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Abstract Let M and N be two connected smooth manifolds, where M is compact and
oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M
in N , endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence
relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation
preserving diffeomorphism φ of M . The Fréchet manifold S = E/∼ of equivalence
classes, which may be thought of as the set of submanifolds of N diffeomorphic to M
and is called the nonlinear Grassmannian (or Chow manifold) of N of type M , inherits
from E a weak Riemannian structure. We consider the following particular case: N is
a compact irreducible symmetric space and M is a reflective submanifold of N (that
is, a connected component of the set of fixed points of an involutive isometry of N ).
Let C be the set of submanifolds of N which are congruent to M . We prove that the
natural inclusion of C in S is totally geodesic.
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1 Introduction and statement of the result

1.1 Manifolds of embeddings

Let M , N be connected smooth manifolds (from now on, by smooth we mean C∞).
The set E of all embeddings of M into N is a Fréchet manifold (Theorem 44.1 in
[4]; see also [8]). If M is compact and oriented and N is Riemannian, then E has a
canonical weak Riemannian metric defined as follows: If f ∈ E and u, v ∈ T f E (that
is, u, v are smooth vector fields along f ), then

〈u, v〉 =
∫

M

〈u (x) , v (x)〉 ω f (x), (1)

where ω f is the volume element of the Riemannian metric on M induced by f.
Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f =

g ◦ φ for some orientation preserving diffeomorphism φ of M. The set S = E/∼ of
equivalence classes is called the nonlinear Grassmannian (or Chow manifold) of N
of type M . It is a Fréchet manifold with a weak Riemannian metric in such a way
that the associated projection � : E → S is a principal bundle with structure group
Diff+ (M), and a Riemannian submersion. Cf. [6], where much more general metrics
on S are considered.

For any f ∈ E we have the decomposition T f E = H f ⊕ V f in horizontal and
vertical subspaces at f , where V f = Ker

(
d� f

)
and H f is the orthogonal complement

of V f . They consist of all the smooth vector fields along f which are tangent to f (M),
respectively, normal, at each point of M.

1.2 Reflective submanifolds

A reflective submanifold M of a Riemannian manifold N is a connected component
of the set of fixed points of an involutive isometry of N . In particular, M is closed
and totally geodesic in N . Reflective submanifolds of symmetric spaces have been
extensively studied by Leung in a series of papers beginning with [5] (see also Chapter
9 of [2]). For instance, every complete totally geodesic connected submanifold of a
simply connected space form is reflective. Also, the reflective submanifolds of CPn

are exactly, up to isometry, CPk (1 ≤ k < n) and RPn (canonical embedding). In
particular, RP1, that is, a geodesic, is not a reflective submanifold of CPn if n ≥ 2.

1.3 The nonlinear Grassmannian of a compact symmetric space

Let N be a compact connected symmetric space and let G be the identity component
of the isometry group of N . Let o ∈ N and let K be the isotropy subgroup at o. We
have the canonical projection π : G → N , π (g) = g (o). For the sake of simplicity,
we assume further that G is semisimple and π is a Riemannian submersion, where G
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Nonlinear Grassmannian of a compact symmetric space

is endowed with the Riemannian metric defined at the identity by the opposite of the
Killing form.

Let M be a reflective submanifold of N and let E,S be the spaces associated to
M, N as in SubSect. 1.1. We may suppose that o ∈ M .

Let H = {g ∈ G | g (M) = M}. Since M is closed in G, H is a closed subgroup,
and hence a Lie subgroup, of G.

Let C be the set of submanifolds of N which are G-congruent to M, that is, C =
{g (M) | g ∈ G} . We may identify C ∼= G/H .

Now we can state the main result of the paper: C is totally geodesic in S. More
precisely,

Theorem 1 Let ι : M → N be the inclusion and let

F : C ∼= G/H → S, F (gH) = � ◦ g ◦ ι

(a well-defined map). Then (C, F) is a totally geodesic submanifold of S.

Remark 2 (a) Geodesics in S are not good from the metric point of view, since (1)
induces on S a vanishing geodesic distance [1,7]. Nevertheless, they are distin-
guished curves which deserve being studied. For instance, in the case M = S1,
N = S3, they played a role in a characterization of the Hopf fibrations of S3 [10].

(b) We do not know whether the Riemannian metric induced on C from S is normal
with respect to G (i.e., whether the canonical projection π̃ : G → C is a Rie-
mannian submersion for some bi-invariant Riemannian metric on G), but at least
in the simplest case it is:

Proposition 3 Let M be a reflective submanifold of Sn, that is, M is a great sphere.
Then the metric on C induced from S is normal.

Proof Let {ei | i = 0, . . . , n} be the canonical basis of R
n+1 and suppose M =

Sn∩ span {ei | i = 0, . . . , m} ∼= Sm . Given 0 ≤ i < j ≤ n and t ∈ R, let
Ri, j

t ∈ SO (n + 1) = G be the rotation fixing ek for k = i, j and satisfying
Ri, j

t ei = (cos t) ei + (sin t) e j . Let Ei, j = d
dt

∣∣
0 Ri, j

t . Then
{

Ei, j | 0 ≤ i < j ≤ m
}

is an orthonormal basis of so (n + 1) with respect to a negative multiple of the Killing
form. Now we follow the notatios of SubSect. 1.3. If we take o = e0 and call h the Lie
algebra of H , then h⊥ = span

{
Ei, j | 0 ≤ i ≤ m < j ≤ n

}
. We have to check that

dπI : h⊥ ⊂ so (n + 1) = TI G → TMC

satisfies ‖dπI (X)‖ = c |X | for all X ∈ h⊥ and some constant c.

The vector fields corresponding to Ei, j along the inclusion ι : Sm → Sn are

V i, j (q) = d

dt

∣∣∣∣
0

Ri, j
t (q) = d

dt

∣∣∣∣
0
(cos t) xi (q) ei + (sin t) xi (q) e j = xi (q) e j ,

123

Author's personal copy



M. Salvai

where q ∈ Sm . Now we apply the definition (1). We compute

∣∣∣V i, j (q)

∣∣∣2 = x2
i (q) ,

〈
V i, j (q) , V k,� (q)

〉
= δ j�xi (q) xk (q) .

Since yi =def xi |Sm (i = 0, . . . , m) are elements of the canonical orthogonal basis of
spherical harmonics on Sm , we have

〈
V i, j , V k, j

〉 = 0 if i = k. Besides,

(m + 1)

∫

Sm

y2
i (q) ωι (q) =

m∑
s=0

∫

Sm

y2
s (q) ωι (q) =

∫

Sm

ωι (q) = vol
(
Sm)

.

Therefore,
∥∥V i, j

∥∥2 = 1
m+1 vol (Sm) and so one can take the square root of this number

as c above.

2 Proof of the main result

2.1 The structure of C

Naitoh proved that if M, N are as in SubSect. 1.3, then (G, H) is a symmetric pair.
We recall here the more recent and general version by Tasaki. Let g = k + p be the
Cartan decomposition of the Lie algebra of G associated to the point o ∈ N .

Theorem 4 ([9,13]) Let h be the Lie algebra of H and let m− ⊂ p be such that
dπem− = To M. Then k = k+ + k− and p = m+ + m− in such a way that

h = k− + m− and TMC ∼= h⊥ = k+ + m+. (2)

Moreover, [
h, h⊥]

⊂ h⊥ and
[
h⊥, h⊥]

⊂ h. (3)

2.2 The evolution equation for geodesics

Let M, N be as in SubSect. 1.1. Kainz obtained in [3] a necessary and sufficient
condition for a curve f : I → E to be a geodesic, where I is an interval of the real
line.

In the very particular case when f (t) is a totally geodesic embedding and f ′ (t) is
a normal vector field along f (t) for all t ∈ I, the condition simplifies as follows [7,
SubSect. 4.2]: f is a geodesic if and only if

D

dt

∣∣∣∣
to

f ′ (t) (x) ∈ d ( f (to))x (Tx M) (4)

for all to and all x ∈ M , where D
dt denotes covariant derivative along the curve

I � t �→ f (t) (x).
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2.3 The acceleration of an orbit in a normal space

When applying the criterion above to our case, we will need an expression for the
covariant acceleration of the orbit of a one-parameter group of isometries.

Let G be a connected Lie group endowed with a bi-invariant Riemannian metric
and let K be a closed connected Lie subgroup of G with Lie algebra k. Consider on
P = G/K the Riemannian metric such that the canonical projection π : G → P is a
Riemannian submersion (the normal metric on P). In these conditions, the geodesics
of G are one-parameter subgroups; in particular, the fibers are totally geodesic.

Lemma 5 Let G and P be as above, and let β be the curve in P defined by β = π ◦α,
where α (t) = exp t (U + V ), with U ∈ k and V ∈ k⊥. Then

Dβ̇

dt
(0) = dπe[U, V ]e.

Before proving the lemma we recall from [11] some definitions and statements
about submersions and parallel transport.

Let π : B → P be a Riemannian submersion with totally geodesic fibers. For
E ∈ T B, let HE and V E denote the horizontal and vertical parts of E , respectively.
The O’Neill tensor field A on B, of type (0, 2), is defined by

AE F = V∇HE (HF) + H∇HE (V F) .

Let E be a vector field along a curve α in B. By the main result in [11],

H (
E ′) = L

(
(dπ (E))

′) + AHE (Vα̇) + AHα̇ (V E) , (5)

where the prime denotes covariant derivative (along α or π ◦ α, accordingly) and,
if W is a vector field along π ◦ α, then L (W ) is the horizontal vector field along α

projecting to F .

Proof of Lemma 5 We consider the Riemannian submersion π : G → P and apply
Eq. (5) to E = α̇ = U ◦ α + V ◦ α, whose covariant derivative vanishes since α is a
geodesic of G (the metric is bi-invariant). We obtain

0 = L(β̇ ′) + 2AHα̇ (Vα̇) . (6)

Hence, by definition of the tensor A and using that ∇V U = 1
2 [V, U ] since the metric

on G is bi-invariant, one has

L(β̇ ′) = −2H(∇Hα̇Vα̇) = −2H ((∇V U ) ◦ α) = H (([U, V ]) ◦ α) .

Applying dπ and evaluating at t = 0, one gets the desired formula for β̇ ′ (0). ��
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Proof of Theorem 1 We consider on C = G/H the metric induced from S (which in
principle may not be normal). Let F̃ : G/H → E be defined by F̃ (gH) = g ◦ ι, that
is, the following diagram is commutative.

G/H
F̃−→ E
↘
F

↓ �

S

Given a geodesic γ in C, we will prove that F̃ ◦ γ is a horizontal geodesic in E .
Hence, F ◦ γ is a geodesic in S and so (C, F) is totally geodesic, as desired. Since
F is G-equivariant and the action of G preserves the metrics on C and E and also
the vertical and horizontal distributions on E (see above their description in terms of
vector fields along the embeddings), it suffices to prove the assertion only for γ with
γ (0) = H .

Now, by Theorem 4, since the metric of C is G -invariant, the geodesics of C are
the same as the geodesics of C endowed with the normal metric (see Exercise 10(b)
on page 330 of [12]). Hence, γ (t) = π̃et X , for some X ∈ h⊥. We call f = F̃ ◦ γ :
R → E . Now we check that we can apply the criterion of Kainz. First, f (t) is totally
geodesic for any t ∈ R, since f (t) = et X f (0), with et X an isometry of N and
f (0) = ι : M → N , which is totally geodesic since it is reflective. Secondly, the
vector field f ′ (t) along f (t) is normal to f (t) . Again by et X -invariance, one can
take t = 0. Let q ∈ M . Since M is a totally geodesic submanifold of the symmetric
space G/H through o, q = eY .o for some Y ∈ m−. We compute

f ′ (0) (q) = d

dt

∣∣∣∣
0

et X q = d

dt

∣∣∣∣
0

et X eY .o = d

dt

∣∣∣∣
0

eY et Z .o =
(

deY
)

o
dπo (Z),

where

Z = Ad
(

e−Y
)

X =
∞∑

n=0

(−1)n

n! (adY )n X .

Now, [Y, X ] ∈ [m−, h⊥] ⊂ h⊥ by (3). Hence, Z ∈ h⊥ and so dπe (Z)⊥To M .
Therefore f ′ (0) (q) ⊥ (

deY
)

o dπ (m−) = Tq M (this last equality is well-known to
hold for totally geodesic submanifolds of a symmetric space).

Now we can use Kainz evolution Eq. (4). Again by eY-invariance, without loss of
generality we may check it only at q = o. Let c (t) = es X .o and suppose, by Theorem
4, that X = U + V , with U ∈ k+ and V ∈ m+. We can apply Lemma 5 to G/K , with
M in the role of P:

D

dt

∣∣∣∣
0

c′ (t) = dπe[U, V ] ∈ dπe[k+,m+],

which belongs to p (since [k, p] ⊂ p) and also to h, since [h⊥, h⊥] ⊂ h by (3).
Therefore, by (2), D

dt

∣∣
0 c′ (t) ∈ dπe (m−) ∈ To M , as desired. ��
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