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Abstract. The possibility of observing the stochastic resonance phenomenon was analyzed by means of
Monte Carlo simulations of silver adsorbed on 100 gold surfaces. The coverage degree was studied as a
function of the periodical variation of the chemical potential. The signal-noise relationship was studied
as a function of the amplitude and frequency of chemical potential and temperature. When this value is
plotted as a function of temperature, a maximum is found, indicating the possible presence of stochastic
resonance.

1 Introduction

Research on electrochemical deposition of a metal M onto
the surface of a foreign metal S should provide a better
understanding of the fundamental aspects of metal de-
position [1–8]. When this takes place at potentials more
positive than those predicted from the Nernst equation,
the process is called underpotential deposition (upd) [2–5].
This phenomenon has previously been studied by means
of first principle calculations [9] and the embedded atom
method (EAM) [10,11].

It is the purpose of this work to analyze the stochastic
resonance phenomenon [12] occurring when a periodically
variable chemical potential is applied to the adsorption
of Ag atoms on a Au(100) surface in order to alternatively
adsorb and desorb the silver monolayer.

As they provide a realistic interaction of the metallic
binding, EAM potentials [13–15] are employed to describe
atom-atom interaction. Using the Monte Carlo method
within a lattice model allows us to deal with systems
having a reasonably large number of particles.

We have previously studied the Ag on Au(100)
system, as well as other related ones by means of
Monte Carlo [16–18] and dynamic Monte Carlo simula-
tions [19,20]. Besides, we have studied the application of a
periodically varying chemical potential in order to study
dynamic phase transitions [21].

Stochastic resonance (SR) refers to a situation where
the addition of random noise improves the response of
the system to a periodical signal [12,22]. The stochastic
resonance phenomenon was originally studied in the early
80’s by two groups, in Rome [23] and Brussels [24]. It arose
at a new idea to explain the almost periodic occurrence of
the ice ages. After that, the idea of stochastic resonance
has spread well beyond physics and left its fingerprints in
many other scientific disciplines, like biology [25].

a e-mail: ceciliagim@gmail.com

As some particular examples, some experimental stud-
ies of the stochastic resonance phenomenon were per-
formed for the case of active-passive transition of iron in
sulfuric acid [26] and for a three-electrode electrochemical
cell configured for studying the potentiostatic electrodis-
solution of iron in a solution of copper sulfate and sulfu-
ric acid [27]. The latter study demonstrates that stochas-
tic resonance occurs for aperiodic subthreshold signals in
electrochemical systems.

In the present study, we will focus on the signal-to-
noise relationship (for the Fourier transform) as a func-
tion of the temperature, amplitude and frequency of the
chemical potential. Similar studies of the stochastic reso-
nance phenomenon have previously been done in the con-
text of a different system: opinion models related to socio-
physics [28,29]. In the case of opinion models we have two
possible states for each opinion (+1 or −1), an oscillating
external field that plays the role of propaganda and a “so-
cial temperature”. That system bears several similarities
with the present one, where the occupation state of an ab-
sorption site would be equivalent to the two opinion states,
the chemical potential would play the role of propaganda
and the traditional temperature would be analogous to
“social temperature”.

This paper is organized as follows: the model and sim-
ulation method are introduced in Section 2, the main re-
sults and discussion are presented in Section 3, and the
conclusions are given in Section 4.

2 Model and simulation method

2.1 Lattice model

Lattice models allow dealing with a large number of parti-
cles at a relatively low computational cost. For that reason
they are widely used in computer simulations to study
adsorption processes on surfaces. To assume that particle

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2016-60965-1


Page 2 of 8 Eur. Phys. J. B (2016) 89: 83

adsorption can only occur at definite sites is a good ap-
proximation for some systems. Such is the case of Ag on
Au(100), where there is no crystallographic misfit.

For the purpose of this study, lattice model was em-
ployed to represent the square (100) gold surface lattice
in a Grand Canonical Monte Carlo simulation. Square lat-
tices of size (100 × 100) with periodical boundary condi-
tions are used here to represent the surface. Each lattice
node constitutes an adsorption site for a silver atom.

2.2 Energy calculation

To calculate the adsorption energies for silver particles the
Embedded Atom Method (EAM) was used [13–15]. As
this method takes into account many-body effects, it rep-
resents metallic bonding better than a pair potential does.
The total energy of the system is calculated as the sum of
the energy of individual particles. Each of these energies
is in turn the sum of an embedding (attractive) energy
and a repulsive contribution which arises from the inter-
action between ion cores. The EAM contains parameters
which were fitted to reproduce experimental data, such as
elastic constants, enthalpies of binary alloys dissolution,
lattice constants, and sublimation heats.

Application of the EAM within a lattice model has
been described in detail in previous works [16,17].

2.3 Grand canonical Monte Carlo

One of the most appealing features of Grand Canoni-
cal Monte Carlo (μV T/MC) is that, as in many exper-
imental situations, the chemical potential μ is one of the
independent variables.

Such is the case of low-sweep rate voltammetry, an
electrochemical technique where the electrode potential
can be used to control the chemical potential of species at
the metal/solution interface. At the solid-vacuum inter-
face, the chemical potential is related to the vapor pressure
of the gas in equilibrium with the surface.

Our 2D system is characterized by a square lattice
with M adsorption sites. We labeled each adsorption site
either 0 or 2, depending on whether it is empty or occupied
by one adsorbate atom, respectively.

Following the procedure proposed by Metropolis and
coworkers [30], the acceptance probability for a transition
from state −→n to −→n ′ is defined as:

W−→n →−→n ′ = min
(

1, exp−
(

ΔE−μΔN
kbT

))
(1)

where μ is the chemical potential, ΔN = +1 if a parti-
cle is adsorbed or −1 if a particle is desorbed, ΔE de-
notes the adsorption energy of the particle at a partic-
ular site with a particular environment taking into ac-
count first, second and third neighbors (see Ref. [16] for
technical details), kb is the Boltzmann constant, and T
is the temperature. This probability is related with the
Boltzmann distribution in the Grand Canonical ensemble
and it can be demonstrated that it leads to a sampling of

states in the configuration space according to that distri-
bution, following the Metropolis algorithm [31].

Our μV T/MC simulation allows for two types of
events:

1. adsorption of an adsorbate atom onto a randomly-
selected lattice site;

2. desorption of an adsorbate atom from an occupied
lattice site selected at random.

Within this procedure, the relevant thermodynamic prop-
erty to be obtained is the coverage degree as a function of
the chemical potential μ, where the instantaneous value,
θ(μ)Ads, is defined as follows:

θ(μ)Ads =
NAds

M
(2)

where NAds is the number of adsorbate atoms and M
denotes the total number of sites.

2.4 Algorithm employed for the calculation of energy
differences

One of the main advantages of the lattice model is that
it fixes the distances between the adsorption nodes, thus
reducing to a discrete set the possible difference of energy
values the system can take. Furthermore, a very important
simplifying assumption can be made for obtaining ΔE.
The point is to consider the adsorption (desorption) of
a particle at a node immersed in a certain environment,
that includes first, second and third neighbors giving a
total of 13 sites, including the central atom. Then, the ad-
sorption energy for all the possible configurations of the
environment of the central atom can be calculated before
performing the simulation. With this method all the ad-
sorption energies of an atom are tabulated, so that during
the MC simulation the most expensive numerical opera-
tions are reduced to the reconstruction of the number I
that characterizes the configuration surrounding the par-
ticle on the adsorption node. Computationally speaking,
I is nothing but the index of the array in which the energy
is stored. See references [16,17] for more technical details.

2.5 Periodic variation of the chemical potential

The chemical potential μ is varied periodically accord-
ing to:

μ = μ0 + A × sin(ωt), (3)

where μ0 denotes the chemical potential at which transi-
tion occurs (between covered and uncovered surface), A is
the amplitude of oscillation (we take 0 ≤ A ≤ 1) and
ω = 2π/P (P = period) is the angular frequency. The
time evolution, t, is taken in this case in units of Monte
Carlo Steps (MCS).

2.6 Signal-noise relationship

In order to study resonant effects, we have calculated the
Fourier transform of θ as a function of time.
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Fig. 1. Coverage degree, θ as a function of the chemical po-
tential, μ (in eV) at different temperatures (T = 300 K, 800 K,
1000 K, 1200 K, 1500 K, 2000 K, 3000 K and 5000 K).

Signal-to-noise ratio (SNR) is a measure that compares
the level of a desired signal to the level of background
noise. It is defined as the ratio of signal power to noise
power. A ratio higher than 1 : 1 indicates more signal
than noise.

Thus, signal-to-noise ratio is defined as the ratio of the
power of a signal (meaningful information) to the power
of background noise (unwanted signal):

SNR =
Psignal

Pnoise
, (4)

where P is the average power in the Fourier space. Psignal

denotes the maximum value of the signal and Pnoise is the
value of the background, averaged before and after the
signal peak.

For our current purpose, it was calculated as:

SNR =
(h − n)

n
(5)

where h is the height of the peak at that frequency and
n denotes the height of the noise in the ground of that
region, calculated as the average value after and before
the maximum.

3 Results and discussion

Figure 1 shows isotherms of the coverage degree as a func-
tion of the chemical potential for the adsorption of Ag
on Au(100) at different temperatures. At low tempera-
tures, an abrupt step in the coverage degree can be ob-
served for a certain value of the chemical potential, indi-
cating the presence of a first-order phase transition. At
high temperatures, interaction between adjacent adatoms
becomes less important and the shape of the isotherms
is similar to Langmuir approximations. The value of the
chemical potential at which transition occurs is around
μ0 = −3.02 eV, which for the purposes of this study will
be taken as the reference value of μ0 to analyze periodical
variations.
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Fig. 2. Response of the coverage degree to a periodical varia-
tion of the chemical potential, for an oscillation amplitude of
A = 0.10, period values P = 64 MCS, 128 MCS, 256 MCS and
512 MCS, and several temperatures, as indicated.

The present model is similar to the Ising model in the
sense that there are lateral interactions between adsorbed
particles. In a previous work [18], we have taken into ac-
count lateral interaction between adsorbing particles as a
pair-potential and only between nearest neighbors. It is
well known that in this case the critical temperature for
θ = 0.5 can be estimated as [32]:

TC =
J

2kB ln(
√

2 − 1)
(6)

where J is the lateral interaction between adsorbing parti-
cles. Taking into account the values for J employed in that
work, the estimated critical temperature was TC = 1843 K
for the system Ag/Au(100).

Nevertheless, in the present work we are not dealing
with pair-potential intereactions, but as the EAM was em-
ployed, there are some non-linearities, especially in the
attractive terms of the energy calculation. If we take into
account the energies corresponding to the adsorption con-
figurations presented in a previous work [17], the esti-
mated difference between the adsorption energy with all
neighboring sites occupied by silver atoms and the adsorp-
tion energy with all neighboring sites unoccupied is about
−0.778 eV. If we divide that number by 4 (in order to
consider first-neighbor interactions), the estimated value
for J is now about −0.1945 eV, given an estimated value
of 1280 K for the critical temperature.

The periodical variation of the chemical potential
was studied. Several periods (P = 16, 32, 64, 128, 256
and 512), amplitudes (A = 0.05, 0.10, 0.15, 0.20, 0.50
and 0.80) and temperatures (T ) were employed in the
simulations.

Figure 2 shows time evolution for four of the employed
periods (P = 64, 128, 256 and 512) and several temper-
atures, in the case of amplitude A = 0.10. In this case,
for low temperatures, the coverage does not follow the ex-
ternal signal, especially at low periods. For temperature
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Fig. 3. Response of the coverage degree to a periodical vari-
ation of the chemical potential, for oscillation amplitudes of
A = 0.15 and 0.20 and periods P = 16 MCS and P = 32 MCS,
for several temperatures, as indicated.

T = 300 K, θ remains constant at value 1 and the same
occurs for T = 400 K at low periods. At high periods,
θ shows some irregular variation for T = 400 K, while for
T = 600 K and 1000 K, it follows the signal perfectly, os-
cillating between 0 and 1. For T = 2000 K, the coverage
follows the signal too, but the amplitude is less than 1.

Figure 3 depicts time evolution for two of the employed
periods (P = 16 and 32) and several temperatures, in the
case of amplitudes A = 0.15 and A = 0.20. It can be seen
that for low temperatures the coverage degree does not
follow the signal; for intermediate (but still low) temper-
atures, the coverage degree follows partially the chemical
potential, oscillating around one of the extremes, and for
high temperatures, θ perfectly follows the signal.

In the case of amplitude A = 0.50 or higher (not
shown), the coverage degree always follows the external
signal perfectly, oscillating between 0 and 1.

Figure 4 shows frames describing the microscopic be-
havior of the silver atoms on the surface while they are
changing from total coverage to desorption and vice versa
during one cycle, in the case of A = 0.50, P = 64 and
T = 100 K. It can be noticed that the transformation
occurs mainly through a multidroplet process, which in-
volves the formation of several nuclei of one phase inside
the other one. This fact was observed for all the cases stud-
ied. It must be noticed that the transition does not take
place in the cases of low amplitude (A = 0.2) and low tem-
peratures. This fact calls into question whether or not we
are in the presence of stochastic resonance. For a detailed
discussion of this phenomenon see references [33–35].

The value of τ (time required to change the coverage
degree from 0 to 1 or vice versa) was calculated by aver-
aging over 100 cycles of change of chemical potential from
μ0 − A to μ0 + A and vice versa, for some typical cases.
The results are shown in Figure 5 as a function of temper-
ature, for several amplitude values. The case of passage
from θ = 0 to θ = 1 is shown separately from the case of
passage from θ = 1 to θ = 0 because the system is not

mu=-2.52 eV mu=-3.32 eV mu=-3.37 eV

mu=-3.42 eV mu=-3.47 eV mu=-3.47 eV

mu=-2.62 eV mu=-2.57eV mu=-2.52 eV

Fig. 4. Frames showing the microscopic behaviour of the cov-
erage degree at different chemical potentials along one cycle,
for an oscillation amplitude of A = 0.50, a period P = 64 and
a temperature T = 100 K.
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Fig. 5. Value of τ (time required to change the coverage de-
gree from one extreme to the other, under a sudden change
of the chemical potential) as a function of the temperature.
Left: comparison between the τ for the passage from θ = 0
to θ = 1 (open red squares) and the passage from θ = 1 to
θ = 0 (filled black circles), for two amplitudes (A = 0.2 and
A = 0.5). Right: comparison between several amplitudes, for
the kinds of passage (from θ = 1 to θ = 0 and from θ = 0 to
θ = 1).

symmetrical and the two τ values are not equivalent. In
most cases, the value of τ remains more or less constant
until a certain temperature at which it rises abruptly. This
can be explained because it takes a lot of time to reach
the value 0 or 1 because at high temperatures the tran-
sition is slower and it spends more time at intermediate
values. For A = 0.2 the general value is higher, but for
the rest of amplitudes, it is approximately in the order of
τ � 10 MCS, at not very high temperatures.
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Fig. 6. Residence time distribution for different combinations
of amplitude (in eV), period, P (in MCS) and temperatures
(in K), as indicated. The main peak is always at 0.5P and
in some cases there are other subpeaks at (n + 1/2)P . It can
also be observed the splitting of the main peak in two parts,
correspondig to the adsorption and the desorption processes,
because they are not exactly symmetrical.

According to reference [12], the relationship between τ
and the period of the oscillation must be about 2× τ = P
in order for stochastic resonance to be observed.

In order to estimate residence time distributions, simu-
lations of 1000 cycles were performed. The residence time
was defined as the number of Monte Carlo steps needed to
reach θ = 1 if starting θ = 0 and vice versa. The distribu-
tion of residence times for different conditions is shown in
Figure 6. In the left side, different periods are compared
for the cases of amplitudes A = 0.2 and A = 0.5 and
T = 300 K. In most cases the mean peak is located at
rt/P = 0.5, but for A = 0.2 and low periods of A = 0.5,
there are other peaks at rt/P = 1.5, 2.5, etc. In the right
side of the figure, different temperatures are compared, for
A = 0.2 and A = 0.5 and period P = 512.

One of the main characteristics of all the residence time
distributions is that there are two peaks instead of one.
The first one corresponds to the passage from θ = 1 to
θ = 0 and the second one to the opposite case. This is due
to the non-symmetry of the system for the covering and
the desorption process.

Figure 7 depicts the distribution of θ (probability of
obtaining each particular value of θ) for nine different tem-
peratures and P = 256 in the case of amplitudes A = 0.1
and A = 0.5, averaged over 512 simulations. For each sim-
ulation, the average was taken over the last 1024 temporal
steps, that is in the stationary regime (after 1024 equili-
bration steps). For the case of A = 0.1, at low tempera-
tures (T = 300 K and T = 400 K), θ is concentrated at
value 1 and it becomes distributed between the values 0
and 1 at intermediate temperatures. As temperature in-
creases, θ becomes more or less symmetrically distributed
at both sides of the centre, approaching the middle point
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Fig. 7. Distribution histograms of coverage degree, for oscilla-
tion amplitudes of the chemical potential A = 0.1 and A = 0.5,
period P = 256 MCS and several temperatures, as indicated.
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Fig. 8. Fourier transform of the coverage degree as a function
of the oscilating chemical potential for amplitude A = 0.10,
periods P = 64 MCS, P = 128 MCS, P = 256 MCS and
P = 512 MCS, and several temperatures, as indicated. The
main peak corresponds to the oscilation period of the chemical
potential.

(θ = 0.5) at very high temperatures. For amplitude
A = 0.5, at temperatures lower than T = 2000 K, θ is
symmetrically distributed between the values 0 and 1. As
temperature increases θ = distribution shifts towards the
centre, but misses the center position.

In order to analyze the response of θ to the external
periodical variation of μ, the Fourier transform was stud-
ied. The average was taken over 10 simulations, each one of
2048 steps (after some equilibration period) and the signal
is plotted in Figure 8 for the case of amplitude A = 0.10,
four of the studied periods (P = 64, P = 128, P = 256
and P = 512) and several temperatures. As it can be
noticed, the main peak is located at 1/P in the Fourier
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Fig. 9. SNR as a function of temperature, for different peri-
ods and amplitudes, as indicated. For amplitudes A = 0.05 eV,
A = 0.10 eV and A = 0.15 eV, there is a unique maximum,
for a certain temperature, and the shape of the curve is ap-
proximately independent of the period. For higher amplitudes
(A = 0.50 eV, A = 0.80 eV and A = 1.00 eV) the initial values
are very high, then the curves reach a minimum, and then in-
creases again until a maximum. In these cases the dependence
with the period is stronger.

coordinate space. This peak is employed to calculate SNR
(signal-noise relationship), by the equations described in
Section 2.6. The signal at zero in the Fourier transform
corresponds to the background noise, where no frequency
is present at all. In practice, we calculate de height h of the
peak and the background (n = noise) as the average value
of the two adjacent points. Then, SNR value is estimated
as SNR = (h − n)/n.

Figure 9 shows SNR as a function of temperature, for
different frequencies and amplitudes. As it can be seen,
for low amplitudes (A = 0.05, A = 0.10 and A = 0.15),
the curves are similar for the different frequencies. They
are zero for low temperatures, then they abruptly increase
presenting a maximum value, after that, they decrease
exponentially. For higher amplitude values (in this case
A = 0.50, A = 0.80 and A = 1.00), SNR starts at very
high values, then showing a minimum and increasing again
up to a maximum value. The position of the peaks depends
on frequency and it moves towards higher values of T and
lower values of SNR as the period increases. After that,
the curves decrease in all cases and match each other for
the different frequencies.

The maximum at the beginning in the case of large
amplitudes implies that the coverage perfectly follows
the external chemical potential even for low temperatures.
That is not an example of stochastic resonance, because
the response does not need the noise in order to be coupled
to the external signal. In this case, the coverage oscilates
near θ = 1 or near θ = 0 following the signal but with-
out passing from one state to the other one. Stochastic
resonance is due to the optimal relationship between the
signal and the noise. Thus, the peak corresponding to that
phenomenon is the second one.
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Fig. 10. SNR as a function of amplitude, for periods P = 64,
P = 128, P = 256 and P = 512, and relatively low tem-
peratures (T = 50 K, T = 100 K, T = 150 K, T = 200 K,
T = 300 K, T = 500 K). The initial value of SNR is zero, but,
from a certain threshold, it starts to increase.

It can be noticed that, for most cases, the maximum
is located at temperatures higher than the critical one.
This fact also calls into question whether or not we are
in the presence of the stochastic resonance phenomenon.
The peak is around the critical temperature or less in the
cases of large amplitudes and low periods, indicating that
for these cases we can effectively talk about stochastic
resonance.

Figures 10 and 11 show the variation of SNR with am-
plitude, for different temperatures. Low and high temper-
atures can be observed in Figures 10 and 11, respectively.
It can be noticed that for low temperatures the response
is zero below certain threshold amplitude. On the other
hand, for high temperatures, the value of SNR increases
nearly linearly with A. At low temperatures and large
amplitudes, SNR value is very high.

The threshold value of the amplitude at which SNR
is no longer null was calculated for each temperature and
frequency. Figure 12 shows threshold amplitude as a func-
tion of temperature for the four frequencies studied. In
most cases, the threshold starts near A = 0.4 and then
decreases until reaching zero from a certain temperature
value.

Finally, Figure 13 shows the signal-noise relationship
as a function of the period, for different amplitudes and
temperatures. For these particular cases, a maximum can
be observed for a certain value of P , which may indicante
that we are in the presence of stochastic resonance.

4 Summary and discussion

The response of the coverage degree of silver adsorp-
tion on a gold surface to a periodical chemical potential
was studied by means of Grand Canonical Monte Carlo
simulations.
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Fig. 11. SNR as a function of amplitude, for periods P = 64,
P = 128, P = 256 and P = 512, and relatively high temper-
atures (T = 800 K, T = 1000 K, T = 2000 K, T = 3000 K,
T = 5000 K, T = 8000 K). The initial value of SNR is zero
and it increases more or less linearly.
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Fig. 12. Amplitude threshold for the observation of SNR as
a function of temperature for P = 64 MCS, P = 128 MCS,
P = 256 MCS and P = 512 MCS.

In general, the response of the signal coverage follows
the chemical potential, except for small amplitudes and
low temperatures. In most cases the value of τ (mean time
to change phase) is in the order of 20 MCS. In graphs of
SNR as a function of temperature, there is generally a
maximum, which indicates that we are probably in the
presence of stochastic resonance. The peak is near the
critical temperature in the case of large amplitudes and
low periods. For the other cases the temperature corre-
sponding to the peaks is higher than TC , indicating that
it may not be a case of stochastic resonance, but we can
observe dynamic phase transitions. At low temperatures,
a threshold value of amplitude is observed for the SNR
response. The curves of SNR as a function of the period
show a maximum for certain combinations of amplitudes
and temperatures.
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Fig. 13. SNR as a function of period, for different combi-
nations of amplitudes and temperatures (A = 0.05 eV and
T = 300 K; A = 0.10 eV and T = 1000 K; A = 0.20 eV
and T = 500 K; A = 0.50 eV and T = 100 K). For these
combinations of parameters, a maximum can be observed.

The behavior of this system was found to be qualita-
tively analogous to an opinion model with two possible
opinion values and external propaganda. The two pos-
sible opinion values are equivalent to the two states of
each adsorption site (occupied or empty) while the peri-
odically varying external propaganda is the analogue of
the chemical potential.

Some related experimental studies can be suggested.
One possibility would be to carry out the periodic varia-
tion of the chemical potentials in an electrochemical cell
adapted for the study of underpotential deposition of Ag
on Au(100). This can be done either by means of linear
sweeps, alternatively changing from one direction to the
oppossite or by discrete steps of chemical potential, oscil-
lating periodically between two values (one corresponding
to the coverage of silver and the other with no coverage as-
sociated). However, the experimental realization of these
studies, present some difficulties due to the range of pa-
rameters employed. The main advantage of computer sim-
ulations is that it is possible to explore ranges of param-
eters that are difficult to achieve experimentally. In this
particular case, the amplitudes taking into account are
very high and in real experiments it would comprisses a
lot of adittional processes. Real impedance experiments,
for instance, involve amplitudes of oscilation lower than
0.01 eV, but in the present numerical calculations, the
amplitudes must be higher in order to detect some re-
sponse. On the other hand, in impedance experiments, a
very large range of frequencies are explored, but here we
have the limitation of taking values equal to powers of two,
due to the numerical algorithm for the fourier transform.
Also, the temperatures involved in this work are very high
for real systems. Instead of impedance, STM studies can
be realized, in order to detect the coverage and decover-
age processes. Some future work will be oriented in that
direction.
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