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SUMMARY

A procedure for obtaining the initial value of the costate in a regular, finite-horizon, nonlinear-quadratic
problem is devised in dimension one. The optimal control can then be constructed from the solution to the
Hamiltonian equations, integrated on-line. The initial costate is found by successively solving two first-
order, quasi-linear, partial differential equations (PDEs), whose independent variables are the time-horizon
duration T and the final-penalty coefficient S. These PDEs need to be integrated off-line, the solution
rendering not only the initial condition for the costate sought in the particular (T, S)-situation but also
additional information on the boundary values of the whole two-parameter family of control problems,
that can be used for design purposes. Results are tested against exact solutions of the PDEs for linear
systems and also compared with numerical solutions of the bilinear-quadratic problem obtained through
a power-series’ expansion approach. Bilinear systems are specially treated in their character of universal
approximations of nonlinear systems with bounded controls during finite time-periods. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Hamiltonian formalism has been at the core of the development of modern optimal control
theory [1]. When the problem concerning an n-dimensional system and an additive cost objective
is regular [2], i.e. when the Hamiltonian of the problem can be uniquely optimized by a control
value u0 depending on the remaining variables (t, x,�), then a set of 2n ordinary differential equa-
tions (ODEs) with a two-point boundary-value condition, known as Hamilton’s (or Hamiltonian)
equations (HE), have to be solved. This is often a rather difficult numerical problem. For the
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V. COSTANZA

linear-quadratic regulator (LQR) with a finite horizon there exist well known methods (see for
instance [3]) to transform the boundary-value problem into an initial-value one. In the infinite-
horizon, bilinear-quadratic regulator and change of set-point servo, there is a recent attempt to
find the missing initial condition for the costate variable, which allows to integrate the equations
on-line with the underlying control process [4].

For general nonlinear systems � and arbitrary cost objectives J, optimal control problems do
not have a standard and effective solution strategy. The subclass of bilinear systems �̃ may be used
as universal approximations to non-linear systems in the following sense: if the admissible values
for the control variable u(.) are bounded during a fixed finite period of time [t0, tf], then a bilinear
system �̃ can be found such that each of its state trajectories x̃u(.) differs from the trajectories
xu(.) corresponding to the same control applied to the original �, during a time-period inside
[t0, tf], in less than an arbitrary tolerance tol>0 fixed a priori (see [5–7]). It is well known that a
similar result cannot be obtained by using linear approximations, which are good only in a strictly
local character, and since it is crucial to count with at least a ‘sampling’ period of duration where
the quality of the approximation is guaranteed, then bilinear models will receive special attention
in this paper. ‘Suboptimal control’ will mean in this context that the optimal control strategies
constructed for a bilinear approximation �̃ and a given cost objective J will only approximate
the solution to the optimal control problem for (�,J). But the main advantage of using this type
of approximations comes from the fact that many control situations have been clarified and solved
for the class of bilinear systems, by independent methods, as in the cases of suboptimal bilinear-
quadratic regulation [8–10], infinite-horizon change of set-points [4], finite-horizon tracking [11],
nonlinear observer design [12], and the Kalman–Bucy filter [13].

Hamiltonian systems (modelled by a 2n-dimensional ODE whose vector field can be expressed in
terms of the partial derivatives of an underlying ‘total energy’ function—called ‘the Hamiltonian’—
constant along trajectories) are key objects in Mathematical Physics. The ODEs for the state
and costate of an optimal control problem referred above constitute a Hamiltonian system from
this general point of view. Bellman has contributed in both fields but was particularly interested
in symplectic systems coming from Physics (see for instance [14]) when he devised a partial
differential equation (PDE) for the final value of the state x(tf)=r(T,c) as a function of the
duration of the process T = tf− t0, and of the final value imposed to the costate �(tf)=c (one of
the boundary conditions, the other being the fixed initial value of the state x(t0)= x0, see [15]).
Bellman exploited in that case ideas common to the ‘invariant imbedding’ numerical techniques,
also associated with his name.

In this article the invariant imbedding approach is generalized and proved for the nonlinear-
quadratic optimal control situation, where the final value of the costate depends on the final value
of the state, i.e. c=c(r). The procedure followed in this proof induces another PDE for the initial
value � of the costate �(t0), which was actually the main concern from the optimal control point of
view. The first-order quasilinear equation for � developed here is new. It can be integrated after the
PDE for the final state � (independent of �) has been solved. The ‘initial’ condition for � depends
on the final value of the state and the weight matrix S involved in the quadratic final-penalty
x ′(T )Sx(T ). Therefore, it seems more natural to consider here (T, S) as the independent parameters
of the family of control problems under optimization. Having found the solution �(T, S), the HE
can be integrated for each particular value of the parameters. However, the whole curve �(., S)

can be useful in real time, as a kind of safeguard against unexpected departures of the numerical
solution to HE, which carry some instabilities near equilibrium, inherent to the structure of the
spectrum of their linearizations.
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The results are applicable to situations for which the initial state is known exactly (so
that an open-loop solution to the optimal control problem is adequate). In most applications
disturbances are present so that a state-feedback solution, provided by the usual Hamilton–
Jacobi–Bellman equation (a nonlinear PDE in (t, x)), would be preferable (but more difficult to
obtain).

The paper is organized as follows: in Section 2 the finite-horizon nonlinear-quadratic regulator
problem is posed, the invariant imbedding approach is developed in Section 3, and illustrated in
Section 4 for the linear dynamics’ case in dimension one, for which exact solutions are known.
In Section 5 bilinear-quadratic regulation is explored in connection with an independent method
based on the generalized (x-dependent) Riccati differential equation (DRE). The results coming
from both methodologies are found to be consistent, at least in dimension one, where symbolic
calculations are possible. Finally, in Section 6 the invariant imbedding approach is applied to
the ‘optimal change of set-points’ problem for bilinear systems, and its features discussed in
comparison with the known series-expansion solution, developed for the same situation viewed as
a tracking problem. Conclusions are exposed in Section 7.

2. SYSTEM DYNAMICS AND OBJECTIVE FUNCTIONS.
THE OPTIMAL REGULATOR PROBLEM

The article applies to initialized, time-constant, finite-dimensional, deterministic, nonlinear control
systems of the form

ẋ= f (x)+g(x)u= X (x,u), x(0)= x0 (1)

with the state x evolving in some open set of Rn , admissible control trajectories are piecewise
continuous functions u : [0,T )→R, and f,g are smooth vector fields in their domains.

Only classical quadratic costs will be considered, for instance (for the ‘regulation’ case)

J(u)=
∫ T

0
[x ′(t)Qx(t)+Ru2(t)]dt+x ′(T )Sx(T ) (2)

where J(u) is a short form for J(0,T, x0,u(.)), i.e. the sum of the cost generated by the
admissible control strategy u(.) and by the state trajectory x(.)=�(., x0,u(.)) (where � is the
transition function of system (1)) measured by the integral of the Lagrangian L(x,u)= x ′Qx+Ru2

(Q and R constant for simplicity) plus a final penalty weighted by S. Standard assumptions on
matrices Q, S�0 and R>0, will be imposed. This whole situation will be considered as a (T, S)-
nonlinear-quadratic optimal control problem, the other parameters playing a secondary role in the
sequel.

Clearly the desired state is the origin, so the problem consists on abating perturbations x0 �=0
with optimal cost. The Hamiltonian of the problem is defined as usual

H(t, x,�,u)�L+�′X = x ′Qx+Ru2+�′[ f (x)+g(x)u]
where � is the adjoint or costate variable, with values in Rn . Time constancy of the dynamics and
constant coefficients in the Lagrangian imply that t does not appear explicitly, so H(x,�,u) will
be used in what follows. H is assumed to be regular. Precisely, for each pair (x,�) there exists
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V. COSTANZA

a unique minimizing control value u0(x,�) such that the ‘optimal’ Hamiltonian is obtained at

H0(x,�)=H(x,�,u0(x,�))

with u0 a smooth function of its variables.
Then the HE associated with this problem, namely

ẋ =
(

�H0

��

)′
�F(x,�), x(0)= x0 (3)

�̇ = −
(

�H0

�x

)′
�−G(x,�), �(T )=2Sx(T ) (4)

can in principle be written as a 2n-dimensional ODE in (x,�) (see [1, 3] for the foundations of
this two-point boundary-value problem). If the HE can be solved on-line, then the optimal control
could be evaluated from their solution, in a state/costate feedback fashion,

u∗(t)=u0(x(t),�(t)) (5)

3. THE INVARIANT IMBEDDING APPROACH

Equations (3) and (4) pose a type of mixed two-point boundary-value problem. For linear systems it
can be reformulated as an initial-value matrix ODE (see for instance [3]), but no general procedure
applies to nonlinear systems (see for instance [16]). In the case of bilinear systems it has been
found [8] that the costate admits the formal expression:

�(t, x)=2�(t, x)x

for some matrix-valued function �(t, x), and recently it has been found [10] that �(t, x) must obey
a first-order PDE with boundary condition:

�(T, x)= S ∀x
Under this approach, a matrix PDE would need to be solved for each combination of the

parameters (T, S) in order to obtain �T,S(t, x). Unless specifications for a process are too strict,
usually both T and S would allow for some degree of flexibility, either at the design level or
induced by economical arguments and reflected on operational changes. Whatever the reasons,
it is clearly useful to know how the control changes in connection to changes on the design
parameters. Following this objectives, since the finite-horizon situation is essentially a two-point
boundary-value problem, it is natural to revise some ideas associated with Bellman’s ‘invariant
imbedding’ approach [15].

Let us denote by �(T, S) the final value of the state x , and by �(T, S) the initial value of the
costate � in the problem at hand. Let us also assume that for each combination of parameters
(T, S) the two-point boundary-value problem has a unique solution, varying smoothly with smooth
changes in parameters. For the system (3)–(4) there will be assumed to exist a smooth flow
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� :R×O→Rn, with O some sufficiently large open set in Rn×Rn, such that �(t, x,�) will
render the values of the state and costate at time t along the trajectory starting (when t=0) at
the generic value (x,�). The following notation indicates that the two ‘components’ of the flow,
referring to the state (denoted by �1 below) and the costate (denoted �2), each in Rn, will be
considered separately

�(t, x,�)=(�1(t, x,�),�2(t, x,�)) (6)

and, accordingly, the following identities become clear:

�(T, S) � xT,S(T )=�1(T, x0,�(T, S)) (7)

�(T, S) � �T,S(0) (8)

�T,S(T ) = 2S�(T, S)=�2(T, x0,�(T, S)) (9)

where (xT,S(.),�T,S(.)) is the optimal trajectory corresponding to a fixed horizon duration T
and a fixed penalty weights, and the point in (.) stands for the independent variable time
t ∈[0,T ].

By taking partial derivatives with respect to T in Equation (7) (the notation D1=�/�T , and
similarly for other partial derivatives, is adopted when clarity seems necessary),

D1�(T, S)=D1�1(T, x0,�(T, S))+D3�1(T, x0,�(T, S))D1�(T, S) (10)

Since the existence of the flow implies

D1�(t, x,�)=(F(�(t, x,�)),−G(�(t, x,�))) (11)

with F and G as defined in Equations (3) and (4); then, at the final time T,

D1�1(T, x0,�(T, S)) =F(�(T, x0,�(T, S)))

=F(�1(T, x0,�(T, S)),�2(T, x0,�(T, S)))

=F(x(T ),�(T ))=F(�(T, S),2S�(T, S)) (12)

which will turn Equation (10) to be written in simplified notation as

�T =F+�1�
�T (13)

with the following conventions

F(�, S) �F(�,2S�) (14)

�T � D1�(T, S)= ��

�T
(T, S) (15)

Now, the derivative of Equation (7) with respect to S gives

�S =�1�
�S (16)
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V. COSTANZA

and repeating the procedure (�/�T ,�/�S) with Equation (9) renders

2S�T = −G+�2�
�T (17)

2(�+S�S) = �2�
�S (18)

The treatment proceeds in dimension one. Formally, from Equations (13) and (16) �1�
can be

eliminated; and so can �2�
from Equations (17) and (18); to obtain, respectively,

�S�T +(F−�T )�S = 0 (19)

2(�+S�S)�T −(2S�T +G)�S = 0 (20)

Therefore, in order for the problem to have a nontrivial solution, the determinant of the augmented
system must be null, i.e.

��T −
(
SF+ G

2

)
�S =�F (21)

which is a first-order, quasi-linear PDE for �, that can be integrated independently from �, with
the boundary condition

�(0, S)= x0 (22)

Actually, the integration of Equation (21) for � is not so valuable in itself but for its relation
to the initial value � of the costate variable �. After � is calculated numerically, then � can be
integrated from this information. For instance, from Equations (19) and (21) it follows that

��T −
(
SF+ G

2

)
�S =0 (23)

which is a linear, homogeneous, first-order PDE for �, subject to the boundary condition

�(0, S)=2Sx0 (24)

4. SOME VALIDATIONS FROM THE ONE-DIMENSIONAL LINEAR CASE

The classical LQR problem [3, 17] with F= Ax−(W/2)�,G=2Qx+A′�, where W =BR−1B ′,
allows in the one-dimensional case for symbolic integration of Equation (21), since the PDE takes
the simple form

�T −(2AS−S2W +Q)�S =(A−WS)� (25)

The solution of the problem is

�(T, S)= 1−�(S)

1−�(S)e−kT
e−(k/2)T x0 (26)

where k/2=√A2+WQ=−(A−W�0)>0 (minus the closed-loop gain for the T =∞ case),
�0 denoting the solution to the algebraic Riccati equation (ARE) of the problem, namely
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p2(S)=0, with p2(S)=−(2AS−S2W +Q), R0(S)=∫ dS/p2(S), and �(S)=ekR0(S) =(2WS−
2A−k)/(2WS−2A+k). Note that �(T,�0)=e−(k/2)T x0, then it coincides with the steady-state
solution to the problem, as expected.

Figures 1 and 2 show the numerical solution of Equation (25) with boundary condition as
in Equation (22). In Figures 3 and 4, the evolution of two particular (fixed S-values) curves
�S(.)��(., S) as functions of the time-horizon T is shown, combined with the state solutions
obtained from the DRE for some values of the final time T and the same final penalty weights S.

The two curves correspond to values of S>�0 and S<�0, respectively.
It is instructive to inquire into the meaning of each curve �S(.). For instance, it can be imme-

diately verified that these curves obey the dynamics

�̇S = A�S+BũS (27)

with some hypothetical control ũS(.)�−BR−1�S(.)�S(.), where

�S(T )= 1

W

(
A+ k

2

1+�(S)e−kT

1−�(S)e−kT

)
(28)

It is straightforward to check that �S(.) is a solution to the ‘opposite’ DRE

�̇S =−p2(�
S), �S(0)= S
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Figure 1. Solution to the PDE for �(T, S) for the regulation case. Initial condition x0=1. Other parameters:
A=−1, B=1,Q=1, R=0.1,W = B2/R=10.
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Figure 2. Projection of the graph of �(T, S) onto the (T ;�) plane. Different curves �S(T ), for values of
S ranging from S=0 (uppermost) to S=2, can be visualized. Parameter values are as in Figure 1.
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Figure 3. �S(.)=�(S, .) for a fixed value of S=5.6>�0 and several trajectories xT,S(.) for different values
of the final time T . Other parameters are as in Figure 1.
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Figure 4. �S(.)=�(S, .) for a fixed value of S=0.01<�0 and several trajectories xT,S(.) for different
values of the final time T . Fixed values other than S as in Figure 3.

and that (see [3])
lim

T→∞�S(T )=�0

Therefore, for fixed S, this expression for �S contains all solutions �T,S(.) to the ‘right’ DRE

�̇= p2(�), �(T )= S

that can be obtained through the simple change of variables

�T,S(t)=�S(T − t)

The relationship between �S and the different �T,S corresponding to time-horizons of duration
T is illustrated in Figure 5.

Finally, the solution to Equation (23) for the linear case, i.e. of

�T + p2(S)�S =0

with the boundary condition given in Equation (24), can be integrated alone since it is independent
of � and its derivatives to give

�(T, S)= (2A−k)�(S)e−kT −(2A+k)

W [�(S)e−kT −1] x0 (29)

which clearly verifies

�(T, S)=�T,S(0)=2�T,S(0)xT,S(0)=2�S(T )x0 (30)
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Figure 5. Curves �S(T ) for S=0.8>�0=√
2−1 and S=0.2<�0, both approaching �0 as T →∞.

For the same values of S, curves �Tf,S(t), with Tf=1, extended for t>Tf.
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Figure 6. Exact solution for the initial state �(T, S) in the linear case. Parameters as in Figure 1. Limiting
behavior related to the algebraic Riccati equation solution �0=ARE(A,W,Q)=0.23165.
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together with the expected

lim
T→∞�(T, S)=2�0x0 (31)

Equation (29) is illustrated in Figure 6. The limiting behavior of the costate can be checked,
namely

�(∞, S)=2�0x0=0.4633 ∀S (32)

5. AN APPLICATION TO THE ONE-DIMENSIONAL BILINEAR-QUADRATIC
REGULATOR PROBLEM

For the bilinear case with dynamics

ẋ= Ax+Bu+Nxu (33)

and quadratic finite-horizon cost (Equation (2)), it is known [8, 9] that the costate along the optimal
trajectory passing by the state-value x at time t takes the form:

�(t)=
(

�V
�x

)′
(t, x)=2�(t, x)x (34)

where V is the value function for the problem starting at (t, x) with time-horizon T , i.e.

V (t, x)� inf
u(.)

J(t,T, x,u(.)) (35)

and �(t, x) is a generalized Riccati matrix, an analogous result to the LQR problem but in this
case with � depending also on the state x .

In the infinite-horizon case �(t, x) does not depend on t, and it can be shown [4, 9] that it obeys
the equation

0=�(x)
(B+Nx)(B+Nx)′

R
�(x)−�(x)A−A′�(x)−Q (36)

The Hamiltonian of the problem is regular independent of the time-horizon, the control mini-
mizing it being

u0(x,�)=− 1

2R
(B+Nx)′� (37)

and then the optimal Hamiltonian and the derived differential equations take the form

H0(x,�) = x ′Qx+�′Ax− 1

4R
�′(B+Nx)(B+Nx)′� (38)

ẋ =
(

�H0

��

)′
=F(x,�)= Ax− 1

2R
(B+Nx)(B+Nx)′�, x(0)= x0 (39)

�̇ = −
(

�H0

�x

)′
=−G(x,�)=−2Qx−A′�+ 1

2R
N ′�(B+Nx)′�

�(0) = 2�(0, x0)x0 (40)

Copyright q 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2007)
DOI: 10.1002/oca

UNCORRECTED P
ROOFS

 
 
 



V. COSTANZA

Recently [10] it has been shown that the matrix �(t, x) is the solution to a first-order PDE that
takes the form (in simplified notation):

pt +�(x, p)px =�(x, p) (41)

with boundary condition

p(T, x)= S ∀x (42)

In (41), the coefficient functions are

�(x, p)�(A−Wx p)x (43)

and

�(x, p)�Wx,p+ pWx p− pA−A′ p−Q (44)

where Wx =(B+Nx)(B+Nx)′/R; Wx,p =(B+Nx)′ pxN ′ p/R. Note that when pt =0, which
corresponds to the T =∞ case, then p= p(x) and

pWx p− pA−A′ p−Q=0 ∀x (45)

(due to Equation (36)). But the term Wx,p does not necessarily vanish, so Equation (41) takes the
compact form:

�(x, p)px =Wx,p (46)

which can be explicitly checked in dimension one, where

p(x)= A+√A2+QWx

Wx
(47)

Finally, it is worth mentioning that for the n-dimensional bilinear system and T<∞, Equation
(21) takes the form

�T +�(�, S)�S =�(�, S) (48)

‘symmetric’ (in a formal sense, whose mathematical meaning is still being investigated) to (41).
The PDE (48) for a bilinear system obviously reduces to its equivalent for a linear system with
the same matrices A and B. However, this analogy does not extend to the role of the terms in the
equations. For instance, in the linear case � is undoubtedly related to its ARE, but for the bilinear
case the coefficient function � includes the extra term Wx,p. Equation (46) may then be considered
as an alternative way to obtain the matrix p(x) in a neighborhood of the origin, most useful in
steady-state regulation problems (see [4]), coupled with the initial condition (from Equation (45))

p(0)=�0

6. TRACKING AND SET-POINT CHANGES

The problem of changing set-points is frequent in engineering, mostly in the control of chemical
or biological reactors. It consists of steering the system from some original state x0, which is kept
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constant by a value u0 of the manipulated variable (i.e. (x0,u0) is an equilibrium of the control
system, usually called a set-point), towards another equilibrium (x̄, ū), called the target set-point,
while minimizing the deviation quadratic cost

J(u)=
∫ T

0
[(x− x̄)′Q(x− x̄)+Ru2]dt+(x(T )− x̄)′S(x(T )− x̄) (49)

In this section a bilinear system as in Equation (33) will be considered. The Hamiltonian differ-
ential equations, Riccati algebraic equation, and optimal feedback for the infinite-horizon problem
have been discussed in [4, 13], where a ‘relative control’ u− ū with respect to the equilibrium
control ū corresponding to x̄ was allowed in the Lagrangian instead of the ‘absolute’ u (this
is necessary to guarantee finiteness of J(u), without which optimization lacks sense). For the
finite-horizon case, however, the absolute control can be considered, and then the problem takes
the form of ‘tracking a constant reference signal xr (t)≡ x̄’. HE and boundary conditions take a
slightly different form from that in the regulation case:

ẋ = Ax− (B+Nx)(B+Nx)′

2R
�, x(0)= x0 (50)

�̇ = −2Q(x− x̄)−A′�+ N ′�(B+Nx)′�
2R

, �(T )=2S(x(T )− x̄) (51)

since the control u0 minimizing the Hamiltonian remains formally the same.
This problem has also been approached through power-series expansions (see [9, 11, 18] for

details).
One of these approaches, inspired in the linear optimal tracking problem [2], basically proposes

the following power-series expansion for the value function:

V (t, x)=	(t)−x ′
(t)+x ′P1(t)x+x ′P2(t)x [2]+x ′P3(t)x [3]+· · · (52)

that when replaced in the Hamilton–Jacobi–Bellman equation

�V
�t

(t, x)+H

(
x,

(
�V
�x

)′
(t, x),u0

(
x,

(
�V
�x

)′
(t, x)

))
=0 (53)

and after collecting terms, generate the set of ODEs that the time-dependent coefficients of the
series must meet in order to validate the proposal (52), namely

	̇ = −x̄ ′Qx̄+
′W



̇ = −2Qx̄−(A−WP1)
′
− 1

2

′BR−1N ′


Ṗ1 = −P1A−A′P1+P1WP1−Q+ 1
4N

′
R−1
′N− 1
2 P1BR

−1
′N−·· ·
− 1

2N
′
R−1B ′P1− 1

2

′BR−1N ′P1− 1

2 P1NR
−1B ′
+·· ·

Ṗ2 = ·· ·

(54)
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V. COSTANZA

These equations are coupled and have the following final conditions:

	(T ) = x̄ ′Sx̄


(T ) = 2Sx̄

P1(T ) = S

P2(T ) = P3(T )=·· ·=0 (of appropriate dimension)

which in turn arise from the natural boundary condition to Equation (53), namely

V (T, x)=(x(T )− x̄)′S(x(T )− x̄) (55)

Usually this final-value problem needs to be integrated numerically off-line, and its solution
stored in the memory of some device and afterwards employed (in real time) to construct the
optimal control in feedback form:

u∗(t, x)=− 1

2R
(B+Nx)′

(
�V
�x

)′
= 1

2R
(B+Nx)′[−
(t)+2P1(t)x+·· ·]

In practice only a finite number of terms can be kept, and as a consequence the numerical
value of the control results to be suboptimal. Also, it should be noticed that the dimensions

of the matrices Pi , i=1,2, . . . , grow as n×
(
i+1
n

)
, so improving accuracy as the evaluation of

high-order terms becomes intricate. Besides, there is no flexibility with respect to T and S: if
they need to be altered in response to new design requirements, then the whole calculation has
to be repeated. Finally, the handling of the numerical solutions demands special care: when the
control is constructed, the values of the coefficients Pi (t) may be required at t-values for which
they are not available. As a whole then, this approach presents inconveniences that turn desirable
to look for on-line integration of HE, as has been done with the regulation case in previous
sections.

Taking into account that for this problem, the final value of the costate is

�(T )=2S(�− x̄) (56)

then the procedure developed in Section 3 has to be slightly amended and the PDE for �(T, S)

takes the form

(�− x̄)�T −
(
SF+ G

2

)
�S =(�− x̄)F (57)

where now

F(�, S) =F(�,2S(�− x̄))

G(�, S) =G(�,2S(�− x̄))

and the boundary condition remains as in Equation (22).
Figure 7 illustrates the integration of Equation (57) for small values of S. The final value of

the state is still far from the target x̄=1 in the range shown, but for fixed horizon duration T , the
value of �(T, S) increases with S, and it reaches around 0.95 for S=10.
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Figure 7. Solution �(T, S) for the change of set-point problem, from x0=0 toward x̄=1.
Parameters are A=−0.5; B=Q= R=1;N =0.5.

The PDE for the initial costate �(T, S) looks formally as Equation (23), but now with an explicit
dependence on the target x̄,

(�− x̄)�T −
(
SF+ G

2

)
�S =0 (58)

and can be integrated in parallel with Equation (57), in this case with boundary condition

�(0, S)=2S(x0− x̄) (59)

A trial integration of (simultaneously) (�,�) using standard software was successfully performed.
Figure 8 shows just one line of the resulting behavior �(., S) for S=1.455.

The curve of �(.,1.455) has approximately the same limit of minus the curve 
̌(.) in Figure 9.
Here 
̌(.) is the reverse solution of 
(.), the first-order coefficient function of time in the power-
series expansion of V, that was calculated here from a 2-terms approximation to Equations (54)
(the equation for 	 is irrelevant). In dimension one, this approximation reads as


̇ = −2Qx̄−(A−WP1)
− BN

2R

2 (60)

Ṗ1 = −Q−2P1A+WP2
1+ N 2

4R

2−2

BN

R

P1 (61)
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Figure 8. Curve �(., S) for S=1.455. Extracted from the solution �(T, S) of the change of set-point
problem with parameters as in 7.
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Equations (60) and (61) were integrated after reversing the sign of their right-hand-sides and
with initial conditions: 
̌(0)=
(T )=2Sx̄=2.91; P̌1(0)= P1(T )= S=1.455.

The limiting behavior of curves in Figures 8 and 9 show that the two methods (invariant
imbedding and power series) are consistent, since from Equation (52):

�(∞, S) = �∞,S(0)= �V
�x

(0, x0)=−
(t)+2P1(t)x+·· · |(t,x)=(0,0)

= −
(0)
−
̌(∞)
−1.5 (62)

7. CONCLUSIONS

HE coming from optimal control theory are treated as the central object of this work. They are
ODEs that can be explicitly posed when the Hamiltonian function of a given optimal control
problem can be uniquely optimized with respect to u, and when the minimizing control value
can be expressed as an explicit function u0 of the remaining variables. The main obstacle in
the practical use of these ODEs is that, for classical finite-horizon situations, their restrictions
generate a two-point boundary problem, difficult to solve, sometimes impossible. For the LQR
problem there exists a well-known procedure for recuperating initial conditions based on the
linearity of the HE ODEs in the 2n-dimensional space (x,�). But for nonlinear systems no
general procedure to transform the boundary value into an initial-value situation is acknowledged
in the control literature. In this article, emphasis has been put in deriving a first-order PDE
for the costate, as a key toward such transformation. This new equation resembles an equation
derived by Bellman for general Hamiltonian dynamical systems through the invariant imbedding
approach. The solutions to the PDE established here in dimension one allow in turn to numer-
ically integrate the original HE on-line with the control process and to continuously construct
the manipulated variable u∗(t)=u0(x(t),�(t)) from the state and costate values provided by this
integration.

Controlling through HE has obvious advantages over optimal control methods based on the
Hamilton–Jacobi–Bellman PDE previously devised for the bilinear-quadratic problem (known as
power-series expansion approaches). So the integration of the quasilinear PDE proposed in this
article is worth the effort, above all when standard mathematically oriented software can render
accurate solutions, as has been illustrated in the examples. The PDE method solves a whole family
of (T, S) problems, avoiding particular calculations and storing of information as in methods of the
DRE type. Also, the equations for the final state � and the initial costate � are superior (since their
unknown variables are vectors) to the PDE-based method for bilinear systems (Equation (41)),
whose unknown is a matrix p(t, x). The analytical expression of p(t, x) is known for the one-
dimensional infinite-horizon problem, so it has been used here to validate the asymptotic behavior
of the solutions �,� associated with the bilinear-quadratic regulator problem.

Having the values of �,� for a wide range of T, S values may be helpful at the control design
level. From one side, the values of T, S can be reconsidered by the designer when acknowledging
the final values of the state �(T, S) that will be obtained under present conditions. And if a change
in the parameter values is decided, then it will not be necessary to perform additional calculations
to manage the new situation. Besides, the value of �(T, S) is an accurate measure of the ‘marginal
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V. COSTANZA

cost’ of the process, i.e. it measures how much the optimal cost would change under perturbations,
which can also influence the decision on T, S values.

The calculations performed here have confirmed that the invariant imbedding approach provides
accurate initial conditions to Hamilton’s equations, allowing to construct the control from their
integration in real time. Also the PDEs developed for the final state and initial costate constitute a
useful design tool, since their solutions show the influence of a whole (T, S)-family of restrictions
over the performance of optimal controls.
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