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Proliferation of effective interactions: Decoherence-induced equilibration
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We address the question of how weak perturbations, which are quite ineffective in small many-body systems,
can lead to decoherence and hence to irreversibility when they proliferate as the system size increases. This
question is at the heart of solid-state NMR. There, an initially local polarization spreads all over due to spin-spin
interactions that conserve the total spin projection, leading to an equilibration of the polarization. In principle,
this quantum dynamics can be reversed by changing the sign of the Hamiltonian. However, the reversal is usually
perturbed by nonreversible interactions that act as a decoherence source. The fraction of the local excitation
recovered defines the Loschmidt echo (LE), here evaluated in a series of closed N spin systems with all-to-all
interactions. The most remarkable regime of the LE decay occurs when the perturbation induces proliferated
effective interactions. We show that if this perturbation exceeds some lower bound, the decay is ruled by an
effective Fermi golden rule (FGR). Such a lower bound shrinks as N increases, becoming the leading mechanism
for LE decay in the thermodynamic limit. Once the polarization stayed equilibrated longer than the FGR time, it
remains equilibrated in spite of the reversal procedure.
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I. INTRODUCTION

Within the usual wisdom it is quite intuitive to accept that a
complex many-body dynamics could lead to a homogeneous
spreading of an initially localized excitation. Such a process,
which in the context of spin systems has long been known as
spin diffusion, would lead to system equilibration. However,
this naı̈ve concept soon encounters limitations. On one hand,
Anderson discovered that certain conditions preclude the
spreading [1]. This problem still generates controversy, as
the question of when closed many-body quantum systems
equilibrate remains open [2–5]. On the other hand, even in
conditions where the spin diffusion seems irreversible, nuclear
magnetic resonance (NMR) experiments revealed that the
apparently equilibrated state contains correlations encoding
a memory of the initial state [6]. The pioneer in this field
was Hahn. In his spin echo [7], the precession dynamics of
each independent spin is reversed by changing the sign of
the local magnetic fields. In those experiments, the many-spin
interaction is not reversed and consistently it degrades the
echo signal in a characteristic time T2. Two decades later,
Rhim, Pines, and Waugh exploited the fact that the spin-spin
dipolar interaction can also be reversed [8]. This allows for
the reversal of a global polarization state in the form of a
“magic echo.” More specific was the development by Ernst and
collaborators. There, a local spin excitation diffuses through a
lattice much as an ink drop diffuses in a pond. A pulse sequence
produces its refocusing, followed by the local detection as a
polarization echo [9]. Again, the attenuation of the observed
echo can be tentatively attributed to the noninverted terms in
the Hamiltonian, as well as imperfections in the pulse sequence
and interactions with some environment.

In a followup to those experiments, a quest to quantify the
sources that degrade the echo signal in crystalline samples
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was initiated [10–12]. As the sources of irreversibility can be
progressively reduced, one might think that there are no limits
in the experimental improvement of the echo. Nevertheless,
in systems where a local excitation equilibrates [13,14],
experiments show that even weak perturbations are highly
effective in producing the echo degradation. Moreover, there
are cases where the time scale of the decay is intrinsic to
the reversed dynamics, i.e., a perturbation-independent decay
(PID) [11,12]. If confirmed, this observation could have deep
implications for the degree of controllability of quantum
devices as it evidences a fragility of quantum dynamics
towards minuscule perturbations. In fact, the sensitivity to
perturbations or fragility of quantum systems [15–17] is
a major problem that transversally affects several fields,
e.g., chaos in quantum computers [18,19], NMR quantum
information processing [20–22], quantum criticality [23,24],
and, more recently, quantum control theory [25].

In order to capture the essentials of the described exper-
iments, the Loschmidt echo (LE) is defined as the revival
that occurs when an imperfect time-reversal procedure is
implemented [26–28]. If the unperturbed evolution is given
by a classically chaotic Hamiltonian, there exists a regime
in which the decay rate of the LE corresponds to the
classical Lyapunov exponent [29,30]. Such a particular PID
holds for a semiclassical initial state built from a dense
spectrum and a perturbation above certain threshold. Un-
der weaker perturbations, the LE decay depends on their
strength following a Fermi golden rule (FGR) [31]. Ad-
ditionally, the LE semiclassical expansion showed that the
PID regime results from the phase fluctuations along the
unperturbed classical trajectories [29]. This represents a first
identification of irreversibility, as measured by the LE, with
decoherence.

In addressing actual many-spin dynamics, the situation is
less clear. On one side, there is no classical Hamiltonian
that serves as reference. On the other side, the numerical
evaluation of the LE in a weakly perturbed finite spin system
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could not justify the experimental observations [10]. Since
experiments involve almost infinitely large systems, one is
left with the question of whether the mechanisms of LE
decay and system equilibration could eventually emerge
from a progressive increase in the system size towards the
thermodynamic limit (TL). Here, we tackle such a question
by considering extensive calculations with N = 12,14, and
16 interacting spins, whose dynamics involve the complete
2N -dimensional Hilbert space [32]. We adopt a model with
all-to-all dipolar interactions, which allows for small sta-
tistical fluctuations facilitating the analysis of the TL. As
in the case of the polarization echo [9,10], our initial state
is given by a local excitation in a single spin, and the
detection is also a local measurement of the polarization
[13,33,34].

We show that, in the presence of a small Hamiltonian
perturbation, the decay of the LE follows a FGR, much as if the
system were interacting with a continuum. This indicates that
the system itself would indeed behave as its own environment.
In addition, we observe that the excitation remains homoge-
neously distributed in spite of the time reversal. In other words,
the equilibration produced by the unperturbed Hamiltonian
becomes fully irreversible in the presence of an arbitrary
small perturbation. The physical mechanism responsible for
the mentioned FGR corresponds to a proliferation of two- and
four-body effective interactions mediated by virtual processes.
Remarkably, we show that the realm of this description is
wider as the system size increases. Such an observation hints
that, in the TL, the proliferation of effective interactions is the
mechanism that rules irreversibility.

The paper is organized as follows. In Sec. II we describe
the many-spin model employed to simulate an ideal NMR
experiment. Section III A encloses the LE formulation as an
autocorrelation function. In Sec. III B we discuss the standard
FGR description of the LE. In Sec. III C we introduce the
effective interactions and we use them to evaluate an effective
FGR. In Sec. IV we show the results obtained for the numerical
evaluation of the LE time dependence, including the time
scales and the asymptotic behavior as a function of the
perturbation strength and the system size. Concluding remarks
are made in Sec. V.

II. SPIN MODEL FOR MANY-BODY DYNAMICS

As in the experimental systems, we consider N spin-
1/2 particles, whose state at t = 0 is given by the density
matrix

ρ̂0 = 1

2N

(
Î + 2Ŝz

1

)
. (1)

Here, ρ̂0 stands for a local excitation as tr[Ŝz
1ρ̂0] = 1

2 and
tr[Ŝz

i ρ̂0] = 0 ∀i �= 1. The initial polarization is oriented
along the laboratory frame, where the overwhelming Zee-
man field of a superconducting magnet splits the states
according to their total spin projection. Thus, even though
the spins would interact through the complete dipole-dipole
interaction, the evolution is ruled by the truncated dipolar

Hamiltonian [35],

Ĥdip =
N∑
i,j

J
dip
ij (N )

[
2Ŝz

i Ŝ
z
j − (

Ŝx
i Ŝx

j + Ŝ
y

i Ŝ
y

j

)]
(2)

=
N∑
i,j

J
dip
ij (N )

[
2Ŝz

i Ŝ
z
j − 1

2
(Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j )

]
. (3)

This interaction conserves spin projection and is called
secular. Indeed, the symmetry [Ĥdip,

∑N
i=1 Ŝz

i ] = 0 provides
the relevant structure of subspaces given by specific z projec-
tions: ν = ∑N

i=1 Sz
i = N

2 ,(N
2 − 1), . . . , − N

2 . In a system of N

spins, there are N + 1 subspaces of definite ν, and therefore
dynamics induced by Ĥdip would be strictly confined to each
of them.

We choose the coupling strength J
dip
ij (N ) corresponding to

an infinite range or all-to-all interaction model,

J
dip
ij (N ) = J

dip
ji (N ) = (1 + χ )(−1)k

J0√
N

. (4)

Here χ is a random number taken from a uniform distribution
in [−0.1,0.1] that ensures the lifting of degeneracies while
keeping the fluctuations of the second moment small. Since
the sign of the dipolar interactions in a crystal depends on the
spatial orientation of the interspin vector, we take k as a random
number from a binary distribution {0,1}. The price to be paid
for an all-to-all network is the absence of the dynamically
hierarchical structure of the experimental systems.

The factor 1/
√

N ensures that the local second moment of
the dipolar interaction σ 2

dip remains constant as N changes:

σ 2
dip � σ 2

i =
N∑

j (�=i)

(
J

dip
ij (N )

2

)2

� J 2
0

4
. (5)

Therefore, in spite of different cluster sizes, �/
√

σ 2
dip recovers

the characteristic spin-spin interaction time T2 and conse-
quently J0 provides the natural energy unit.

A forward evolution ruled by many-body interactions
according to Ĥdip can be experimentally reversed by an
appropriate pulse sequence, as reported in Ref. [12]. In order to
perform the inversion Ĥdip → −Ĥdip, the full spin state has to
be tumbled down along the direction of a radio frequency (rf)
field that is turned on immediately afterwards. The rf field
rotates perpendicularly to the field of the superconducting
magnet and hence it provides the rotating frame. We redefine
the z direction in such a frame, and thus the rf irradiation yields
a Zeeman Hamiltonian:

ĤZ =
N∑

i=1

�ω1Ŝ
z
i . (6)

Notice that ĤZ creates finite-energy gaps of magnitude
�ω1 which separate the subspaces, but they are not as
effective as the “infinite” splittings generated by the mag-
net (laboratory frame). As a consequence, the Hamiltonian
terms that do not conserve polarization, called nonsecular,
become relevant. The sign of the nonsecular contribution
cannot be changed experimentally. Then, they constitute the
perturbation �̂, here embodied by a double quantum (DQ)
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FIG. 1. (Color online) Pictorial representation of the LDOS of
Ĥdip + ĤZ respective to the state given in Eq. (1).

Hamiltonian

�̂ = Ĥdq =
N∑
i,j

J
dq

ij (N )
[
Ŝx

i Ŝx
j − Ŝ

y

i Ŝ
y

j

]
(7)

=
N∑
i,j

J
dq

ij (N )[Ŝ+
i Ŝ+

j + Ŝ−
i Ŝ−

j ]. (8)

Here, the coupling strength J
dq

ij (N ) satisfies an analog defini-

tion as in Eq. (4). Notice that [Ĥdq,
∑N

i=1 Ŝz
i ] �= 0 since Ĥdq

mixes subspaces whose projections differ in δν = ±2 [36,37].
Experimentally, these intersubspace transitions are partially
suppressed by increasing the rf power, i.e., �ω1[11,38].

The information contained in the time domain, embodied in
the experimental T2 time scale, can be complemented with the
spectral picture given by the local density of states (LDOS).
This last shows how a particular state distributes among
the eigenstates of a given Hamiltonian. There is extensive
recent literature recognizing the LDOS as an indicator for
the onset of chaos [39,40], relaxation time scales [41–43],
and the size of the fluctuations around the steady state [44].
Even though our evaluation of the dynamics does not rely on
diagonalization [32], one can infer the shape of the unperturbed
LDOS (Ĥdip + ĤZ) respective to the initial state defined in
Eq. (1). See Fig. 1. When �ω1 = 0, the subspaces of spin
projection are basically degenerate, and the unperturbed LDOS
is a single Gaussian of width 〈H 2

dip〉 = ∑
i σ

2
i /4 � Nσ 2

dip/4,

i.e., the global second moment of Ĥdip. If �ω1 �
√

〈H 2
dip〉, the

subspaces’ LDOS separate from each other. A subspace with
spin projection ν has mean energy Eν � ν�ω1, and therefore
the unperturbed LDOS within each subspace is

Pν(ε) � 1√
2π

〈
H 2

dip

〉 exp

[
− (ε − Eν)2

2
〈
H 2

dip

〉 ]
. (9)

The time domain can be explicitly recovered from the Fourier
transform of Pν(ε) [43].

III. THE LOSCHMIDT ECHO

A. The autocorrelation function

In order to simulate an ideal LE procedure, we assume
that forward evolution occurs under the unperturbed Hamil-
tonian Ĥ0 = Ĥdip + ĤZ . Even though this evolution would
correspond to the laboratory frame, the addition of the ĤZ

term stands for sake of a symmetrical time reversal. Besides,
as [Ĥdip,ĤZ] = 0, the inclusion of ĤZ does not introduce any
nontrivial dynamics. At time tR , a pulse sequence changes the
sign of Ĥdip, and a backward evolution occurs, affected by

the perturbation. Hence, the backward dynamics is described
by −Ĥ0 + �̂ = −Ĥdip − ĤZ + Ĥdq , which in the experiment
would correspond to the rotating frame. The evolution op-
erators for each tR period are Û+(tR) = exp[− i

�
Ĥ0tR] and

Û−(tR) = exp[− i
�

(−Ĥ0 + �̂)tR] respectively. Then, the LE
operator,

ÛLE(2tR) = Û−(tR)Û+(tR), (10)

produces an imperfect refocusing at time 2tR evaluated as

M1,1(t = 2tR) = 2tr
[
Ŝz

1ÛLE(t)ρ̂0Û
†
LE(t)

]
. (11)

Since Ŝz
1 is a local (“one-body”) operator, Eq. (11) is equivalent

to the expectation value in a single superposition state [45],

M1,1(t) = 2〈�neq|Û †
LE(t)Ŝz

1ÛLE(t)|�neq〉, (12)

where

|�neq〉 = |↑1〉 ⊗
2N−1∑
r=1

1√
2N−1

eiϕr |ξr〉. (13)

Here, ϕr is a random phase uniformly distributed in [0,2π ), and
{|ξr〉} stands for the computational basis states of the Hilbert
space corresponding to N − 1 spins.

B. The standard Fermi golden rule approach

Let us now introduce the regimes of the LE decay,
following the dynamical paradigm from Refs. [29,31,46]. If
the perturbation during the backward evolution is extremely
small, the short time expansion of the LE operator yields a
quadratic decay that extends until recurrences show up. This
constitutes the perturbative regime

M1,1(t) = 2〈�neq|Û †
LE(t)Ŝz

1ÛLE(t)|�neq〉

� 1 − 1

4
〈�neq|

[
�̂2 − 2�̂Ŝz

1�̂
]|�neq〉t2

� 1 − [t/τφ]2. (14)

Here, 1/τφ scales up linearly with the strength of the
perturbation through its local second moment. In fact, �αβ,

i.e., the matrix elements of �̂, do not exceed the level spacing
dαβ associated with two directly connected states (DCS) α and
β.

As the perturbation increases, its second moment exceeds
the typical level spacing among DCS. There, the onset of
the FGR occurs. In such a case, the perturbed energies Ẽα

are obtained from the unperturbed Eα, using second-order
perturbative series, which must be evaluated in the TL:

Ẽα � Eα + lim
η→0+

lim
N→∞

∑
β

|�αβ |2
dαβ + iη

= Eα + �α − i�α,

042112-3



ZANGARA, BENDERSKY, AND PASTAWSKI PHYSICAL REVIEW A 91, 042112 (2015)

where the real shift �α and the imaginary correction �α are
defined as

�α = P
∑

β

|�αβ |2
dαβ

, (15)

�α = 2π
∑

β

|�αβ |2δ(Eβ − Eα). (16)

Here P stands for principal value. In most practical cases,
�α provides a small energy shift that can be neglected. Notice
that the decay introduced by �α requires the mixing of infinitely
many quasidegenerate states. Additionally, �α can be replaced
by its local energy average,

〈�〉 = 2π〈�2〉/d. (17)

Here, d stands for the mean level spacing among the DCS.
Therefore, within the standard FGR approximations, a single
LE operator already contains a decay,

ÛLE(t) �
∑

α

eiẼα t/�e−iEαt/�|α〉〈α| �

�
∑

α

e−�αt/�|α〉〈α| � e−〈�〉t/�Î. (18)

This constitutes the standard random matrix theory (RMT)
approach to the LE [31,46].

C. From virtual interactions to an effective Fermi golden rule

As pointed above, the nonsecular DQ perturbation �̂ only
mixes states from different Zeeman subspaces. Then, the
previous FGR requirement of mixing quasidegenerate states is
not fulfilled. Nevertheless, as hinted by the experiments [11],
the DQ interaction could produce effective secular terms of
major relevance in the TL. We now formalize these ideas,
showing how a small nonsecular perturbation can connect
quasidegenerate states through virtual processes.

Given a specific total spin projection ν, its corresponding
subspace Sν is coupled to the subspaces Sν+2 and Sν−2 by the
DQ interaction. In other words, the perturbation �̂ produces
transitions with δν = ±2 that involve an energy difference of
2�ω1. However, there are higher order transitions that avoid
the energy mismatch. For instance, when state |↑↓↓〉 swaps
to |↑↑↑〉 and then to |↓↓↑〉 (back to the initial subspace),
one gets an the effective flip flop between spins 1 and 3.
This constitutes an intrasubspace effective coupling of order
(J dq)2/(�ω1). A more sophisticated process occurs when
|↑↑↓↓〉 swaps to |↑↑↑↑〉 and then back to |↓↓↑↑〉. It provides
for a four-body effective interaction. Therefore, if the energy
gaps �ω1 are large enough, intersubspace transitions are in
fact truncated, but then intrasubspace transitions mediated by
satellite subspaces set in. These lead us to the corresponding
effective Hamiltonian,

V̂eff �
N∑
k,l

N∑
i,j

J
dq

lk J
dq

ij

8�ω1
(Ŝ+

l Ŝ+
k Ŝ−

i Ŝ−
j + Ŝ−

l Ŝ−
k Ŝ+

i Ŝ+
j ). (19)

Such a result finds a formal justification either on a Green’s
function approach to the effective Hamiltonian [47] or in the
average Hamiltonian theory [48]. It is crucial to notice that

V̂eff can indeed mix quasidegenerate states within a particular
Sν . Furthermore, it can couple states in Sν that were not
originally coupled by Ĥdip. In practice, this means that effective
matrix elements do appear in places where the original raw
Ĥdip had null entries, leading to a remarkable proliferation of
interactions.

In principle, destructive interferences can take place. For
instance, the transition from state |↑↑↓↓〉 to |↑↑↑↑〉 and
then back to |↓↓↑↑〉 would cancel out the transition from
|↑↑↓↓〉 to |↓↓↓↓〉 and then back to |↓↓↑↑〉. Many of the
destructive interferences enabled by a homogeneous all-to-all
model, i.e., J dq

lk = J
dq

ij for any l,k,i,j indexes, are nevertheless
removed by the randomization of parameters k and χ . Other
realistic spin models, in which the strength and sign of
the spin-spin interaction depends on the relative positions
of the spins, would not exhibit such an interference. Based
on the same argument, the effective hopping corrections in
Eq. (19) generate almost random entries in the Hamiltonian
of each subspace. This proliferation may justify modeling
the dynamics through standard RMT instead of the two-body
random ensembles [49,50].

The natural step now consists in formulating an effective
FGR description as in the RMT approach introduced in
Sec. III B. Accordingly, we define the global second moment
of the virtual interactions:〈

V 2
eff

〉 =
〈∑

β

|〈β|V̂eff|α〉|2
〉

α

=
∣∣∣∣a (J dq)2

2�ω1

∣∣∣∣2

, (20)

where a is a geometrical coefficient that counts the average
number of states connected to a given state α. Also, 〈·〉α denotes
the average over all unperturbed eigenstates α. In analogy to
Eq. (17),

�eff ∼ 2π
〈
V 2

eff

〉
d−1

eff = 2π

∣∣∣∣a (J dq)2

2�ω1

∣∣∣∣2

d−1
eff , (21)

where d−1
eff is the density of DCS by the virtual interaction.

It can be estimated as deff ∼ bJ dip for some geometrical
coefficient b � 1. Both a and b stand for a subtle interplay
between N , the coordination number of the lattice, the
selection rules of the interaction, etc.

In what follows, we present a numerical study of the
LE dynamics to show how it depends on the strength of
the effective perturbation �eff = (J dq)2/(�ω1). One of the
purposes consists in finding the applicability of the effective
FGR.

IV. LOSCHMIDT ECHO NUMERICAL EVALUATION

Figure 2 shows the typical LE dynamics for different
perturbation strengths �eff . In particular, Figs. 2(I) and 2(II)
show a Gaussian to exponential transition as �eff decreases. A
similar transition has been reported for the survival probability
of specific many-body states [39,51].

Figures 2(III) and 2(IV) show an asymptotic plateau for
M1,1(t) that sets in when the perturbation is small enough (i.e.,
large �ω1). In order to quantify such an observation, we plot in
Fig. 3 the LE asymptotic plateau M1,1(t → ∞) as a function
of �eff . Below a perturbation threshold, say �eff � 0.05J0 in
Fig. 3, the LE equilibrates slightly above 1/N . The asymptotic
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FIG. 2. (Color online) LE time dependence, N = 14. The magnitudes of (J dq )2/(�ω1) in units of J0 are, from top to bottom, (I) 0.67, 1.35,
∞; (II) 0.19, 0.21, 0.23; (III) 0.071, 0.048, 0.038; and (IV) 0.013, 0.009. Plots (I) and (II) are in log-linear scale, while plots (III) and (IV) are
in linear scale. Horizontal dashed line in plots (III) and (IV) stands for the 1/N asymptote.

equidistribution 1/N becomes very precise for N above 18
(data not shown). It is important to notice that this equilibration
goes beyond the raw one that occurs in the forward evolution,

2〈�neq|Û †
+(t)Ŝz

1Û+(t)|�neq〉 −→
(t→∞)

1/N. (22)

FIG. 3. LE asymptote M1,1(t → ∞) as a function of
(J dq )2/(�ω1) (in units of J0). The labels I, II, III, and IV correspond
to the representative cases shown in Fig. 2. Data set corresponds to
N = 14.

Indeed, a perfect reversal of Û+(t) would unravel the equilibra-
tion stated in Eq. (22). Nevertheless, the fact that M1,1(t → ∞)
still keeps ∼1/N means that the perturbation stabilizes the
spreading of the spin polarization, turning such a process into
an irreversible phenomenon. In addition, one should notice
that the final state conserves the total spin projection despite
the nonconserving nature of the DQ perturbation. In fact, this
evidences the relevance of the effective interactions discussed
in Sec. III C, since they provide a LE decay mechanism without
compromising the conservation of spin projection.

In order to quantitatively assess the LE decay, we define
its characteristic time τφ as M1,1(τφ) = 2/3. We plot the rates
1/τφ in Fig. 4 as a function of �eff for N = 12,14,16. For
each size, we identify the regimes in which the rate scales
linearly and quadratically with �eff . The former case can
be understood as being strictly perturbative, i.e., Eq. (14).
The latter is associated to the effective FGR, i.e., Eq. (21),
as 1/τφ − 1/τ 0

φ,N ∝ �2
eff and 1/τ 0

φ,N → 0 as N → ∞. The
vanishing 1/τ 0

φ,N in the present all-to-all model differs from
the rate offsets observed in some hierarchical lattices [33].
The numerical observation that the effective FGR onset
moves steadily towards weaker perturbations as N increases
constitutes the main result of our paper.

The comparison between Figs. 3 and 4 for the N = 14 case
evidences that the regime where the effective FGR is valid
coincides with the ∼1/N equilibration of the spin polarization.
This contrasts with the nonergodic behavior expected for the
perturbative regime. In terms of time scales, given an arbitrarily
small perturbation characterized by its corresponding FGR
time τφ , if the forward evolution Û+(t) occurs for a time t �
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FIG. 4. (Color online) LE decay rates 1/τφ (log scale, in units of
J0/�) as a function of the effective perturbation �eff = (J dq )2/(�ω)
(units of J0), for N = 12,14,16. The labels I, II, III, and IV from
Figs. 2 and 3 are included in the case N = 14.

τφ , then the equilibration in Eq. (22) becomes irreversible for
any practical purpose.

As compared with equilibration, thermalization constitutes
a much more specific process [4,5]. We can identify the initial
condition of our system, i.e., Eq. (1), as an infinite temperature
equilibrium state plus an excitation. Given the impossibility to
revert the dynamics, the correlations are useless and the system
ends up cooled down to a finite temperature state. We do not
elaborate further along this line as it would not contribute to
our central discussion.

V. CONCLUSIONS

We have computed the LE, here defined as the local po-
larization recovered after a perturbed time-reversal procedure,
showing a wealth of dynamical regimes. The dynamics of
clusters of interacting spins has been evaluated employing
their complete Hilbert space. In order to analyze the emergence
of the TL as N increases up to 16 spins, we have adopted an
all-to-all interaction model. Forward dynamics is generated by
a reversible truncated dipolar Hamiltonian Ĥ0 that provides
a natural decomposition of the Hilbert space into subspaces
of definite spin projection. As in the original experiments,
a nonreversible perturbation �̂ couples subspaces which are
separated by controllable energy gaps.

We address a regime in which the perturbation induces two-
and four-body effective interactions that can mix quasidegener-
ate states. These states were not directly coupled by the dipolar
Hamiltonian. Moreover, since the effective interactions have
fewer restrictions to the selection rules, they proliferate within
each subspace. In such a regime, the LE decay is characterized
by an effective FGR whose realm of validity widens towards
weaker perturbations as N increases. The analysis of this
lower bound follows a specific sequence for the two limits:
first N → ∞ and then ‖�̂‖ → 0+. Then, in the TL, even
a slight perturbation yields a LE decay ruled by an effective
FGR, which is enhanced by the mechanism of proliferation of
effective interactions.

In our model, forward many-spin dynamics can already
yield an asymptotic equidistribution of the polarization.
Remarkably, we observe that the excitation remains homo-
geneously distributed in spite of the time reversal. Therefore,
while the equilibrated state indeed contains correlations that
encode a full memory of the initial state, such correlations are
useless in the presence of arbitrarily small perturbations. These
would render the time reversal of the Hamiltonian completely
ineffectual.
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