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a b s t r a c t 

A post-processing methodology to evaluate stresses at the macro level is presented. The methodology 

involves homogenization of a Representative Volume Element (RVE) or Unit Cell at the micro level by 

means of control nodes, with the consequence that numerical integration in the domain is not needed. 

This can be employed in cases of infinitesimal or finite strains; elastic, hyper-elastic or elastic-plastic ma- 

terials under quasi-static processes. The paper shows that evaluation of stresses or material properties 

can be done in a RVE of simple shape, such as a prism, or in a RVE of complex shape, such as a trun- 

cated octahedron, using the proposed methodology. Use of the methodology is illustrated for cases under 

various conditions, for which comparison with independent results shows excellent agreement. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Modeling of heterogeneous materials in terms of their mi-

rostructural characteristics, including volume fraction of each con-

tituent, type and shape of inclusions, internal defects, is carried

ut at present by means of micro-mechanics ( Nemat-Nasser and

ori, 1999 ). At least two scales are considered: a microscopic

cale, in which details of the microstructure are represented, and a

acroscopic scale in which an homogeneous material is consid-

red to represent the heterogeneous properties by means of an

quivalence. The region of heterogeneous material at the micro

evel necessary to capture the macroscopic behavior is taken as a

epresentative Volume Element (RVE) or a Unit Cell (UC), and an-

lytical or numerical procedures are employed next to model the

ehavior at a macro level. 

Computational Micro Mechanics (CMM) takes advantage of

omputational procedures to represent details of behavior which

ould not be accessible by analytical techniques ( Zohdi and Wrig-

ers, 2008 ); however, the cost of employing CMM in two-scale

roblems is the need to employ large computer resources, so that

here are motivations to reduce computational cost whenever pos-

ible. Homogenization is a key ingredient in CMM modeling and

mprovements in this part of the process may yield considerable

mprovements in performance. 
∗ Corresponding author. 
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Homogenization is commonly employed in two steps of the

odeling process: (a) the approximate solution of the boundary

alue problem by means of numerical methods; and (b) the post-

rocessing of results to evaluate variables of interest at the macro

evel, such as stresses, elastic properties, etc. This work focuses on

he second stage, i. e. the post-processing homogenization. 

Homogenization post-processing may be oriented to compute

tresses at the macro level based on micromechanics information.

or small strains, the usual definition of macro stress is given by

emat-Nasser and Hori (1999) 

= 

1 

V 

∫ 
V 

σ m dV (1) 

here σ is the stress at the macro level; σm is the Cauchy stress in

he RVE; and V is the volume of the RVE. Index m on top of a vari-

ble indicates that it belongs to the microscopic scale. A similar ex-

ression is employed for large strains, but integration is performed

n the current configuration rather than the initial configuration,

s discussed in de Souza-Neto and Feijóo (2008) . 

Within the context of small strain problems, the definition of

he macroscopic stress emerges, after Gauss theorem is used, in

he form 

= 

1 

V 

∫ 
∂V 

X � t dS (2) 

here ∂V is the boundary of the RVE; X is the coordinate of a

oint at ∂V ; t is the traction vector in ∂V . The Cartesian com-

onents of the tensor product between two vectors a and b are

http://dx.doi.org/10.1016/j.mechmat.2016.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2016.07.006&domain=pdf
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written as 

[ a � b ] i j = a i b j (3)

Numerical implementation of Eq. (1) may be performed for in-

finitesimal strains, as explained by Barbero (2013) , or for finite

strains, as discussed by Abadi (2010) and Guo et al. (2014) , among

others. 

Zahr-Viñuela and Pérez-Castellanos (2011) implemented two

homogenization processes in the evaluation of macro stresses with

finite strains, identified by the authors as “external measure” and

“internal measure”. Macroscopic stresses are evaluated in the first

case by means of a force which is applied to a control node di-

vided by the actual cross area. In the internal measure, the integral

in Eq. (1) is approximated as 

σi j = 

1 

v 

N ∑ 

k =1 

σ k 
i j v k (4)

where σ k 
ij is the ij component of the microscopic Cauchy tensor at

the k Gauss point in the element used in the discretization of the

RVE; v k is the weight factor for numerical integration (in terms of

volume in the current configuration associated with Gauss point k )

for a mesh with N Gauss points; and v is the volume in the current

configuration of the RVE. All these variables depend on time. 

An alternative formulation for finite strains has been presented

by Dijk (2015) for computational homogenization based on virtual

work and the Hill-Mandel Principle for periodic boundary condi-

tions. Dijk employs Lagrange multipliers so that the stress mea-

sures at macro level become conjugate forces of the macro strains,

or vice versa; this formulations is limited to RVE with periodic

boundaries 

The computation of macro stresses by means of a simple equa-

tion was reported by Li and Wongsto (2004) , based on an energy

equivalence between micro and macro scales (Hill-Mandel con-

dition, see Nemat-Nasser and Hori, 1999 ). The studies in Li and

Wongsto (2004) were applied to particle-reinforced composites, for

RVE with shapes adequate to model different packaging configura-

tions of particles. In the mid-1990s, Sun and Vaidya (1996) pre-

sented a similar idea but did not apply their methodology to

complex shapes. In both Li and Wongsto (2004) , and Sun and

Vaidya (1996) the problem was formulated for infinitesimal strains.

A methodology for post-processing stresses is presented in

this work for finite strains; this is abbreviated as PPM-FS (Post-

Processing Methodology for Finite Strains) and should be applica-

ble to linear as well as to nonlinear problems. The goal is to deal

with UC problems with internal cracks in contact including ma-

terial nonlinearity, i.e. plasticity or hyper-elasticity, and geometric

nonlinearity. Complex RVE shapes are also of interest, such as a

truncated octahedron. 

Notice that economies in time and computational cost may be

small with respect to the time required to solve the RVE; however,

the present methodology avoids the complexities associated with

numerical integration. 

2. Post-processing methodology 

2.1. Geometry of unit cells considered 

Two types of UC shown in Fig. 1 are investigated in this work:

A prism having a parallelogram with equal sides at the base; and

the truncated octahedron. The latter case has been employed in

the literature to represent particle-reinforced composites ( Li and

Wongsto, 2004 ), crystalline structures ( Delannay et al., 2006 ),

and open cell materials such as metal foam ( Dharmasena and

Wadley, 2002 ). In the present research both RVE geometries are

used to model a composite material reinforced with unidirectional

fibers. 
Periodicity vectors, as described for example in

ller et al. (2005) , are here employed to model the microstructure

n a periodic material. Three periodicity vectors are used for a UC,

s shown in Fig. 1: For the prismatic UC, these vectors are 

1 = l f i ; P2 = 2 b j ; P3 = 2 b cos ( θ ) j + 2 b sin ( θ ) k (5)

here lf is the fiber length; and θ and b are shown in Fig. 2 a. The

elation of θ and b with Vf (fiber volume fraction) may be written

s 

 = R f 

√ 

π

4 V f sin ( θ ) 
(6)

ere Rf is the fiber radius. For the truncated octahedron, the peri-

dicity vectors are 

1 = l f o i ; P2 = 

l f o 

3 

i + l f o 

√ 

2 

3 

j + 

√ 

2 

3 

l f o k ;

3 = 

2 

3 

l f o i + 

2 

√ 

2 

3 

l f o k (7)

here lf o is the fiber length, computed in terms of length le shown

n Fig. 2 

 f o = 

√ 

6 l e ; with l e = R f 

√ 

π
√ 

3 

8 V f 
(8)

.2. Periodic boundary conditions under finite strains 

Periodic Boundary Conditions (PBC) have been described in the

iterature on computational micro-mechanics, such as Guo et al.

2007, 2014 ) and Abadi (2010) , and were used in this work to rep-

esent a periodic composite at finite strains. Following the nomen-

lature adopted in Zahr-Viñuela and Pérez-Castellanos (2011) , two

oints in a microstructure are identified as “corresponding points”

f the position of one of them may be obtained as the position of

he other one plus a linear combination of the periodicity vectors

sing integer coefficients. To illustrate the concept, periodicity vec-

ors P 1 and P 2 are shown in Fig. 3 . The points in pairs: (C 0 ; C 1 ),

C 0 ; C 2 ) and (C 0 ; C 3 ) are corresponding points. 

The boundary conditions are relations involving the forces and

isplacements at the boundary of the cell ( Guo et al., 2007, 2014 ).

f the traction vector at a boundary point and its corresponding

oundary point are t + y t − respectively, then the following condi-

ion should be satisfied at all boundary pairs of points 

 

+ = −t − (9)

Assuming that the locations at a boundary point, in the actual

onfiguration, are written as x + and at its corresponding point as

 

−, then the condition 

 

+ − x 

− = F ( X 

+ − X 

−) (10)

pplies at all boundary points ( Guo et al., 2014, Eq. (9) ), where X 

+ 
nd X 

− are the locations of the points in the reference configura-

ion; and F is the imposed macroscopic deformation gradient. 

Eq. (10) is next written as a function of nodal displacements at

he boundary in order to facilitate implementation in the general

urpose finite element package ABAQUS (2009) by means of com-

and termed ∗EQUATION. The deformation gradient can be writ-

en as 

 = ∇U + I (11)

here ∇U is the macroscopic displacement gradient in the refer-

nce configuration; and I is the identity tensor. The components of

perator ∇ are 

 

∇ ( ·) ] i j = 

∂ ( ·) i 
∂ X j 

(12)
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(a) (b)

Fig. 1. Periodicity vectors in UC of a fiber reinforced composite: (a) Prismatic; (b) Truncated octahedron. 

(a) (b)

Fig. 2. Front view of a UC: (a) Prismatic; (b) Truncated octahedron. 

Fig. 3. Example of corresponding points in a periodic material. 
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Table 1 

Pv vectors of different pairs of faces of 

the prismatic UC. 

Faces 

1st DOF 2nd DOF Pv 

R L P1 

S I P2 

F P P3 

Table 2 

Pv vectors of different pairs of vertices 

of the prismatic UC. 

Vertices 

1st DOF 2nd DOF Pv 

V2 V1 P1 

V5 V1 P2 

V3 V1 P3 

V4 V1 P1 + P3 

V7 V1 P2 + P3 

V6 V1 P1 + P2 

V8 V1 P1 + P2 + P3 

Table 3 

Pv vectors of different pairs of 

edges of the prismatic UC. 

Edges 

1st DOF 2nd DOF Pv 

E3 E1 P2 

E11 E1 P3 

E12 E1 P2 + P3 

E8 E5 P1 

E7 E5 P2 

E10 E5 P1 + P2 

E4 E2 P1 

E6 E2 P3 

E9 E2 P1 + P3 

s  

p

w

 

s  

E  

o

 

s  

i  

o  

t

Substitution of Eq. (11) into (10) yields 

 

+ − x 

− = ∇U ( X 

+ − X 

−) + X 

+ − X 

− (13)

Next, the displacement at a point is written as the difference

etween the current location minus the reference location, 

 

+ − u 

− = ∇U Pv (14) 

here Pv is a periodicity vector (or a linear combination of them)

hich satisfies the condition 

v = X 

+ − X 

− (15) 

For a UC modeled by finite elements, it is only necessary to

pecify the conditions (14) for the boundary displacements. The

ntiperiodic conditions (9) for the boundary tractions are auto-

atically satisfied because a displacement-based variational finite

lement formulation has been employed, as explained in Li and

ongsto (2004) . 

The conditions (14) were implemented in this work by means

f multipoint linear constraints. From Eq. (14) , the scalar equation

olds 

 i 
+ − u i 

− − 1 

α
w 

1 
i P v x − 1 

α
w 

2 
i P v y − 1 

α
w 

3 
i P v z = 0 (16)

here i = 1, 2, 3; Pv x , Pv y , and Pv z are the Pv vector components;

is a unit factor, α = 1 [length units] to homogenize units; w i 
j are

he displacement components in direction i of the additional node

 that has been included as a control node. Three control nodes

ave been selected in this work, and a boundary condition is as-
igned to them in terms of the components of the macroscopic dis-

lacement gradient which is to be imposed on the UC: 

 

j 
i 
= α[ ∇U ] i j (17) 

Eqs. (17) and (16) include a unit factor α to avoid dimen-

ional inconsistencies. Eq. (14) are thus implemented by use of

q. (16) and boundary conditions (17) , which are valid for any RVE

r UC geometric configuration. 

The identification of faces, edges, and vertices for a UC with the

hape of a prism is shown in Fig. 4 , and for a truncated octahedron

n Fig. 5 . A summary of the Pv vectors to be used with each pair

f nodes on faces, edges, and vertices is given in Tables 1 – 6 for

he first and second degree of freedom (DOF) in Eq. (16) . 
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Fig. 4. Identifications of faces edges and vertices in a prismatic UC. 

Fig. 5. Identifications of faces, edges, and vertices in a UC with shape of a truncated octahedron. 

Table 4 

Pv vectors of different pairs of faces for 

the truncated octahedron UC. 

1st DOF 2nd DOF Pv 

R L P1 

CF CP P3 

HF HP P3 − P1 

CSF CIP P2 −P1 

HSF HIP P2 

CSP CIF P1 + P2 −P3 

HSP HIF P2 −P3 

Table 5 

Pv vectors of different pairs of edges for the truncated octahedron UC. 

1st DOF 2nd DOF Pv 1st DOF 2nd DOF Pv 

E1 E4 P1 E18 E13 P1 −P3 

E25 E4 P3 E31 E13 P1 −P2 

E26 E2 P1 −P3 E14 E17 P1 −P3 

E3 E2 P1 E32 E17 P2 −P3 

E5 E10 P1 E16 E19 P1 −P3 

E33 E10 P1 −P2 E35 E19 −P2 

E9 E6 P1 E20 E15 P1 −P3 

E34 E6 P2 E36 E15 P1 + P2 −P3 

E7 E12 P1 E21 E24 P3 

E27 E12 P3 − P2 E29 E24 P3 −P2 

E11 E8 P1 E23 E30 P3 −P2 

E28 E8 P1 + P2 −P3 E22 E30 −P2 

 

 

 

 

 

 

Table 6 

Pv vectors of different pairs of vertices for the truncated octahedron UC. 

1st DOF 2nd DOF Pv 1st DOF 2nd DOF Pv 

V17 V12 P3 V7 V10 P1 

V5 V12 P1 V19 V10 P3 

V24 V12 P2 V21 V10 P3 −P2 

V9 V8 P1 V3 V2 P1 

V22 V8 P1 + P2 −P3 V16 V2 P1 + P2 −P3 

V20 V8 P1 −P3 V13 V2 P2 

V11 V6 P1 V1 V4 P1 

V23 V6 P1 −P2 V14 V4 P1 −P2 

V18 V6 P1 −P3 V15 V4 P3 −P2 

2

2

 

T  

fi  

o  

H

P  

w  

d

P  

w

F  

V  

t

Whenever periodicity is implemented by Eq. (16) and boundary

conditions (17) , there are three control nodes at which displace-

ments can be imposed by Eq. (17) for a given deformation gradi-

ent F . Thus, at nodes in which displacements are specified there

will be reactive forces which can be obtained from the finite ele-

ment model. These forces and displacements will be employed in

this work in the post-processing to achieve homogenization. 
.3. Evaluation of stresses at macro level 

.3.1. Internal mechanical power 

Under a given strain state, a stress field is induced at a RVE.

he stress power, or rate of internal mechanical work, identi-

ed as Pint(t) , is a scalar associated with the stress field acting

n the RVE in the reference configuration V at time t . Following

olzapfel (20 0 0) , Pint is given by 

 int ( t ) = 

∫ 
V 

P 

m : ˙ F m dV (18)

here P 

m is the first Piola-Kirchhoff tensor; and 

˙ F m is the rate of

eformation gradient F . Units of Pint(t) are work per time unit. 

The first Piola-Kirchhoff tensor satisfies the condition 

 = Jσ
(
F −1 

)T 
(19)

here J = det( F ) is the Jacobian of F . Next, consider 

˙ 
 = ∇ ( Vel ( X , t ) ) (20)

el is the velocity and is written in terms of reference configura-

ion X at a time t . 
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For a RVE, the Hill-Mandel condition may be written as

e Souza-Neto and Feijóo (2008) 

 : ˙ F = 

1 

V 

∫ 
V 

P 

m : ˙ F m dV (21) 

here P 

m and P are the first Piola-Kirchhoff tensor at the micro

nd the macro scales, respectively; ˙ F m and ˙ F are the rates of defor-

ation gradient again at micro and macro scales. Body force and

nertia have not been included in this work, but these effects have

een taken into account by de Souza-Neto et al. (2015) . 

Thus, the stress power results in 

 int ( t ) = V P : ˙ F (22)

For the specific case of simple shear in which F is given by 

 ( t ) = 

⎡ 

⎣ 

1 0 0 

γ f t 1 0 

0 0 1 

⎤ 

⎦ (23) 

or 0 ≤ t ≤ 1 [sec], one has 

 int ( t ) shear = V σ12 γ f (24) 

Notice that in the case of shear, a tensor of simple shear needs

o be used instead of a tensor of pure shear because the latter in-

uces a stress power which would not be associated with a unique

acroscopic stress. 

In the case of uniaxial strain, a principal stretching λ1 is ap-

lied in direction 1, whereas λ2 and λ3 are computed to obtain

22 = σ 33 =0 through a deformation gradient 

 ( t ) = 

[ 

λ1 ( t ) 0 0 

0 λ2 ( t ) 0 

0 0 λ3 ( t ) 

] 

(25) 

here 

1 ( t ) = 1 + ( λ1 F − 1 ) t (26) 

or 0 ≤ t ≤ 1 [sec], where λ1F is the final principal stretching, the

tress power reduces to 

 int ( t ) uniaxial = V ( λ1 F − 1 ) λ2 λ3 σ11 (27) 

Again, all variables in Eq. (27) depend on t , with the exception

f V. 

.3.2. External mechanical power 

If the kinetic energy change in the RVE is zero, then the prob-

em may be classified as quasi-static, in which the variables may

till be time-dependent. The energy balance results in 

 ext ( t ) = P int ( t ) (28)

here Pext ( t ) is the external mechanical power or rate of mechani-

al external work (see Holzapfel, 20 0 0 , Eq. 4.102). Pext ( t ) is defined

s the power due to external forces in a domain of volume V at

ime t . 

In a finite element model of a RVE with control nodes, exter-

al work is only done through forces acting on such control nodes.

hus, the external power for each loading case considered is the

roduct of the force (reaction) multiplied by the velocity in the di-

ection of the force. For simple shear this is 

 ext ( t ) shear = αR 12 γ f (29) 

here R 12 is the force in direction 1 acting in control node 2;

hereas 

 ext ( t ) uniaxial = αR 11 ( λ1 F − 1 ) (30) 

olds for uniaxial strains, in which R 11 is the force in direction 1

cting in control node 1. 
.3.3. Evaluation of macroscopic stresses 

Consider the energy balance of Eq. (28) together with

qs. (24) and (29) for simple shear; then the components of the

auchy stress at the macro level become 

12 = 

αR 12 

V 

(31) 

here σ 12 is the Cauchy stress component at macro level. 

For uniaxial strain, using Eqs. (28) , (27) and (30) , the Cauchy

tress at macro level σ 11 is 

11 = 

αR 11 

V λ2 λ3 

(32) 

As stated before, variables in Eqs. (31) and (32) depend on t ,

ith the exception of V. 

The homogenization procedure may be now summarized as fol-

ows: (i) displacements are first obtained in the RVE at time t , and

eactions (either R 11 or R 12 ) are identified at the control node. (ii)

he principal macroscopic stretching λ2 and λ3 are computed as 

2 ( t ) = 1 + w 

2 
2 (33) 

3 ( t ) = 1 + w 

3 
3 (34) 

here w 2 
2 and w 3 

3 are displacements of control nodes 2 and 3 in

irections 2 and 3, respectively (see Eq. 16 ). (iii) depending on the

ase considered, Eq. (31) or (32) is used to obtain the Cauchy stress

omponent at macro level. 

The conditions to perform homogenization under simple shear

n a direction different than that considered for Eq. (31) may be

btained by the same procedure and results in 

13 = 

αR 13 

V 

; σ23 = 

αR 23 

V 

(35) 

or the shear components, whereas the normal components are

iven by 

22 = 

αR 22 

V λ1 λ3 

; σ33 = 

αR 33 

V λ1 λ2 

(36) 

An important advantage of the present PPM-FS is that numer-

cal integration need not be used, with the consequence that less

omplexity in implementation and less information and computer

ime are handled during the post-process. Because the method

s based on mechanical energy balance in quasi-static problems,

he range of application includes material or kinematic nonlineari-

ies. Further, the methodology is not only appropriate for PBC but

lso for any boundary condition that satisfies Hill-Mandell condi-

ion and could be implemented by means of control nodes. In its

resent form, the proposed methodology can only tackle states of

niaxial stress and simple shear, which allow computation of effec-

ive tangent constitutive tensors associated to those stress states. 

. Results for UC under simple shear 

To validate results of the present PPM-FS, several cases have

een solved by means of a finite element implementation us-

ng ABAQUS (2009) . Specifically, elements with linear interpola-

ion were used because of their advantages in modeling plastic-

ty and incompressible materials. Convergence was investigated in

ach case with up to approximately 20 0,0 0 0 elements in cases

ith plasticity. 

.1. Small strain problem 

As an initial example, a case reported in the literature (exam-

les 6.2 and 6.3 in Barbero, 2013 ) is solved under small strains.

his consists in the evaluation of G 12 , the in-plane shear modu-

us of a periodic composite reinforced with long carbon fibers in a
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Table 7 

Fiber and matrix properties from Barbero (2013) . 

Carbon fiber AS4-D Epoxy matrix 9310/9360 ª 23 ºC 

E [GPa] 241 3 .12 

v 0 .2 0 .38 

Table 8 

Comparison for shear modulus G 12 . 

Barbero (2013) Present metodology 

G 12 [MPa] 2579 2583 
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Fig. 6. Cauchy stress [MPa] for a hyper-elastic composite under transversal simple 

shear: Comparison between PPM-FS and analytic model of Abadi (2010) . 
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polymer matrix. The UC adopted in Barbero (2013) is a rectangu-

lar parallelepiped in which fibers have an hexagonal configuration.

Matrix and fiber properties (shown in Table 7 ) are assumed as lin-

ear elastic and isotropic, for a composite with 40% fiber volume

fraction. 

The gradient of displacement in the material description can be

computed based on the macroscopic deformation gradient as (see

Eq. 2.45 in Holzapfel, 20 0 0 ) 

∇U = F − I (37)

Under infinitesimal displacements, the gradient of displace-

ments in the material description, Eq. (37) , is approximately the

same as in the actual or spacial description. Thus, the tensor of in-

finitesimal strain can be obtained as the symmetric part of Eq. (37) ,

as indicated in Chandrasekharaiah and Debnath (2014) (Eq. 5.6.4)

ε = 

1 

2 

(∇ U + ∇ U 

T 
)

(38)

The small strain tensor becomes 

ε = 

[ 

0 5 x 10 

−5 0 

5 x 10 

−5 0 0 

0 0 0 

] 

(39)

Rather than using the same geometry of the UC as in the orig-

inal reference, in this case a truncated octahedron was employed

to illustrate its use. 

Finally, evaluation of the shear modulus G 12 , is obtained by

dividing Cauchy stress computed by Eq. (31) and the associated

strain component for infinitesimal strains. Results of Table 8 show

good agreement between the present results based on the trun-

cated octahedron and those by Barbero. 

3.2. Comparison with an analytical model for finite strains 

To investigate the response of the proposed methodology un-

der large shear strains, an analytical model due to Abadi (2010) for

fiber and matrix of Neo-Hookean isotropic incompressible hyper-

elastic material has been used for comparison. The strain energy

density W of a Neo-Hookean isotropic incompressible hyper-elastic

material is (see Holzapfel, 20 0 0 ) 

 (t) = C 10 ( I 1 (t) − 3) (40)

were C 10 is a material parameter, and the first invariant of strain I 1 
is given by 

I 1 (t) = tr 
[
F (t) 

T 
F (t) 

]
(41)

If the material undergoes transverse or axial simple shear in a

composite with hyper-elastic and incompressible properties ( J = 1 ),

W 

C results in (see Abadi, 2010 ) 

 

c (t) = C c 10 ( I 1 (t) − 3) (42)
here the material parameter is 

 

c 
10 = 

(1 + V f ) C f 
10 

+ (1 − V f ) C m 

10 

(1 − V f ) C f 
10 

+ (1 + V f ) C m 

10 

(43)

nd C 10 
f y C 10 

m are material parameters of fiber and matrix, re-

pectively. The specific case of interest is a composite under simple

ransverse shear strain, with a deformation gradient given by 

 ( t ) = 

[ 

1 0 0 

0 1 γ f t 
0 0 1 

] 

(44)

The density W 

C in Eq. (42) , reduces to 

 

c (t) = C c 10 γ
2 
f t 2 (45)

The time rate of W 

C is 

d W 

c (t) 

dt 
= 2 C c 10 γ

2 
f t (46)

The strain energy rate can be written in terms of stress and

train rate, i.e. 

dW (t) 

dt 
= P : ˙ F (47)

For the case of shear strain and considering Eq. (19) , the strain

nergy rate becomes 

dW (t) 

dt 
= σ23 γ f (48)

Cauchy stress can now be obtained from Eqs. (46) and (48) in

he form 

23 = 2 C c 10 γ f t (49)

Finally, Cauchy stress σ 23 can be obtained as 

23 = 2 C c 10 F 23 (50)

To compare numerical results, consider a fiber reinforced com-

osite in a square fiber arrangement (prismatic UC with θ = 90 in

ig. 2 a). A deformation gradient (44) is imposed and Eq. (35) is

sed to compute the stresses at the macro scale. Results of macro

tress are compared in Fig. 6 under simple transverse shear under

arge strains: The present model predicts the same results as the

nalytical model. 

.3. Comparison with a numerically integrated model for finite 

trains 

The present post-processing methodology has been applied to

 composite with continuous fibers in hexagonal configuration
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Table 9 

Ogden material properties. 

Matrix: Ogden 

μi [N/m 

2 ] αi 

6.3 ×10 5 1 .3 

0.012 ×10 5 5 

− 0.1 ×10 5 − 2 

Fig. 7. Cauchy stress [GPa] for a hyper-elastic composite under transversal simple 

shear: Comparison between PPM-FS and numerical integration of Eq. (4) . 
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prismatic UC), having 0.1 ≤ Vf ≤ 0.67. Isotropic hyper-elastic in-

ompressible behavior is assumed for fiber and matrix, with Neo-

ookean model for the fibers ( Eq. (40) ) and Ogden model for the

atrix ( Eq. (51) ). 

 (t) = 

N ∑ 

i =1 

2 μi 

α2 
i 

[
λαi 

1 
+ λαi 

2 
+ λαi 

3 
− 3 

]
(51) 

here μi and αi are material parameters; N is the number of

erms used in the model; λi are the principal stretching of the de-

ormation gradient acting in the material. The initial shear modu-

us for the assumed Neo-Hookean material is given by 

f 
0 

= 2 C 10 (52) 

For the Ogden material, the initial shear modulus is 

m 

0 = 

N ∑ 

i =1 

μi (53) 

The material parameters assumed in this case are shown in

able 9 for the Ogden material and C 10 = 2.1125 ×10 6 N/m 

2 for the

eo-Hookean material. The ratio of initial shear moduli of fiber

nd matrix is 6.8. 

A simple transverse shear strain is imposed to the UC, with a

eformation gradient as studied in the previous case ( Eq. (44) ).

q. (35) was used to evaluate Cauchy stress. Results of the present

ost-processing model are compared in Fig. 7 with those obtained

y numerical integration of Eq. (4) , and excellent agreement is

ound between them. 

. Results for UC under a uniaxial state 

.1. Comparison with an analytical model under finite strains 

Results obtained by the rule of mixtures (ROM) are compared

n this section with the present PPM-FS. Based on a thermo-

ynamical formulation, the ROM allows writing the macroscopic
tress tensor of a composite formed by N constituent materials at

he micro scale as 

= 

N ∑ 

i =1 

V f i σi (54) 

here Vf i is the volume fraction for each constituent; and σ i is the

tress tensor in the i th microstructural component. Eq. (54) can be

sed for heterogeneous materials with arbitrary constitutive laws

t the micro scale ( Martínez and Oller, 2009 ), and is a good ap-

roximation for long fiber composites. 

To illustrate the behavior, a prismatic UC with a square fiber

rrangement ( θ = 90 in Fig. 2 a) is considered under uniaxial state,

s given by Eq. (25) . Fiber and matrix are assumed as hyper-elastic

ith material properties given in Section 3.3 . Eq. (32) was used to

erform homogenization. 

For this composite, Eq. (54) is given by 

11 = v f σ f + (1 − v f ) σm 

(55) 

n direction of the fiber, where σ f and σ m 

are Cauchy normal

tresses in the fiber direction, acting on the fiber and matrix, re-

pectively. Such stresses are next obtained from hyper-elastic mod-

ls and the imposed strain. 

The strain energy density can be evaluated by using Eq. (40) ,

.e. 

 = C 10 ( I 1 − 3) (56)

The deformation gradient for a uniaxial stress state (in which

22 = σ 33 = 0) in an incompressible material is 

 = 

⎡ 

⎢ ⎣ 

λ1 0 0 

0 λ
− 1 

2 
1 

0 

0 0 λ
− 1 

2 
1 

⎤ 

⎥ ⎦ 

(57) 

Notice that J = det( F ) = 1, so that the first strain invariant I 1 is 

 1 = tr 
[
F T F 

]
or I 1 = λ2 

1 + 

2 

λ
1 

(58) 

Substitution into (56) yields 

 = C 10 

(
λ2 

1 + 

2 

λ
1 

− 3 

)
(59) 

In an hyper-elastic model in which W is written in terms of

rincipal stretching ( λii ), Cauchy principal stresses may be ob-

ained as (Eq. 6.45 in Holzapfel, 20 0 0 ) 

a = J −1 λa 
∂W 

∂ λa 
(60) 

Finally, the fiber stress is 

f = 2 λ1 C 10 

(
λ1 − 1 

λ2 
1 

)
(61) 

The same procedure is used for the matrix following Ogden’s

odel: 

 = 

3 ∑ 

i =1 

2 μi 

α2 
i 

[
λαi 

1 
+ λαi 

2 
+ λαi 

3 
− 3 

]
(62) 

hich, under uniaxial strain, reduces to 

 = 

3 ∑ 

i =1 

2 μi 

α2 
i 

[
λαi 

1 
+ 2 λ

− αi 

2 
1 

− 3 

]
(63) 

Considering Eqs. (60) and (63) , Cauchy stress for the matrix is

m 

= 

3 ∑ 

i =1 

2 μi 

α
i 

[
λαi 

1 
− λ

− αi 

2 
1 

]
(64) 
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Fig. 8. Cauchy stress [GPa] for a hyper-elastic composite under uniaxial stress state: 

Comparison between PPM-FS and Eq. (55) . 

Fig. 9. Cauchy stress [GPa] for a hyper-elastic composite under uniaxial stress state: 

Comparison between PPM-FS and numerical integration of Eq. (4) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Normalized transversal modulus of elasticity E 22 as a function of fiber vol- 

ume fraction Vf . Results for a perfectly bounded and a completely debonded fiber, 

under uniaxial transverse tensile and compressive states. 

Fig. 11. Fiber reinforced composite with hexagonal arrangement. 
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The analytical model used in this section to validate PPM-

FS, described in Eq. (55) , is now complete with fiber and matrix

stresses as given by Eqs. (61) and (64) . Stress results, computed by

Eqs. (32) and (55) , for 0.1 ≤ Vf ≤ 0.75, are shown in Fig. 8 . Excellent

agreement is found between both models. 

4.2. Comparison with a numerically integrated model for finite 

strains 

Numerical integration of Eq. (4) has been performed in this case

under a transverse uniaxial state in direction 2. In this case 

F ( t ) = 

[ 

λ1 ( t ) 0 0 

0 λ2 ( t ) 0 

0 0 λ3 ( t ) 

] 

(65)

where λ2 is imposed and λ1 and λ3 are evaluated using

σ 11 = σ 33 = 0, so that a uniaxial stress state exists in direction 2.

The material properties and hexagonal fiber arrangement (pris-

matic UC with θ = 60 in Fig. 2 a) are assumed as in Section 3.3 .

Cauchy stress was evaluated by means of Eq. (36) . 

Results of σ 22 from numerically integrated and PPM-FS are

shown in Fig. 9 for values of the imposed deformation gradient

component F 22 = λ2 . Again, almost identical results are obtained

using both methods. 

4.3. Problems in which there is contact within the RVE 

A composite with interface damage around the complete fiber

is investigated in this section. Interest in this case occurs because
ensile stresses normal to the interface generate separation be-

ween materials; but if compression occurs at the interface there

s load transfer between them because materials cannot penetrate

ach other ( Teng, 2007 ). In a composite with interface damage, the

aterial has different elasticity modules in tension and compres-

ion (bi-modular behavior). 

This problem was studied by Teng (2007) for a composite

ith fibers having 0.1 ≤ Vf ≤ 0.7, using a square configuration with

0 × 10 fibers. Linearly elastic and isotropic properties were as-

umed with E f = 80 GPa, νf = 0.2, E m 

= 4 GPa, and νm 

= 0.38; uni-

orm tractions were applied at the boundaries, and periodicity was

chieved because an extended 10 × 10 domain was modeled. 

The PPM-FS was used on a single fiber in the UC in generalized

lane strain conditions, in which a uniaxial stress in direction 2

perpendicular to the fiber direction) is imposed. Cauchy stresses

ere evaluated by Eq. (36) and periodic boundary conditions were

ssumed. Contact in both models was assumed to occur without

riction or cohesion. 

Results are compared in Fig. 10 for conditions of undamaged

nd damaged around the fiber under uniaxial tension and com-

ression. Very good agreement is found in all cases between the

resent post-processing model and the results of Teng (2007) , with

inor discrepancies caused by differences in the boundary condi-

ions assumed in each case. 

.4. Problems involving plasticity 

Michel et al. (1999) considered plasticity for Cauchy stress at

he macro level in direction 3 perpendicular to the fiber direc-

ion, in a composite with hexagonal fiber configuration, as shown

n Fig. 11 . Elastic-perfectly plastic properties were assumed with

 

m = E f = 100 GPa, νm = νf = 0.25; von Mises plasticity with an as-

ociative rule were used, with σ 0 
m = 100 MPa and σ 0 

f = 500 MPa.

iber volume fraction of 56.25% was assumed in a prismatic UC. 

In modeling this case, Eq. (36) is used for homogenization. A

train due to a uniaxial stress state in direction 3 is assumed so
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Fig. 12. Normalized Cauchy stress in direction 3. Results of PPM-FS and 

Michel et al. (1999) for an elastic perfectly-plastic composite. 
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hat the imposed deformation gradient is given by Eq. (25) . In a

ay similar to other uniaxial cases considered previously in this

aper, λ3 is imposed and λ1 and λ2 are calculated to have zero

ormal stresses in directions 1 and 2. 

Results from Michel et al. (1999) are compared with the present

PM-FS in Fig. 12 , to show that even for cases involving plastic-

ty there is an excellent performance by use of the post-processing

ethodology. 

. Conclusions 

A new post-processing methodology has been presented in this

ork to evaluate stresses at the macro level in computational

icro-mechanics. The procedure can be used in finite strain as

ell as in cases in which there is plasticity, and is limited to quasi-

tatic cases. The formulation accounts for uniaxial load and shear. 

The methodology greatly simplifies evaluation of stresses at the

acro level because numerical integration in the RVE domains is

ot performed; this avoids complexities in implementation. Fur-

her, the present procedure allows having a unified treatment of

roblems that were before considered with specific or ad-hoc

ethodologies. 

Validation has been presented by comparison with independent

ases solved in the literature (either analytical or numerical) to

valuate elastic properties of linearly elastic composites in a trun-

ated octahedron UC domain under small strains; elastic properties

f composites in which there is contact at the fiber/matrix inter-

ace; stresses at the macro scale considering plasticity, and hyper-

lasticity under finite strains. 

Because the present formulation was derived from Hill-Mandel

rinciple, the approach is not limited to periodic conditions in the

VE, and could also be employed for other boundary conditions

hich could be implemented by means of control nodes, such as

inear boundary conditions. 

Some limitations in the present formulation should be men-

ioned: It is valid in cases in which an effective constitutive tensor
s pursued. On the other hand, the methodology is not appropriate

f averaged macro-stress must be solved in each time step, i.e. in a

roblem subjected to a loading process. 
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