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Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach
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We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic
phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle
spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal
region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi
temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials.
After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the
band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we
compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous
results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the
charge compressibility.
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I. INTRODUCTION

Understanding strongly correlated electron materials is a
significant theoretical challenge because they exhibit a variety
of phases with exotic properties. A wide range of materials
exhibits this behavior, ranging from the transition-metal
oxides [1], high-Tc cuprates superconductors [2,3], and heavy
fermions compounds [4–7] to the organic charge transfer
salts [8] and iron-based superconductors [9–11]. In the metallic
phase, some have low-temperature properties consistent with
the Landau Fermi liquid (FL) picture of conventional metals
below a low-energy scale, defined as coherence temperature
Tcoh. This low-temperature scale signals the breakdown of the
Fermi liquid picture and is orders of magnitude smaller than
T 0

F , the Fermi temperature associated with the band structure
for uncorrelated electrons. The family of organic salts
κ-(BEDT-TTF)2X has Tcoh � 30–50 K, and a Fermi tempera-
ture of T 0

F � 600 K [8]. Sr2RuO4 has Tcoh � 30–100 K [11–13]
and LiV2O4 has Tcoh � 20–30 K [14] both with T 0

F ∼ 104 K.
Above this coherence temperature, a transfer of spectral
weight to higher energies occurs and quasiparticles do not
exist. These exotic states and the small coherence temperature
are associated with the proximity to a Mott metal-insulator
transition [1] (MIT) or a quantum critical point [7,15,16].

Below Tcoh, the transport properties can be characterized
by diffusive transport of coherent quasiparticle states, where
the mean free path is much larger than the lattice constant.
In this regime, the resistivity often behaves as ρ ∝ T 2 and
is much less than the Mott-Ioffe-Regel (MIR) limit, ha

e2 ∼
250 μ� cm, where a is the lattice constant. However, above
Tcoh, quasiparticles do not exist and the resistivity exceeds the
MIR limit (the associated mean-free path would be smaller
than the lattice spacing). Hence, in these bad metallic states,
Boltzmann transport theory breaks down and a theoretical
description is particularly challenging [17]. Other signatures
of the crossover from a FL to a bad metal above Tcoh are
as follows: an incoherent electron spectral function, collapse
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of the Drude peak in the optical conductivity and shift of
the associated spectral weight to higher frequencies, the
entropy and specific heat become of order kB per particle,
the thermopower becomes of about kB/e, which is orders of
magnitude larger than for elemental metals, and sometimes a
nonmonotonic temperature dependence of the Hall constant
and thermoelectric power [16,18–27].

The Hubbard model is the simplest Hamiltonian that
captures the essential physics of the Mott MIT. Significant
theoretical progress has been made in the past two decades
using dynamical mean-field theory (DMFT) [28]. This
method provided a detailed picture of the evolution of the
electronic structure with temperature and interaction strength.
Despite being exact only in the limit of either infinite lattice
connectivity or spatial dimensionality, it has been found to
give a good description of three-dimensional transition-metal
oxides [29] and has been argued to be relevant for the properties
of two-dimensional organic charge-transfer salts [8,20,23].

In addition to the cases of infinite dimension d = ∞ (exact
within DMFT [28]), exact solutions for the Hubbard model
are only known for d = 1 [32], the Nagaoka limit [33], and
the trivial case U = 0. Also, diverse numerically controlled
and numerically exact results were achieved in recent years
(for a summary and careful comparison for the square lattice,
see Ref. [34] and references therein). In terms of analytical
methods, the slave-boson method introduced by Kotliar and
Ruckenstein [35] allows a nonperturbative treatment. Since
this method is an exact mapping of the electron operator,
approximations are still necessary. Already at the mean-field
level, the paramagnetic solution reproduces the Gutzwiller
approximation [36]. In addition, the approach is exact in the
large degeneracy limit, and it obeys a variational principle in
the limit of large spatial dimensions, where the Gutzwiller
approximation and the Gutzwiller wave function are identi-
cal [37]. These formal properties signify that the approach
captures characteristic features of strongly correlated electron
systems such as the suppression of the quasiparticle weight
and the Brinkman-Rice picture at the MIT [38]. For a general
review of the method, see Refs. [39,40].

Several studies have used this method (and variants) in the
study of the one-band Hubbard model at finite temperature
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[30,41–48], most focused on magnetic solutions. For para-
magnetic solutions and generic filling, it has been found
that the saddle-point equation possesses three solutions [44],
the physical one being that which has minimal free energy.
At half-filling, a first-order transition was found where the
coherent solution ceases to exist, and an approximate analytic
expression for Tcoh was calculated [30] [see Eq. (20) below]. In
a very recent work, the first-order transition was studied for the
square lattice, and the stability of the phase was analyzed by
the spin and charge dynamical susceptibilities calculated using
Gaussian fluctuations from the saddle-point solution [48].
In a somewhat similar vein to our work, previous studies
of the Anderson impurity model using the Barnes-Coleman
slave-boson representation identified a phase transition in the
slave-boson field with the Kondo temperature [49]. Also, a
large-N mean-field study of the Kondo-lattice model relates
the Kondo temperature with the vanishing of a Hubbard-
Stratonovich Bose field [50].

In this paper, we revisit the saddle-point free-energy
functional in the one-band Hubbard model, as originally
presented by Kotliar and Ruckenstein [Eq. (6) of Ref. [35]],
and we investigate its properties for finite temperature and
generic band filling. Using several band structures, we unify
the results by a proper scaling of the different cases, and we
compare with DMFT. Our results show that the dependence of
the slave-boson results on the band-structure details manifests
itself only in the value of a zero-temperature energy scale,
and hence a universal behavior is found. Also, it gives good
qualitative agreement with numerical results in a wide range
of parameters and allows a simple physical description of the
correlation effects at finite temperature. In Fig. 1 we summarize
our findings with the phase diagram for the one-band Hubbard
model at half-filling (n = 1). Figure 2 shows results for a doped
Mott insulator (n < 1) for the case of a semicircular density of
states (DOS). There are two main results to emphasize here.
First, as we approach the Mott MIT, the coherence temperature
Tcoh is orders of magnitude lower than a proper correlation
scale, cf. Eq. (13), which is of the order of the DOS bandwidth
W . This is consistent with what is observed in a wide range of
strongly correlated electron materials, i.e., Tcoh is much lower
than the scale of the noninteracting Fermi gas. The second
important result is the universal behavior that emerges after
a rescaling of temperature and interaction with the scale of
Eq. (13).

The organization of the paper is as follows: In Sec. II,
we briefly review the Kotliar-Ruckenstein (KR) slave-boson
method for the single-band Hubbard model. In Sec. III, we
present our results for the temperature dependence of the
quasiparticle weight, double occupancy, entropy, and charge
compressibility. We link the temperature where the quasipar-
ticle weight strongly decreases to the coherence temperature
in strongly correlated materials that signal the crossover to
a bad metal regime. We find that this temperature is much
lower than the uncorrelated Fermi temperature scale. Also a
general agreement with DMFT is found in the dependence of
all the quantities with T and U , and a universal behavior is
found that is independent of the band structure. The stability
of the method is analyzed in terms of the positivity of the
charge compressibility. Finally, concluding remarks and future
directions are discussed in Sec. IV.
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FIG. 1. Temperature vs interaction phase diagram for the Hub-
bard model at half-filling for different band structures. We observe
universal behavior, in that the results are independent of the details
of the band structure when T and U are scaled by Uc [defined in
Eq. (18)]. Tcoh (color points) is the coherence temperature, where
the quasiparticle weight Z = q goes to zero, calculated with the
slave-boson method (cf. Fig. 3). At T = 0 and for U > Uc, the
system is a Mott insulator. For U < Uc and T < Tcoh, the system
is in a Fermi liquid phase. For T > Tcoh, the system is in the bad
metal regime. Close to the metal-insulator transition, the coherence
temperature is orders of magnitude smaller than the energy scale
Uc, which is of the order of the energy of the uncorrelated system.
There is very good agreement with the analytic approximation
(dashed black line) found in Ref. [30] [cf. Eq. (20)]. Note also that
Tcoh � T ∗

F ≡ Z(T =0) ε0
F = Z(T =0) W

2 (dashed blue line), where ε0
F

is the uncorrelated Fermi energy and W is the bandwidth. This shows
that the large reduction in Tcoh is not just due to the renormalization
of the bandwidth. Our results are qualitatively consistent with DMFT
calculations [26,31].

II. MODEL AND METHOD

Our starting point is the one-band Hubbard model for
interacting electrons on a lattice:

Ĥ =
∑
i,j,σ

tij ĉ
†
i σ ĉj σ + U

∑
i

n̂i ↑n̂i ↓ − μ
∑

i

n̂i . (1)

As usual, ĉ
†
i σ (ĉi σ ) creates (annihilates) an electron with spin

σ at the site i, n̂i σ = ĉ
†
i σ ĉi σ is the corresponding occupation

number, and n̂i = n̂i ↑ + n̂i ↓. The hopping matrix element is
tij , U is the Coulomb on-site repulsion, and μ is the chemical
potential that fixes the average electronic density n.

We use the KR slave bosons as in their original work [35].
The KR method, in order to take into account the correlation
effects, maps the original fermionic local configurations to a
mixed fermionic-bosonic model with local constraints. The
four slave-boson operators êi , p̂i σ , and d̂i denote the empty,
singly occupied, and doubly occupied states, respectively. The
corresponding occupation numbers ê

†
i êi , p̂

†
i σ p̂i σ , and d̂

†
i d̂i

represent the projector on the four possible states on the site
i: |0〉, | ↑〉, | ↓〉, and | ↑↓〉. The physical electron operator is
represented as ĉi σ = ẑi σ f̂i σ , where f̂i σ is a fermionic operator
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FIG. 2. Coherence temperature Tcoh as a function of interaction
strength U for different fillings, using the semicircular DOS (see
the text). Away from half-filling, the system is metallic, and there is
no transition to a Mott insulator at T = 0. Due to the particle-hole
symmetry of the model, the Tcoh curves for n = 0.9, 0.8, and 0.7 are
equivalent to those for n = 1.1, 1.2, and 1.3, respectively. Away from
n = 1 we calculate the temperature Tcoh as the minimum of ∂Z

∂T
(cf.

Fig. 4). Here, Tcoh defines a crossover between Fermi liquid and bad
metal regimes. T and U are rescaled by the correlation scale U ∗

n [see
Eq. (13)]. Inset: T = 0 phase diagram of the Hubbard model in the
U -n plane for the semicircular DOS case, using its bandwidth W as
the energy scale. At half-filling (n = 1) and for U > Uc, the system
is a Mott insulator, otherwise it is a Fermi liquid. The dashed line
shows the behavior with n of the zero-temperature correlation scale
U ∗

n measured in units of W .

and

ẑi σ = 1√
1 − d̂

†
i d̂i − p̂

†
i σ p̂i σ

(ê†i p̂i σ + p̂
†
i σ̄ d̂i)

× 1√
1 − ê

†
i êi − p̂

†
i σ̄ p̂i σ̄

. (2)

The introduction of the bosonic degrees of freedom leads to an
enlarged Hilbert space, and in order to maintain the physical
Hilbert space, we need to restrict the auxiliary operators with
the following three constraints:

ê
†
i êi + p̂

†
i↑ p̂i↑ + p̂

†
i↓ p̂i↓ + d̂

†
i d̂i = 1 (3)

and

f̂
†
i σ f̂i σ = p̂

†
i σ p̂i σ + d̂

†
i d̂i . (4)

There is freedom in the choice of ẑi σ , but it ceases to be valid
once we make approximations on the model. In this work,
we use (2), which was originally presented by KR, because it
recovers the physics of the noninteracting U = 0 limit in the
mean-field approximation [35,51].

The Hubbard Hamiltonian in the new representation is

Ĥ =
∑
i,j,σ

tij ẑ
†
iσ ẑjσ f̂

†
iσ f̂jσ + U

∑
i

d̂
†
i d̂i − μ

∑
i

n̂
f

i

+
∑

i

λ
(1)
i (ê†i êi + p̂

†
i↑ p̂i↑ + p̂

†
i↓ p̂i↓ + d̂

†
i d̂i − 1)

+
∑
i σ

λ
(2)
i σ (f̂ †

i σ f̂i σ − p̂
†
i σ p̂i σ − d̂

†
i d̂i), (5)

where n̂
f

i = f̂
†
i↑f̂i↑ + f̂

†
i↓f̂i↓, and we have already added the

Lagrange multipliers λ
(1)
i and λ

(2)
i σ to enforce the constraint

on each site. The mappings n̂i↑n̂i↓ → d̂
†
i d̂i and n̂i → n̂

f

i are
justified by noting that they yield the same results when applied
to the four-state site basis [52].

To this point, the representation is exact, and further
treatment is impossible without some approximation. We
perform the saddle-point and paramagnetic approximations,
as presented in Ref. [35], and they can be summarized in the
following steps:

(i) The partition function Z = Tr(e−β Ĥ ) is written as
a functional integral over the fermion and boson coher-
ent states: ei (τ ), pi σ (τ ), di (τ ), and fi (τ ) are now complex
bosonic/fermionic fields, and τ is the imaginary time. Integrat-
ing out the fermionic fields, we express the partition function
Z in terms of an effective action for the bosons.

(ii) We carry out the saddle-point approximation over the
bosonic fields and the Lagrange multipliers. The bosonic fields
are replaced by their extreme values, which are assumed to
be real, and they are site- and time-independent: ei (τ ) → e,
pi σ (τ ) → pσ , di (τ ) → d, λ

(1)
i → λ(1), and λ

(2)
i σ → λ(2)

σ .
The free energy per site is

f = Ud2 −
∑

σ

λ(2)
σ

(
p2

σ + d2
)+ λ(1)

(
e2 +

∑
σ

p2
σ + d2 − 1

)

− 1

β

∑
σ

∫ ∞

−∞
ρ(ε) ln(1 + e−β [qσ ε−μ+λ(2)

σ ])dε, (6)

which is Eq. (6) of Ref. [35]. Here ρ(ε) is the electronic DOS,
and qσ = z2

σ is the band-renormalization factor.
(iii) We minimize the free energy against all the bosonic

fields e, pσ , d, λ(1), and λ(2)
σ .

(iv) We perform the paramagnetic approximation: pσ →
p, λ(2)

σ → λ(2), and qσ → q. The minimization equations,
together with the paramagnetic approximation, allow us to
express the problem only in terms of the double occupancy
number d2 and the parameters of the system U , n, and ρ(ε).
This leads to the relations p2 = n/2 − d2 and e2 = 1 − n +
d2, and finally to the following self-consistent equations:

n

2
=

∫ +∞

−∞
ρ(ε)

1

1 + eβ(q ε−μ+λ(2))
dε, (7)

U

2
= q ε̄

(
1

p2
− 1

ed

)
, (8)

λ(2) = U

2
+ qε̄

d

(
1 − d

e

1 − n
2

n
2

)(
1

d + e
+ d

1 − n
2

)
, (9)

where

ε̄(T ) =
∫ +∞

−∞
ερ(ε)

1

1 + eβ(qε−μ+λ(2))
dε (10)

is the uncorrelated energy per site and spin, and

q = p2(d + e)2(
1 − n

2

)
n
2

. (11)

For simplicity, we have kept the notation for e and p.
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Equations (7)–(9), with definitions (10) and (11), have to be
solved self-consistently for the quantities d, μ, and λ(2). The
free energy per site is now

f (T )= Ud2 − λ(2)n − 2

β

∫ ∞

−∞
ρ(ε) ln(1 + e−β(qε−μ+λ(2)))dε.

(12)
A useful rewriting of the self-consistent equation (8)

allows us to see the density of holes δ = 1 − n and the
dimensionless interaction strength U/U ∗(T ,δ) as the relevant
parameters of the problem [48,52]. The coupling scale U ∗(T ,δ)
is defined as U ∗(T ,δ) ≡ −16

1−δ2 ε̄(T ). We note that U ∗(T ,δ) is a
self-consistent parameter for every filling value n and finite
value of T , as it depends on the self-consistent values of q,
λ(2), and μ through the Fermi-Dirac distribution function of
definition (10). For T = 0, it only depends on the uncorrelated
DOS and the filling n, and we denote it as

U ∗
n ≡ U ∗(0,1 − n) = −16

1 − δ2

∫ εF

−∞
ερ(ε)dε. (13)

Throughout the paper, we use U ∗
n as a unit for U , T , and μ.

For the particular case of half-filling (n = 1), we have

e2 = d2, p2 = 1/2 − d2, (14)

and the self-consistent equations

λ(2) = U

2
, (15)

d2(T ) = 1

4

(
1 − U

U ∗(T ,0)

)
, (16)

q(T ) = 1 −
(

U

U ∗(T ,0)

)2

(17)

reproduce the T = 0 result of the original KR paper [35], with

Uc = U ∗(0,0) = U ∗
1 = −16 ε̄(T = 0) (18)

the critical value of the interaction U where the metal-insulator
transition occurs.

As can be observed from the results discussed in the next
section, the calculated quantities are nearly insensitive to
details of the DOS when energy and temperature are scaled
with U ∗

n . We can easily understand this behavior at T = 0 by
noting that the DOS appears only in the n and ε̄ equations.
The occupation number n is a fixed parameter for the system,
and different shapes of the DOS will not affect it and only
change the value of the Fermi energy εF. The details of the
DOS do affect the value of the uncorrelated kinetic energy
ε̄, and hence the complete independence of the T = 0 results
once renormalized with this quantity. In a similar way, the
temperature T appears in the n and ε̄ expressions, and so
we might expect a weak dependence on the DOS for finite
T . Previously, Hasegawa observed that magnetic properties
such as the Néel temperature and magnetization, calculated
with the temperature-dependent slave-boson method, depend
weakly on the details of the DOS [42].

III. RESULTS

In this paper, we perform the calculation for several
different band structures, making use of the mapping between

the wave vector and the energy form of the integrals,∫ ∞

−∞
γ (ε)ρ(ε)dε = 1

N

∑
k

γ (εk), (19)

for a function γ , where εk = 2
∑

Rj −Ri
tij cos [k · (Rj − Ri)]

is the uncorrelated dispersion relation in the paramagnetic
state, N is the number of sites in the lattice, and the sum
in k is over the first Brillouin zone of the reciprocal lattice for
a real-space Bravais lattice with points {Ri}. We use the wave-
vector formulation for square [53] and triangular lattices, up
to 40 000 and 43 200 sites, respectively. Also, as DOS we use

ρ(ε) = 8
π

1
W 2

√
(W

2 )
2 − ε2 (semicircular) for the Bethe lattice

in the infinite connectivity limit [28], ρ(ε) = 1
W

as a flat DOS,
where W is the bandwidth, and ρ(ε) = 1√

π t∗ exp(−ε2/t∗2) for
the hypercubic lattice in the limit of infinite dimension, with
t∗ the scaling of the hopping [37].

Except when comparing the results for different band struc-
tures, we present our results for the case of the semicircular
DOS. It allows a quantitative comparison with DMFT results
since this method becomes exact in the infinite-dimensional
limit of the Bethe lattice [28].

A. Quasiparticle weight and coherence temperature

The quasiparticle weight Z is the spectral weight of the
quasiparticle peak at the Fermi energy. This peak involves
the coherent excitations that form the Fermi liquid, and its
spectral weight decreases as the metal-insulator transition is
approached. It can also be understood as the renormalization
factor of the fermionic band, which is q in this formulation.
For a Fermi liquid it implies that, as the specific heat is linear
in T at low temperatures, the slope is 1/Z times larger than
the noninteracting value.

In Fig. 3 we show, for several different band structures,
the temperature dependence of the quasiparticle weight Z at

0 0.05 0.1 0.15
T/Uc

0

0.2

0.4

0.6

0.8

1

Z(
T)

Bethe lattice
Flat DOS
Hypercubic
Square
Triangular

U = 0.75 Uc

U = 0.50 Uc

U = 0.25 Uc

n = 1

FIG. 3. Fermi liquid quasiparticle weight Z, at half-filling, as
a function of temperature, for several values of U/Uc and band
structures. Note the weak dependence on the shape of the DOS.
An increment of the temperature T or the interaction U diminishes
the quasiparticle weight Z. We identify the emergence of the bad
metal with the collapse of Z at the coherence temperature Tcoh. The
dependence of Tcoh on U is shown in Fig. 1.
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half-filling and several values of the interaction U , with T

and U being properly scaled. It decreases with increasing T

and jumps to zero at Tcoh, the coherence temperature of the
fermionic quasiparticle. As expected, its behavior does not
change significantly between different band structures for
T > 0, and it does not change at all for T = 0. Figure 1
shows the dependence of Tcoh on the interaction strength
(color points), and the corresponding phase diagram. The
black dashed line is the approximate expression obtained in
Ref. [30], i.e.,

Tcoh

Uc

�
[

1 − U
Uc

]2

8 ln(2)
. (20)

We also plot the renormalized Fermi temperature scale
T ∗

F ≡ Z(T = 0) T 0
F = Z(T = 0) W

2 , obtained by considering
the system as a strongly renormalized Fermi liquid [28]
(blue dashed line in Fig. 1), where T 0

F = ε0
F is the Fermi

temperature for U = 0. From this figure, we conclude that the
slave-boson method reproduces the important property that
strongly correlated materials exhibit a very low coherence
temperature close to a Mott MIT. For interaction values close
to the MIT, the dependence of Tcoh closely follows Eq. (20)
and is about ten times lower than the renormalized scale T ∗

F ,
as is found with DMFT [26]. Figure 9 of the Appendix shows
the behavior of the double occupancy for the same parameters
and is compared with DMFT simulations. The decrease in
double occupancy with increasing temperature reveals the
tendency of the system to a higher degree of localization.

It is important to note that the slave-boson method studied
here is not valid in the half-filling case for T > Tcoh, ruling
out any attempt to treat the high-temperature limit. For some
fixed U < Uc, the quantity U ∗(T ,0) is higher than U for low
temperatures and decreases with increasing T . At Tcoh, the
system gets stuck in the trivial solution d2 = 0, which was
ruled out in the derivation of the self-consistent equations.
The latter solution physically means a system in which each
electron freezes in the site and no double occupation is
allowed, and strictly speaking, the slave-boson method predicts
a transition to a Mott insulator at T = Tcoh.

For filling values different from n = 1 (see Fig. 4 for
n = 0.8), the system is always metallic. With increasing
temperature, the double occupancy d2 goes continuously to
zero (cf. Fig. 10 in the Appendix) and, from Eq. (11), the
quasiparticle weight goes to its minimum value Z(T → ∞) =
1−n
1− n

2
. Although the quasiparticle weight does not completely

disappear, we define the coherence temperature as the tem-
perature at which the decrease in Z is more pronounced,
∂2Z
∂T 2 |Tcoh

= 0 (i.e., an inflection point). In a similar vein, the
inflection point of the spectral density at the Fermi level with
respect to the temperature has been used as one definition
of a crossover line between the Fermi liquid and the bad
metal regime [26]. Similarly to the previous discussion for the
half-filling case, we can assume that the slave-boson method
ceases to be valid at temperatures higher than Tcoh, where the
change with temperature toward the trivial solution d2 = 0 is
more pronounced. This assumption is later justified by noting
that the method is unstable for T > Tcoh for relatively small
doping (see Sec. III C and Fig. 6).

In Fig. 2 we show the dependence of Tcoh versus U for
different values of filling n using the DOS of the Bethe lattice.

0.0 0.1 0.2 0.3
T/U*

0.8

0.0
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FIG. 4. Same as Fig. 3 for n = 0.8, with U ∗
0.8 as the energy unit.

Values of U/U ∗
n larger than 1 can be achieved because the system

always remains metallic and does not go through a MIT when U

increases. Even though the double occupancy goes to zero for larger
temperatures (cf. Fig. 10 in the Appendix), there are still holes that
allow electronic movement, and the quasiparticle weight Z remains
finite, with a lower bound of Z = 1−n

1− n
2

. The inflection points in the
curves for the semicircular DOS are used to calculate the coherence
temperature Tcoh in Fig. 2.

Although Tcoh is modified, it still remains very low when the
interaction U is of the order of the correlation scale U ∗

n and
larger. The inset of Fig. 2 shows the T = 0 phase diagram of
the Hubbard model in the U -n plane, and the dependence of
the scale U ∗

n with n (dashed line).

B. Entropy

We calculate the entropy density per site through the
thermodynamic relation

s(T ) = β(u − f ), (21)

where f is the free energy of Eq. (12), and

u(T ) = Ud2 + 2qε̄ − μn (22)

is the (correlated) energy per lattice site.
In Fig. 5, we display the entropy density as a function of

the temperature for various U/Uc values for the half-filling
case. At low temperatures, the entropy increases linearly with
temperature, as expected for a Fermi liquid. We also show
with dotted lines the corresponding values of free on-site spin
fluctuations, s = ln(2), and the high-temperature limit, s =
ln(4), where charge and spin fluctuations are completely free.
Similar to DMFT results in the low-temperature Fermi-liquid-
type regime [54], we obtain that the entropy increases as the
system becomes further correlated. As we increase U and
approach the Mott phase, the value of the entropy at Tcoh (end
crosses at each solid line) decreases. The latter can be related to
the appearance of kinklike features of the entropy found with
DMFT [54,56] (see Fig. 11 in the Appendix for a comparison
with DMFT results).

The higher degree of localization as temperature increases,
expressed in the decreasing of d2 (cf. Fig. 9), is characteristic
of a strongly correlated Fermi liquid in a regime dominated by
spin fluctuations. This is a direct analog of the Pomeranchuk
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0.0 0.1 0.2 0.3
T/Uc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
s(

T) U/Uc  = 0.00
          = 0.20
          = 0.25
          = 0.40
          = 0.60
          = 0.75

ln(2)

ln(4)

n = 1

FIG. 5. Entropy density at half-filling as a function of temperature
for different interaction values U/Uc, using the semicircular DOS.
The ln(4) dotted line corresponds to the d2 = 0 limit and to a
regime with local charge and spin fluctuations, and the ln(2) value
corresponds to localized noninteracting spins. The increase of entropy
with U , accompanied by the decrease of d2 with T , is an analog of
the Pomeranchuk effect in liquid 3He and is consistent with DMFT
results in the same model [55]. For a comparison with DMFT results
in the hypercubic lattice, see Fig. 11 in the Appendix.

effect in liquid 3He: because the spin entropy is much larger
in a localized state than in the Fermi liquid, for increasing
temperature the system can lower the free energy f = ε − T s

by an increase of the localization of the particles [55,57] (one
can go from the itinerant to the localized phase upon heating).
The relation between d2(T ) and s(T ) can also be understood
from the Maxwell thermodynamic relation ( ∂s

∂U
)
T

= −( ∂d2

∂T
)
U

.

C. Charge compressibility

We numerically evaluated the charge compressibility

χc ≡ ∂n

∂μ
. (23)

This is a useful quantity in the study of the metal-insulator
transition because it measures the particle stiffness of the
system with a change in chemical potential. Its inverse can
be interpreted as the energy required to add or remove a particle
from the system. At half-filling this agrees with the idea of the
system becoming more incompressible (χc going to zero) as
we approach the Mott insulating phase [58]. It is worth noting
that an analytic calculation of χc from Eq. (7) is complicated
because n has a dependence on the double occupancy d (due
to the d dependence of q and λ(2)), and the derivative against
μ of the latter turns out to be difficult to calculate from Eq. (8).

In Fig. 6 we compare slave-boson and DMFT results [58]
for the temperature dependence of the charge compressibility
for several values of U at half-filling and using the semicircular
DOS. To make the comparison easier, we use the bandwidth
W as an energy scale, where Uc � 1.7W for this DOS. A
good agreement with the DMFT results is found, especially
for low U/W values. As a general feature, the charge
compressibility is strongly suppressed with increasing U

from its noninteracting electron value, and it decreases with
increasing temperature, which is also found using the finite-

0.0 0.1 0.2 0.3 0.4 0.5
T/W

0.0

0.5

1.0

1.5

2.0

2.5

3.0

χ c(T
)

U/W = 0.0
    = 0.25

       = 0.50
      = 0.75
     = 1.0

      = 1.10
      = 1.25

n = 1
Slave-boson
DMFT

FIG. 6. Charge compressibility χc as a function of temperature
for the semicircular DOS, using slave-boson (solid line) and DMFT
(dashed line) calculations from Ref. [58]. The bandwidth W is used
as an energy scale in order to make the comparison easier. The
decrease of charge compressibility with increasing interaction U

and temperature is consistent with DMFT results [58] and with
finite-temperature Lanczos methods for the triangular lattice [59].
Also, we qualitatively reproduce the apparent kinklike feature found
with DMFT at about T � 0.025 W for U = 1.25 W [58].

temperature Lanczos method for the triangular lattice [59].
For the interaction value U = 1.25W , our result reproduces
the apparent kinklike feature at T � 0.025W obtained with
DMFT [58]. Also, for the larger U values, our values for Tcoh,
signaled in this figure by the end of the solid lines, seem to
correspond to an inflection point in the DMFT results.

D. Doped Mott insulator

Now we focus on the behavior as we vary the hole doping
from the Mott insulator. In Fig. 7 we plot the temperature
dependence of the double occupancy d2 at the electron
interaction value U = 1.5 U ∗

n for different fillings n.
As shown in Fig. 2, the system remains in a metallic

phase as long as n �= 1 and T < Tcoh. Namely, there is

0.0 0.1 0.2 0.3
T/U*

n

0

0.001

0.002

0.003

0.004

0.005

0.006

d2 (T
)

n = 0.1
   = 0.2
   = 0.3
   = 0.4
   = 0.5
   = 0.6
   = 0.7
   = 0.8
   = 0.9
   = 0.95
   = 0.98

0.0 0.2 0.4 0.6 0.8 1.0
n

0.000

0.002

0.004

0.006

d2 (0
)

U = 1.5 U*
n

FIG. 7. Double occupancy at U = 1.5 U ∗
n as a function of

temperature, for several fillings. Inset: Dependence of T = 0 double
occupancy with the filling n. As we approach the Mott phase at n = 1,
effective interactions become stronger and d2 decreases toward zero.
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0.0 0.2 0.4 0.6 0.8
δ = 1-n

0.00

0.05

0.10

0.15
T /

U
* n

U = 1.5 U*
n

Tcoh

Bad metal

Fermi liquid

χc< 0

χc> 0

χc> 0

FIG. 8. Coherence temperature Tcoh (black circles) as a function
of hole doping δ = 1 − n for U = 1.5 U ∗

n using the semicircular
DOS. Near half-filling, Tcoh is proportional to the doping level
Tcoh � 0.18δU ∗

n � 0.3δW . This behavior is similar to that obtained
with DMFT [24]. The red curve shows the boundary of the region at
which the system becomes unstable (shaded area) due to a negative
charge compressibility χc. This region with χc < 0 does not change
significantly as we vary the value of U or the band structure.

no critical Uc away from half-filling. The inset shows the
zero-temperature value of d2 as a function of the electron
filling. As we approach the Mott insulator, the increasing
correlation tends to localize the particles and d2 → 0 as
n → 1. Moving away from half-filling allows an energy gain
due to hole delocalization that is greater than the energy loss
due to Coulomb repulsion U . By increasing the doping further,
we recover a combinatorial dependence of d2, but about ten
times lower than the uncorrelated value n2

4 . That is, even
in a highly doped Mott insulator, the electronic correlations
strongly suppress the double occupancy.

In Fig. 8 we show the temperature versus doping phase
diagram for U = 1.5U ∗

n with a semicircular DOS. We obtain
for low doping a linear dependence with δ of the form
Tcoh � 0.18δU ∗

n � 0.3δW , which is qualitatively similar to
previous DMFT results [24,60]. We also obtain the shaded
red region in which the charge compressibility takes negative
values, which is a signature of instabilities toward phase
separation, incommensurate magnetic order, or other exotic
electronic phases [61]. For low doping, this region appears
at temperatures T ∼ Tcoh and higher, and this allows us to
conclude that the slave-boson method remains stable in a broad
region of the T -n phase diagram. A similar shape of this region
is found for other values of the interaction U , following the
general behavior depicted in Fig. 4 of Ref. [48]. The same
behavior is found using the other band structures. This last
result is not trivial, given that μ(T ) − μ(0) ∝ ρ ′(εF)T 2 at low
temperature [62]. Figure 12 in the Appendix shows μ versus
n at two different temperatures for this value of U , where the
independence with band structures is appreciated. A recent
slave-spin mean-field study of a multiorbital Hubbard model
found that Hund’s coupling is essential in the development
of an instability region in the U -δ phase diagram [61].
This instability region departs from the Mott transition at
half-filling and is proposed to be related at finite T to a “spin-
freezing crossover,” signaled by a quick decrease of Z, an

increase of interorbital spin-spin correlation, and suppression
of interorbital charge-charge correlations.

IV. CONCLUDING REMARKS

In summary, we have studied the finite-temperature KR
slave-boson mean-field approach of the single-band Hubbard
model, and we identify the temperature at which the Fermi
liquid collapses with the coherence temperature found in
several strongly correlated materials that signal the appearance
of the bad metal regime. For T < Tcoh, our results agree with
the physical picture of a renormalized Fermi liquid state, and
they are in good qualitative correspondence with DMFT and
finite-temperature Lanczos calculations. In particular, we find
that near the Mott transition, the coherence temperature is
much lower than the Fermi temperature for U = 0, i.e., Tcoh �
T 0

F , and in good agreement with the analytic approximation
from Ref. [30]. Also, our results shows a universal behavior
when temperature, interaction, and chemical potential are
scaled with a proper energy scale, making results independent
of the details of the band structure used.

V. POSSIBLE FUTURE DIRECTIONS

Iron-based superconductors have led to increased interest
in the role of orbital degeneracy, Hund’s rule interaction J ,
and multiple bands in strongly correlated electron materials.
It was recently shown that J has a conflicting effect on
correlations [11]. On the one hand, J increases the critical
U above which a Mott insulator is formed. On the other
hand, J reduces the Fermi liquid coherence temperature
significantly, leading to at higher temperatures what is referred
to as a “Hund’s metal” [63,64], which may be characterized
by particularly slow spin dynamics [65,66]. This is the
multiband analog of the bad metal in a single-band system.
In a future study, we plan to investigate how Tcoh varies
with J in multiband models using a finite-temperature version
of rotationally invariant slave bosons [30,52,67–70] or slave
spins [61,71]. At zero temperature, the latter reproduces KR
slave-boson mean-field results for the single-band Hubbard
model, and recently it has been used to model Fe-based
superconductors [61].

Gaussian fluctuations from the saddle-point paramagnetic
solution allow us to calculate the charge fluctuation matrix
and give an approximate description of the upper Hubbard
band [48,72]. On the other hand, a new Gutzwiller variational
wave function involving “ghost” orbitals gives results in
very good agreement with DMFT [73]. Hopefully, a finite-
temperature version of this method could also be used to
investigate the emergence of the bad metal with increasing
temperature.
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FIG. 9. Double occupancy d2 as a function of T for the semicir-
cular DOS, using slave-boson (solid line) and DMFT (dashed line)
calculations using TRIQS. The decrease of d2 with increasing T indi-
cates a higher degree of localization. The slave-boson method ceases
to be valid for T > Tcoh, where the self-consistent equations (15)–(17)
collapse to the trivial solution d2 = 0. The obtained Tcoh compares
favorably with the minima in the DMFT results.

APPENDIX

Figure 9 shows the temperature dependence of the double
occupancy determined by the slave-boson method (solid lines)
and DMFT (dashed lines) for different interaction strengths.
We use the results of Ref. [47] based on DMFT simulations
using the TRIQS [76] library with a continuous-time quantum
Monte Carlo method [74,75] as the impurity solver for the
Anderson impurity model associated with DMFT. Figure 10
shows the same quantity for n = 0.8. Good agreement is found
in both figures for T < Tcoh, and the DMFT results reproduce
the physical behavior of d2 → n2

4 when T → ∞. We note
the coincidence of our calculated Tcoh with the minima in
the DMFT curves.

In Fig. 11 we compare the entropy density at half-filling
as a function of T for the hypercubic lattice band structure
calculated with our method and the DMFT results from
Ref. [54]. To make the comparison easier, in this case we
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T/U*

0.8

0.00
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0.16

d2 (T
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0.8
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0.8
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0.8

U = 0.75 U*
0.8

U = 1.2 U*
0.8

FIG. 10. Same as Fig. 9 for n = 0.8. Even though d2 goes to zero
at high T , the quasiparticle weight goes to a finite value because the
system always remains metallic [cf. Eq. (11)].
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FIG. 11. Entropy density at half-filling as a function of tempera-
ture for different interaction values using the hypercubic lattice band
structure for the slave-boson method (up) and DMFT from Ref. [54]
(bottom).

use t∗ as the unit, where Uc � 4.5t∗. In addition to the general
behavior described in Sec. III B, it is important to note that the
reduction of the entropy value at the transition with increasing
U (end crosses at each solid line) is consistent with the
appearance of the kinklike feature in the DMFT results.

Figure 12 shows, for different band structures, the chemical
potential as a function of the filling n for temperatures
T/U ∗

n = 0.005 and 0.015. Segments with a negative slope
of the curve determine, for each T , the region with negative
charge compressibility.
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n
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* n
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FIG. 12. Dependence of the chemical potential μ with the filling
number n for T/U ∗

n = 0.005 and 0.015, calculated using different
band structures. Note the weak dependence of μ over the various
band structures. Regions with negative derivative define the shaded
area in Fig. 8.
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