provided that we take logarithm of both members:

log f (x, y, z) ≈ log
xy

z


− 1. (B.5)

Finally, given that y and z are usually large numbers, log
 xy

z


≫ 1, getting to Eq. (8).

Appendix C. Self-similarity between S(D) and its derivative

According to Eqs. (16) and (17), one has that

S(D) ≈ U2NH(2D−N)

m
k=1

2−kD. (C.1)
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Now, because of Eqs. (4) and (14), for h → 0 we have:

S(D + h) ≈ logΩ(2mhU,D + h)
≈ 2mh logΩ(U,D + h) because of Eq. (C.1)

≈ 2mh

S(D) +

ΩD(U,D)

Ω(U,D) ln 2
h + O(h2)


. (C.2)

By taking away S(D) and dividing by h, one has that

S ′(D) = S(D)m ln 2 +
ΩD(U,D)

Ω(U,D) ln 2
. (C.3)

Thus, from the last two equations:

2−mhS(D + h) − hS ′(D) ≈ (1 − hm ln 2)S(D) + O(h2). (C.4)

Given that the above equation holds for a range of h, this parameter can be chosen in order to minimize the quadratic norm
of both members by taking h = (m ln 2)−1. In this way, h will be even decreasing with the number of steps m of the BCM,
so we can neglect 2nd order terms O(h2) to arrive at the desired self-similar Eq. (25), whose parameters A and b can be
estimated as:

b ≈
1

m ln 2
(C.5)

A ≈
m ln 2

e
.

Despite the above two equations are just estimates, they show a reasonable correspondence with the optimal ones (see e.g.
Fig. 5). Even the estimate of b follows the m−1 behavior mentioned at Fig. 6 and it is independent of the dimensionality N ,
as it can be concluded from Eq. (26) and Fig. 4.

Appendix D. Coarse-graining level λ

Many real world fractal systems should not be recognized as having just a single fractal dimension. Think about a chunk
of cancerous tissue, the built-up area of a big city or deforested areas in the Amazon. Several authors have associatedwhole
fractal dimensions to them but, at the same time, this kind of systems sometimes also present spatial dependence in the
fractal dimension, because they are, in part, randomly generated. Clearly, they will be better represented by assigning local
fractal dimensions to their components. On the other hand, the diversity of the fractal dimensions of the components is
very important; otherwise, we will always be satisfied with the knowledge of a single fractal dimension associated with
the whole system, ignoring what happens at every particular part of it.14 Thus, it will be assumed that the systems of the
present article can be decomposed into parts having (maybe) different fractal dimensions. However, if the size of these
parts are very small, the fractal behavior could simply vanish or get not properly represented.15 Is there any way to choose
an optimal coarse-graining level so as to simultaneously maximize both the diversity in dimensions and the quality of how
they are defined? This was already done in Ref. [13]. Here, I extend the idea to higher dimensional systems and justify, even
better than before, why the idea should work for a non-negligible part of the total universe of fractal complex systems.

Let us assume that the system is discretized in hyper-pixels (of side equal to 1), and that it fits inside of a hyper-cube
of side ∆ (in pixels) in a space of dimensionality N . The pixels (not) belonging to the system will be black (white). Let us
divide the whole system into cells of side λ, i.e. the coarse graining level. If λ is chosen to be equal to ∆, the BCM will return
a number D, and we call it the fractal dimension of the whole system (see Fig. D.7). If one divides the system into cells of side
λ = ∆/2, the BCM will return at most 2N fractal dimensions, i.e. one – maybe different – fractal dimension per cell.16 Thus,
if our spatial resolution is good (i.e. if the size of the pixels is small enough), the number of fractal dimensions spanned by
performing the BCM at each cell, will increase by reducing the size of the cells but, at the same time, will always remain
bounded by N/δD (where δD is the precision of the computation of the fractal dimensions). On the other hand, because of
finite size effects, if the size of the cells is very small, not only the fractal behavior will vanish, but also the total number of
black/white pixels configurations of a cell will decrease significantly and, consequently, the fractal configurations will do
so [one can roughly think that at the limit λ → 1, one will only get two fractal dimensions: D = 0(D = N) for the cells
consisting of a single white (black) pixel]. Between λ = 1 and λ = ∆, it is reasonable to assume the existence of some set of
coarse-graining levelsΓ inwhich the number of fractal dimensions spanned by the BCM ismaximized (for the precision δD).
In addition, the larger the value of λ, the larger the number of stepsm of the performed BCM, resulting the fractal dimension

14 The diversity of the components is an important idea that every model for complex systems should incorporate [23].
15 E.g., if the fractal dimension of a cell of black/white pixels is given by the slope of the linear fitting of the Box-counting-method.
16 It is important to remember that the fractal systems studied in this work are in part randomly generated.
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Fig. D.7. Top: The different panels illustrate the diversity in fractal dimensions exhibited by the same N-dimensional, hierarchical system, depending on
the level of coarse-graining at which the fractal analysis is carried out. Bottom: The same idea, in terms of the number of fractal dimensions used (for a
given precision δD). It is possible to assume the existence of an intermediate level λ at which fractal information is optimal.

at every cell to be shared at a larger number of scales and naturally, more properly defined (Eqs. (2) and (3)). Thus, we define
the optimal coarse-graining level λ (1 < λ < ∆) as follows:

λ
.
= supΓ , (D.1)

providing an optimal portrait of the fractal behavior of the system (see Fig. D.7).
Finally, it is worth remarking that just for the sake of being precise, it is proposed to use Eq. (D.1) but fortunately, it is not

necessary to know the exact value of λ, because all the ideas of this article are robust to the choice of it, as it is concluded at
Eq. (19).

Appendix E. SN+∆N initially acts to increase the variance of D

Lemma. Let us denote by ρ∗N and ρ∗N+∆N the densities defined by Eq. (1) associated to embedding spaces of dimensionality N
and N + ∆N, respectively. Let us suppose that the initial cell distribution is given by

ρ0(D) =


ρ∗N(D) 0 ≤ D ≤ N,
0 N < D ≤ N + ∆N.

(E.1)

Then, in the direction of ρ∗N+∆N , the variance of the fractal dimension will initially increase.

Proof. The variance σ 2 can be seen as a function of the state ρ:

σ 2(ρ) =

 N+∆N

0
D2ρ(D) dD −

 N+∆N

0
Dρ(D) dD

2

. (E.2)

The following track makes to increase ρ0 in the direction of ρ∗N+∆N :

ρt = ρ0 + t(ρ∗N+∆N − ρ0) 0 ≤ t ≤ 1 (E.3)

(note that ρt(D) ≥ 0 and
 N+∆N
0 ρt(D) dD = 1). Then, one can replace Eq. (E.3) in Eq. (E.2), differentiate it twice with respect

to t and obtain:

d2σ 2(ρt)

dt2
= −2

 N+∆N

0
D(ρ∗N+∆N(D) − ρ0(D)) dD

2

≈ −2(∆N)2 = const. (E.4)
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Fig. F.8. Independently of N and m, more than 50% of the individuals will lie within the zeros of the 3rd (D3) and the 1st (D1) derivatives if they follow
the distribution ρ∗ .

Fig. F.9. Independently of N andm, more than 53% of the individuals will lie within the range D2 ≤ D ≤ N , if they follow the distribution ρ∗ .

because of Eq. (22). Eq. (22) also says that the standard deviations at t = 0 and at t = 1 will be approximately equal. Thus,
for the track of Eq. (E.3), the variance reads:

σ 2(ρt) ≈ σ 2(ρ0) + t(1 − t)(∆N)2. (E.5)

Then, 
dσ 2(ρt)

dt


t=0

≈ (∆N)2 > 0. � (E.6)

Eq. (E.5) gives the variance along a path connecting ρ∗N and ρ∗N+∆N (Eq. (E.3)), which has a maximum value of
σ 2(ρo) + (∆N)2/4. Note that for this hypothetical track, the variance cannot increase indefinitely and it will necessarily
go back to its initial value, sooner or later, because the system is entropically-driven. Besides, this track is by no means
the unique one that makes the variance to increase (initially). Actually, Eq. (E.2) can be considered as a continuous map
ρ → σ 2(ρ).17 This means that, if ∆N is not excessively small, at least there will exist a positively measurable set of tracks,
with initial increasing variances.

17 This will be the case e.g., if one considers that the tracks are differentiable functions of t , the norm of every path ρt is given by maxt (maxD |ρt (D)| +

maxD |∂ρt (D)/∂t|) and, the norm of every σ 2
t is defined as maxt |σ 2

t | + maxt |dσ 2
t /dt|.
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Fig. F.10. Independently of N and m, more than 76% of the individuals will lie within the range N − 1 ≤ D ≤ N (and more than 95% for N > 2), if they
follow the distribution ρ∗ .

Appendix F. ρ∗(D) is concentrated for high dimensions

See Figs. F.8–F.10.
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