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Abstract
The frictional force between a physical damped pendulum and the medium is
usually assumed to be proportional to the pendulum velocity. In this work, we
investigate how the pendulum motion will be affected when the drag force is
modeled using power-laws bigger than the usual 1 or 2, and we will show that
such assumption leads to contradictions with experimental observations. For
this purpose, a more general model of a damped pendulum is introduced,
assuming a power-law with integer exponents in the damping term of the
equation of motion, and also in the non-harmonic regime. A Runge–Kutta
solver is implemented to compute the numerical solutions for the first five
powers, showing that the linear drag has the fastest decay to rest, and that
bigger exponents have long-time fluctuation around the equilibrium position,
which have no correlation (as is expected) with experimental results.
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1 Introduction

The study of oscillatory motion is one of the essential topics in engineering and physics
science, since this allows us to understand how to apply the fundamental laws of classical
mechanics to simple physical systems. In basic physics courses, the behavior of different
types of oscillators and pendulums are analyzed, and systems such as the simple harmonic
oscillator and the physical pendulum are studied in great depth. The most used textbooks,
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such as Halliday et al [1] and Serway and Jewett [2], develop these issues in a concise way,
enriching the physics of these systems with some effects, such as damping of the medium,
and the inclusion of external driving forces. However, these authors solve the equation of
motion of the pendulum in the limit of small oscillations, i.e. they work in the so-called
harmonic approximation.

In this context, we can start by remembering that the periodic motion exhibited by a
pendulum is harmonic only for small oscillation angles. Beyond this limit, the equation of
motion is nonlinear. Although an integral expression exists for the period of the nonlinear
pendulum, it is usually not discussed in introductory physics courses because it is not possible
to evaluate this integral exactly in terms of elementary functions. In other words, by ele-
mentary functions we are referring to functions that are studied in introductory calculus
courses. For this reason, different approximate expressions for the dependence of the period
on the angular amplitude of the pendulum have been developed by many authors. For
example, a simple expression beyond the harmonic limit is given for a mass–string system in
[3, 4]. Furthermore, the difficulty of writing the pendulum solution in terms of elementary
functions is a problem that continues in the non-harmonic regime.

As was mentioned, the rich physics of pendulum dynamics is highlighted when different
correction terms are included in the equation of motion. Corrections, such as the friction with
the medium, effects such as the stretching of the pendulum string, friction at the pivot of the
system, among others, are discussed in some theoretical, and experimental papers [5–8].
However, in this article we focus on the damped physical pendulum where the only external
force included is the frictional force or drag with the medium.

Although the damped oscillations are of great importance in classical, and also quantum,
mechanics [9, 10] in the aforementioned literature, there is limited information oriented to
investigating the physical properties of pendulums with frictional forces in the non-harmonic
approximation. Generally speaking, when a body moves in a fluid with a velocity v, the
frictional force will depend on v. This dependence can be a very complicated function, but
there are many practical situations where the viscous damping force will be proportional to
some power of v. For objects moving at low speeds, where turbulence is negligible, the
medium resistance is approximately proportional to its velocity. Also, in other applications,
the drag may have terms proportional to the square or higher powers of the velocity beyond
the Newtonian and Stokes drag, i.e. in general the resistance of the medium may be modeled
using power-laws of the form µF vn

fric .
There are many applications, not necessarily harmonic oscillators or pendulums, where

the frictional force is modeled using power-law damping [11–14]. Now, for the particular
case of the physical pendulum, such assumptions are usually neglected since exponents
greater than 2, or non-power-law for the drag resistance, have no connection with exper-
imental observation. However, in this work we want to verify this linear relation, showing
what happens to the pendulum if such mathematical freedom is allowed, and exploring some
numerical techniques along the way. For this purpose, we will investigate the influence of the
integer exponent n in the equation of motion of the damped physical pendulum. Additionally,
we will give a mathematical approach where a generalized model is introduced, assuming the
frictional force µF vn

fric in the equation of motion of the physical pendulum. Different
exponents are analyzed, showing that integers greater than two are not appropriate exponents
for drag modeling, since the system will oscillate for a long time before stopping in the
equilibrium position. Thus, the behavior presented by the system with this generalization is
not correlated with the experimental observations. Additionally, we find that the fastest decay
to the equilibrium position is for the linear exponent. To carry out this study, we introduce the
Runge–Kutta method to solve the nonlinear differential equations that arise naturally when
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the classical mechanical laws are applied to this generalized damped pendulum. Finally, we
give some foundations and basic techniques used in the numerical analysis of systems of
differential equations.

This article is organized as follows. A brief review of oscillations is given in section 2.
Then, in section 3, we introduce a generalized damped pendulum, which introduces an integer
exponent into the angular velocity of the differential equation. In section 4, a numerical
analysis is performed, showing some comparative graphs for different values of the damping
coefficient, and also taking different powers in the numerical solutions. In this section, we
also analyze the stability for the numerical solutions obtained and the convergence rates of the
numerical method implemented. Finally, we close the work by giving some final remarks and
conclusions.

2 Review of oscillations

In this section, we will introduce some foundations for damped and undamped oscillations. A
simple way to introduce this topic is by first considering the most studied case in basic physic
courses, which is the simple pendulum. A simple pendulum consists of a mass m hanging
from a string of length ℓ and negligible mass, fixed at a pivot point P. When the mass is
displaced by an initial angle and is released, the pendulum will swing back and forth with
periodic motion around an equilibrium position located at the lowest point of the trajectory,
describing a length of arc S, as shown in figure 1.

When the initial position is small, the amplitude of the pendulum has no effect on the
period, and all the description will be analogous to simple harmonic motion. Now, in more
realistic situations, inevitably the pendulum loses energy due to frictional forces and, as a
consequence, its amplitude decreases with time. To explain the gradual energy loss, different
kinds of dissipative forces can be incorporated into the system. However, in the most practical
situation, a non-conservative force, which is proportional to the pendulum speed, is assumed.
This force can be written as

= - ( )F bv, 1frict

Figure 1. Simple pendulum of mass m.
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where b is a positive constant that depends on the medium, materials, and also on the body
shape. Here, the minus indicates that the force is opposite to the relative movement of the
mass with the medium. Now, it is possible to write equation (1) in terms of the angular
velocity using = fv ℓ

t

d

d
, thus we have

f
= - ( )F bℓ

t

d

d
. 2frict

Now, using the Newton’s second law, we can find the equation of motion of a damped
pendulum,

f
f

= - - ( )m
S

t
mg bℓ

t

d

d
sin

d

d
. 3

2

2

Taking into account that f=S ℓ , we can write the following differential equation,

f f
f f gf w f+ + = + + =˙ ( )

t

b

m t

g

ℓ

d

d

d

d
sin 0, ¨ sin 0, 4

2

2 0
2

where the dots means g = b m,
t

d

d
is the damping coefficient and w = g ℓ0

2 is the angular
frequency of the undamped motion in the harmonic regime. Alternatively, one can arrive at
equation (4) using torques together with Newton’s law for rotations. Remember that torques,
or moments of force, are defined by the following cross product,

t = ´  
( )r F. 5

Then, the Newton law equation can be written as follows,

åt a=  ( )I , 6

where a f= ¨ is the angular acceleration, and I is the moment of inertia of the body. In the
special case of a simple pendulum, the moment of inertia is given by

= ( )I mℓ . 72

Now, equation (2) introduces the friction force in the system, so the friction torque of the non-
vacuum medium can be expressed in the following way,

t f f= =- =-˙ ˙ ( )F ℓ
b

m
mℓ

b

m
I, , . 8fric fric

2

Finally, equation (8) can be written in terms of the damping coefficient γ as follows,

t g f= - ˙ ( )I . 9fric

This equation can be used to describe the damping of any rigid body of moment of inertia I
that oscillates around an equilibrium point.

Finally, we can introduce a more general pendulum, usually called a physical pendulum.
A physical pendulum consists of a rigid body that undergoes a rotation about a fixed axis
passing through a fixed point P (the pivot). Now, assuming a rigid body of inertia I and mass
m, we can write the torque of the weight mg as follows,

t f= - ( )mgℓ sin , 10w

this torque acts at the center of mass of the rigid body located at a distance ℓ from the pivot.
Finally, combining the last equation together with equations (6) and (9) it is possible to write,

f gf w f+ + =˙ ( )¨ sin 0, 110
2

Eur. J. Phys. 38 (2017) 065005 G D Quiroga and P A Ospina-Henao

4



where the angular frequency w = mgℓ I0
2 corresponds to the frequency of the undamped

motion for small amplitudes [15]. In the following section we will generalize the last
equations and we will study some numerical solutions.

3 Generalized damped pendulum

Now we are ready to describe the motion of a more general damped pendulum introducing a
modification in the equation of motion (11). The simple pendulum introduced in the previous
section, can be considered as the simplest case of the generalized physical pendulum. Figure 2
shows a representation of a physical pendulum.

The damped physical pendulum is also a non-conservative system where an external
torque works on it. As we mentioned above, in some situations one can assume that the
friction is given by equation (9). However, in order to get a more general case, we will
introduce the following generalized friction torque given by

t
g f

g f f
=

-
-

⎧⎨⎩
˙

( ˙ ) ˙ ( )
I n

I n

, for odd ,

sgn , for even ,
12

n

nfric

where n is assumed to be a positive integer exponent and sgn is the sign or signum function,
which takes the values -1, 0, 1 for f f> =˙ ˙0, 0 and f <˙ 0, respectively. Since the drag is
always directed against the direction of the velocity, the use of the signum function is very
important in order to get an adequate modeling of the frictional force. In this way, the
position, and the angular velocity, change their signs correctly from positive to negative (and
vice versa) when the pendulum passes through the equilibrium point. In this schema, the
damping constant γ needs to have dimensions of -secn 2 in order to be dimensionally
consistent with the torque units. Now, both cases can be combined into one equation
introducing a new parameter n defined by

Figure 2. Physical pendulum.
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f

=
⎧⎨⎩ ( ˙ )

( )
n

n

1, for odd ,

sgn , for even
. 13n

Finally, the friction torque can be written as

t g f= - ˙ ( )I . 14n
n

fric

A more general approach can be obtained using the following equation,

t g f f= - -˙ ∣˙ ∣ ( )I . 15n
fric

1

This alternative drag equation agrees with (14) in the case of integer exponents, however in
equation (15) n can be assumed as a non-integer power, but such situations will not be
analyzed in this article. Also, numerically, it is cheaper to use the function n than the product
f f -˙ ∣ ∣n 1 since the factor n can be introduced as an auxiliary int-function, which returns a
constant value. For these reasons, and keeping in mind the objectives of this article,
equation (14) for the frictional drag is more suitable than equation (15). Then, using (14) and
(6) we can write,

åt a f g f a= - - =  ˙I mgℓ I I, sin ,n
n

and finally we get the following differential equation,

f g f w f+ + =˙ ( )¨ sin 0, 16n
n

0
2

where w0 is the same angular frequency introduced in the previous section. It is important to
note that the non-conservative force described in this article is generated by the medium
viscosity, usually considered as air, although other kind of frictional forces could also be
introduced.

Now, we want to analyze some solutions of the last differential equation, and to study the
motion of the physical pendulum for different n keeping g = constant. Since equation (16)
has no analytical solutions, we will solve this differential equation using numerical methods.
Now, in order to implement the numerical method, it is necessary to write (16) as a system of
ordinary differential equations (ODEs) introducing the following change of variables,

f f= = ˙ ( )x x, . 170 1

Using these new variables, the second order equation (16) can be written as a system of two
first order differential equations,

=˙ ( )x x , 180 1

g w= - -˙ ( )x x xsin . 19n
n

1 1 0
2

0

Alternatively, one can introduce a vector field

F , and write the system in the following way,

=
˙ ( )x F, 20

where =
 [ ]x x x,0 1 , and the vector field g w= - -


[ ]F x x x, sinn

n
1 1 0

2
0 . In the next section, we

will solve this system of equations using the Runge–Kutta method. The Runge–Kutta solver
is a handle method to find the solution of the ODE system, the flexibility and easy
implementation of this algorithm makes it a powerful tool to study the desired system given
by equation (20).
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4 Numerical analysis

In this section, we focus on a numerical study of equations (18)–(19) assuming a constant
damping coefficient and considering the first five integer exponents. In our numerical study a
Runge–Kutta of fourth order (RK4) is implemented in order to integrate the ODE system.
However, in this article, we will not focus on the development of the numerical algorithm
since there is much open and commercial software that includes numerical packages to solve
systems of ODEs, RK4 being one of the most extended methods. A complete description of
the RK family can be found in [16]. Additionally, there are many available codes written in
C/C++, Fortan, and Python, which can be used to verify our results. Our C++ imple-
mentation can be downloaded from the following repository: https://github.com/
GonzaQuiro/RK4.git.

All the numerical solutions are found assuming the following initial con-
ditions: = = -( ) ( )x x0 2, 0 0 s0 1

1, and the parameters =m 0.2 kg, =ℓ 1 m, I=0.2 kg m2,
for two different damping coefficients g = 1 and g = -10 sn 2. Also the step-size (the inte-
gration step of the RK4 method) is fixed to =h 0.001 s. Figure 3 shows the angular dis-
placement of the physical pendulum for different n.

It is clear that the frictional torque will bring the system to the equilibrium position.
However, the oscillations for >n 1 fall to zero very slowly as one can see in figure 3. In the
‘stability analysis’ section, we prove that the amplitude falls to zero when  ¥t using some
stability criteria in order to support this affirmation and also discard errors in the numerical
implementation. Furthermore, it is possible to observe that as n takes higher values, the
oscillation amplitudes are greater, i.e. keeping g = constant the highest decay is for the
lowest power. Additionally, for n=1 and g = -10 s 1, the pendulum decays to the equili-
brium position without oscillations, and this particular case corresponds to an overdamped
pendulum [1, 2]. Now, when higher exponents are considered in the system, will be necessary
bigger damping constants to overdamped the system as we show in figure 4,

In our generalized approach, if the curve for a particular integer ¢n falls to zero without
oscillations, then every smaller exponent satisfying the condition  ¢n n will also decay

Figure 3. The angular displacement versus time for the first five powers. The left plot is
for a small value of the damping constant γ, while the right one corresponds to an
overdamped oscillation for n=1.
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without oscillations. In fact, for ¹n 1 the pendulum oscillates with small amplitudes around
the equilibrium, even for the integer n=2 small fluctuation around the point =x 00 can be
observed, but these small oscillations decrease as the gamma factor increases.

On the other hand, a similar behavior is observed when the angular velocity is plotted,
and figure 5 show the curves ḟ versus t for g = 1 and g = -10 sn 2.

Again, for n=1 the pendulum moves around the origin a few times before stopping
completely, while for >n 1 the oscillations around the equilibrium point persist for long
periods of time. Note that, beyond n=2, all the powers will present similar oscillations
reaching the rest at infinity. In this sense a non-lineal assumption in the damping term will
affect the dynamical of the system, however the behavior shown by these exponents are not
correlated with the experimental observations. This leads to the conclusion that the linear
assumption is a good approximation to the usual pendulum drag.

Figure 4. The angular displacement for n=2 (left) for different γ and the behavior for
five different powers (right) while the damping constant is g = -1000 sn 2.

Figure 5. The angular velocity as a time function for g = -1 sn 2, and g = -10 sn 2.
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An important observation can be made from figures 3 and 5: the ordering of the curves at
short times is opposite to long times. That is, the amplitude is higher for lower exponents at
short times, but this behavior is reversed at long times. This behavior can be understood by
analyzing the frictional equation (14). At short times, when f >˙ 1, the effect of the frictional
torque on the system is more significant for higher n since

  g f g f>+
+∣ ˙ ∣ ∣ ˙ ∣ ( )I I n 1. 21n

n
n

n
1

1

Thus, the effect of the friction on the system is the lowest for n=1 causing the system to
oscillate with the greatest amplitude, followed by =n 2, 3 and so on. On the other hand, for
long times when the pendulum is in the small oscillation regime, and the velocity satisfies
f <˙ 1, the previous equation takes the form

  g f g f<+
+∣ ˙ ∣ ∣ ˙ ∣ ( )I I n 1. 22n

n
n

n
1

1

For these cases the exponent n=1 has the most significant contribution in the differential
equation compared with >n 1, which explains the behavior of the curves in the figures.

In other words, for higher exponents when f <˙ 1, the pendulum oscillates around the
equilibrium point for a very long time, these oscillations have bigger amplitudes when bigger
integers are considered since the drag force decreases as n increases. In general terms, the
condition f < 1 or f > 1 and the integer exponent have a direct impact on the equation of
motion and also on the dynamics of the system.

4.1 Energy of the generalized damped pendulum

We want to analyze the energy for the physical damped pendulum, for when the mechanical
energy of the system is introduced, and the trajectories on the phase portrait for the previously
discussed solutions are plotted. The mechanical energy (E) is a scalar quantity which is
defined by the sum of the gravitational potential energy (U), and the kinetic energy (T) as
follows,

f f= + = + -˙ ( ) ( )E T U I mgℓ
1

2
1 cos . 232

Now, the damped pendulum is a system where the drag force dissipates energy (23), the falls
for g = -1, 10 sn 2 of the previous solutions can be observed in figure 6.

In figure 6, one can see the same behavior mentioned in the previous section for ¹n 1,
where the energy falls to zero so slowly that the system oscillates with small amplitudes
around the equilibrium point for a long time. However, it is possible to show that the
oscillations will go to zero as  ¥t for every >n 1. This phenomenon becomes clear in the
phase diagram, i.e. in a plot of the angular velocity versus the angular position (see figure 7).

In both graphs, the usual solution is for n=1 to go to zero in few integration steps, while
for greater exponents the fluctuation around f = 0 are bigger in amplitude and also energy.

4.2 Stability analysis

In this section we will analyze the stability of the solutions around the critical point located at
f = 0. Although in figures 6 and 7 it seems that there are closed trajectories around the point
( )0, 0 , it is possible to show using the Bendixon criterion [17] that there is no limit cycle
(closed trajectories) in the phase space.

The Bendixon criterion states that, if the divergence of the vector field 
 

·F F, , is not
identically zero and does not change sign in the domain of


F , then (20) has no closed orbit.

Therefore, computing the divergence of equation (20) we get
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 g = - -
· ( )F n x . 24n

n
1

1

Now, the rhs of the last equation is negative for odd n since the power -n 1 is always
even and consequently the factor -x n

1
1 is always positive. In addition, for even n, the dif-

ference -n 1 is odd, so the factor -x n
1

1 can take negative and positive values, but the product
 -xn

n
1

1 is always positive. Thus, the Bendixon criterion shows that there are no closed orbits
around the critical point ( )0, 0 , which means that the trajectories for n 1 will fall to the
attractor after giving a finite number of laps around the origin.

We can verify this affirmation by studying the relations between the Lyapunov functions
and the stability of the systems. There are many methods to compute the Lyapunov coeffi-
cients, and these usually have local and global versions of Lyapunov’s direct method. The
local versions are concerned with the stability properties in the neighborhood of the

Figure 6. The energy decay for a damped physical pendulum for the first five integer
powers.

Figure 7. Phase diagrams for the damped pendulum. The closed circle corresponds to
the undamped pendulum (g = 0).
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equilibrium point and usually involve a locally positive definite function. In order to assert
global asymptotic stability of the system, we assume that there exists a scalar function

( )E x
with continuous first order derivatives such that [18],

> < ( ) ˙ ( )E x E x0; is positive definite 0; is negative definite

then the equilibrium at the origin is globally asymptotically stable.
Now, from equation (23), together with equations (18)–(19), we can introduce the fol-

lowing function,

= + -( ) ( ) ( )E x x Ix mgl x,
1

2
1 cos . 250 1 1

2
0

This function represents the total energy of the pendulum, composed of the sum of the
potential energy and the kinetic energy. This function is a positive definite function, since
 -( )x0 1 cos 20 , and the other terms are quadratics, i.e. >( )E x x, 00 1 . Now, the time

derivative of equation (25) can be written as

 g= - +˙ ˙ ( )E I x 0. 26n
n

1
1

Finally, we have from equations (25) and (26) that >( )E x x, 00 1 and <˙ ( )E x x, 00 1 , so in
agreement with the previous theorem, we conclude that the origin is a stable equilibrium
position for all n 1. Thus, the origin is an attractor for the system, i.e. a point where any
solution ends up.

4.3 Numerical errors and convergence rates

In this section, the numerical errors and the convergence rates of the numerical results
presented in the previous sections are studied. Initially, we compare the exact and the
numerical solution for n = 1 with g = -0.1 s 1 in the regime of the small oscillations, i.e.
assuming a small angular amplitude x0=0.1 and setting again the initial velocity =x 01 .

In the last figure we plot the solution of (20) using the harmonic approximation
»( )x xsin 0 0, and the well known solution [15],

w a= +-g
ˆ ( ) ( ) ( )x t A te cos , 27t

0 2

where the hat is introduced to distinguish between the numerical solution ( )x t0 and the exact
solution ˆ ( )x t0 . In addition, α is an initial phase and ω is the frequency of the oscillation which
are given by

w w
g

= - ( )
4

, 280
2

2

a
g
w w

= - -
ˆ ( )

ˆ ( )
( )x

x
tan

2

0

0
. 291

0

It is possible to compute all the constants using the initial conditions and the parameter
mentioned above to find,

w = ( )3.130095845, 30

a = - ( )0.01597259328, 31

= ( )A 0.1000127575, 32
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Therefore, we can write the exact solution as follows,

= --ˆ ( ) ( ) ( )x t t0.1000127575e cos 3.130095845 0.01597259328 . 33t
0

0.05

Both solutions are plotted in figure 8, showing that they splice perfectly.
Now, we introduce the precision quotient Q to measure the convergence order of the

RK4 implementation. The precision quotient Q is found by computing the ratio of the
differences between the numerical solution with step sizes h h, 2 and h 4. The coefficient Q
is usually defined as follows,

=
- + -

- + -

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

Q t
x x x x

x x x x

. 34
h h

0 0
2

1 1
2

0 0
2

1 1
2

h h

h h h h

2 2

2 4 2 4

For a well implemented numerical method it is expected that the coefficient Q has fluctuations
around 2m, or tend to this value as time increases. This means that step by step the ratio should
be close to 2m. In equation (34) m is the order of the numerical method, in the special case of
the RK4 solver m=4, thus Q(t) must go to 16 in short, mid, or long times. It is important to
note that the rhs. of (34) is a time-dependent function since = ( )x x t0 0 and = ( )x x t1 1 . Now,
the numerical results are presented in figure 9.

The last figure shows the convergence ratio for  n2 5, and the exponents n 2
clearly are straight lines with a constant value of 16. However, the exponent n=2 has large
fluctuations around 1. This behavior arises when the numerical solutions for the steps
h h h, 2, 4 are closer to each other. In this case, the numerical solutions tend to the exact
solution such that the quotient Q cannot measure the precision of the method at all times, only
in the initial instants. In other words, in these situations, the quotient starts around 16 with
jumps to huge values, as one can see in figure 9 where Q is around 16 and goes to 50 in a few

Figure 8. Matching between the exact and numerical solution for the underdamped
pendulum in the harmonic approximation.
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seconds, then decreases to values close to one, i.e. »Q 1. Finally, based on figures 8 and 9,
we can confirm that our numerical implementation works adequately.

5 Final remarks

A more general model of a damped pendulum was introduced to analyze how the assumption
of power-laws in the damping term affect the dynamic of the system. This model considers an
integer exponent n in the frictional force of the differential equation and, in the case of even
powers, includes the signum function to model adequately the medium drag. From this
assumption, we can show that the behavior of the pendulum for >n 2 does not correspond to
the observed motion in the laboratory.

In order to solve the generalized pendulum, some numerical solutions of the generalized
differential equation in the non-harmonic regime were computed. The numerical solutions
were found by implementing the traditional RK4 solver, our main results were presented in a
series of plots, and the stability and the convergence of the numerical method was studied.
Our analysis shows that the amplitudes and the mechanical energy fall to zero when t goes to
¥. Furthermore, the curves show small oscillations or fluctuation with low amplitudes for
>n 2 around the equilibrium point. These oscillations will remain even with γ extremely

large, and the oscillations have bigger amplitudes when bigger integers are considered.
Finally, it was possible to conclude that n=1, i.e. the linear power, has the fastest decay to
the equilibrium position.

Figure 9.Numerical convergence test for the cases < n1 5 keeping g = 1 and using
the initial conditions ( )2, 0 .
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