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Abstract
The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the 
toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of 
sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interac-
tions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity 
and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our 
laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a 
well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both 
N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by 
the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of 
the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyr-
rolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different 
capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS 
aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modula-
tion exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein.
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Introduction

Parkinson’s disease (PD) is the second most common age-
related neurodegenerative disorder after Alzheimer’s dis-
ease, affecting millions of people worldwide [1]. Most of 
the PD patients receive their diagnosis at the age of 50–60, 
with clinical symptoms comprising motor impairments 
including bradykinesia, tremor, akinesia, rigidity and other 
non-motor symptoms [2]. The motor manifestations are 
attributed to the irreversible loss of dopaminergic neurons 
of the substantia nigra (SN) pars compacta, whereas the 
formation of proteinaceous inclusions known as Lewy bod-
ies is recognized as the pathological hallmark of the disease 
[3]. Two decades ago, immunostaining of SN sections of 
PD patients indicated that the protein α-synuclein (αS) is 
the major component of Lewy bodies, suggesting a role of 
αS in this pathology [4–6]. Lewy bodies are not restricted to 
PD but also found in other neurodegenerative diseases such 
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multiple system atrophy and dementia with Lewy bodies, 
collectively known as synucleinopathies [7–9]. Accordingly, 
over the last 20 years effort of numerous laboratories led to 
the development of different in vitro and in vivo systems, 
which were targeted to characterize αS, its aggregation, and 
the formation of Lewy bodies to shed light on the mecha-
nism of pathogenesis in PD [10–19].

α-Synuclein (14 kDa) is a highly soluble, intrinsically 
disordered protein that is abundantly expressed in the brain 
and predominantly localizes to presynaptic terminals, in 
close proximity to synaptic vesicles [20–24]. Structurally, 
monomeric αS is characterized by an amphipathic N-ter-
minal region (residues 1–60), involved in lipid binding; 
a central, highly hydrophobic self-aggregating sequence 
known as non-amyloid β component (NAC; residues 61–95), 
presumed to initiate fibrillation; and the acidic C-terminal 
region (residues 96–140), that is critical for blocking rapid 
αS filament formation [25–28] (Fig. 1a). Since misfolding 
and amyloid aggregation of αS is thought to play a critical 
role in PD [29], the aggregation pathway of the protein rep-
resents then an obvious target for therapeutic intervention 
in this disorder [16–19, 30, 31]. Therefore, understanding 
the mechanistic basis behind αS amyloid assembly and its 
inhibition is of high clinical importance. In this context, the 
discovery of small molecules targeting disease-associated 
protein aggregation is considered one of the most active 
therapeutic approaches toward neurodegenerative disorders 
[17, 19, 32]. Not only small molecules have been shown to 
modulate the aggregation of amyloid proteins both in vitro 
and in vivo, but have been also used as molecular and struc-
tural probes to gain insight into the amyloid aggregation 
process [33–36]. From the screening of large libraries of 
small molecules, potential candidates with different chemi-
cal structures were found to modulate the aggregation of dis-
tinct amyloid proteins [17, 37–55]. Notably, poly-aromatic 

scaffolds belonging to flavonoids, polyphenols, porphyrins, 
and phthalocyanines were predominantly identified by these 
screenings. Indeed, distinct variants of phthalocyanines and 
porphyrins have been tested for their ability to impair amy-
loid assembly of proteins linked to neurodegeneration [36, 
37, 56–59]. These molecules are cyclic tetrapyrroles, a class 
of compounds whose distinguished characteristic is the pla-
narity and hydrophobicity of its aromatic ring system. The 
phtalocyanine tetrasulfonate (PcTS) compounds are among 
the most widely investigated tetrapyrroles [56]. The struc-
ture of PcTS contains four sulfonic acid groups at the periph-
ery of the aromatic rings, whereas the central cavity of the 
molecule can remain ligand-free or conjugated to metal ions 
of various valences (Fig. 1b).

Particularly, [Na4(H2PcTS)] was shown to exhibit anti-
scrapie activity [41, 43, 60–62] and inhibition of αS [35, 
37, 57] and tau amyloid assembly [58]. However, this com-
pound was not able to impair the amyloid fibril formation 
of Aβ40 [36]. These results argued against the hypothesis 
that cyclic tetrapyrroles might have a common mechanism 
of action in slowing the formation of a variety of patho-
logical aggregates. From a mechanistic perspective, and to 
fully understand the way these compounds might modulate 
protein aggregation, it is not only of paramount importance 
to decipher the structural basis of the implied protein-ligand 
interactions but also to investigate the molecular require-
ments of the small molecules that are critical for efficient 
and specific anti-amyloid activity. In that direction, in this 
work we studied how the nature of the conjugated metal ion 
and peripheral substituents in tetrapyrrolic compounds may 
influence or modulate the activity of these compounds on 
the amyloid fibril assembly of the protein αS. Our results 
demonstrated that both the nature of the metal ions conju-
gated to the central nitrogens and the properties of the func-
tional groups at the periphery of the aromatic macrocycle 

Fig. 1   a Primary sequence of the full-length protein αS. Aromatic residues are shaded in gray at the N-terminal and NAC regions, and in black 
at the C terminus. Chemical structure of phthalocyanine and porphine compounds: b [Na4(H2PcTS)], c [Zn(H4PcTS)] and d [H2PrTPCl4]
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in phthalocyanines and porphyrins are factors that influence 
the location of these compounds at well-defined regions of 
αS and its interaction with specific residues in the protein 
sequence. Interestingly, we found that the interaction pro-
file of these molecules with αS correlates directly with their 
modulatory (inhibition/acceleration) effects on the amyold 
fibril assembly of the protein. Most importantly, the effects 
observed in vitro were reproduced on a well-established cell-
based model for the study of αS aggregation. Overall, the 
results reported in this work provide a framework in which 
bioinorganic chemistry, biophysics and cell biology can be 
combined to understand the structural rules directing the 
interaction of aggregation inhibitors with target proteins and 
their implications on its amyloid fibril assembly.

Materials and methods

Protein and reagents

Unlabeled and 15N isotopically enriched N-terminally acety-
lated αS was obtained by co-transforming E. coli BL21 with 
the plasmid harboring the wild type αS gene and a second 
one that encodes for the components of yeast NatB acety-
lase complex [63]. Both plasmids carried different antibiotic 
resistance, namely Ampicillin and Chloramphenicol to select 
the doubly transformed E. coli colonies. Purification was 
carried out as previously reported [64] with the exception 
that both antibiotics were included in the growth flasks to 
avoid plasmid purge during growth and expression. The final 
purity of the αS samples was determined by SDS-PAGE. 
Purified protein samples were dissolved in 20 mM MES 
buffer supplemented with 100 mM NaCl at pH 6.5 (Buffer 
A). Protein concentrations were determined spectrophoto-
metrically by measuring absorption at 274 nm and using 
an epsilon value of 5600 M−1 cm−1. Sodium phtalocyanine 
tetrasulfonate ([Na4(H2PcTS)]) was purchased from MP Bio-
medicals (Solon, Ohio); aluminium phthalocyanine chloride 
tetrasulfonic acid ([Al(H4PcTS)Cl]), zinc phthalocyanine 
tetrasulfonic acid ([Zn(H4PcTS)]) and meso-tetra (N-methyl-
4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) were from 
Frontier Scientific Inc. (Logan, Utah).

NMR experiments

NMR spectra were registered on a Bruker 600 MHz HD 
Avance III spectrometer, equipped with a cryogenically 
cooled triple resonance 1H (13C/15N) TCI probe. Two-
dimensional 2D 1H–15N heteronuclear single quantum cor-
relation (HSQC) experiments were performed with pulsed-
field gradient enhanced pulse sequences [65] on 50–100 µM 
15N-labeled protein samples dissolved in buffer A, at 15 °C. 
One-dimensional 1D 1H-NMR experiments were acquired 

at 15 °C on 50–100 µM unlabeled αS samples dissolved in 
buffer A. Aggregation did not occur under these low-tem-
perature conditions and absence of stirring. For the map-
ping experiments, 1H–15N HSQC amide cross-peaks affected 
during titrations with the ligand molecules were identified 
by comparing their intensities (I) with those of the same 
cross-peaks in the data set of free protein (I0) [35]. The I/I0 
ratios of 90–100 non-overlapping cross-peaks were plotted 
as a function of the protein sequence to obtain the intensity 
profiles. Acquisition and processing of NMR spectra were 
performed using TOPSPIN 7.0 (Bruker Biospin). 2D spectra 
analysis and visualization were performed with CCPN.

Electron microscopy

10-μl aliquots withdrawn from aggregation reactions of αS 
in the absence or presence of phthalocyanines molecules and 
[H2PrTPCl4] were adsorbed onto Formvar/carbon-coated 
copper grids (Pella Inc.) and negative stained with 2% (w/v) 
uranyl acetate. Images were obtained at various magnifica-
tions (1000–90,000×) using a Philips CM120 transmission 
electron microscope, at the Facility for Transmission Elec-
tron Microscopy of the Max Planck Institute for Biophysical 
Chemistry (Göttigen).

Cell culture and transfection

For the studies with cell-based models of αS aggrega-
tion, H4 neuroglioma cells (ATCC​® HTB-148™) were 
maintained at 5% CO2 and 37 °C in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (Gibco) supplemented with 10% 
fetal bovine serum (Gibco) and 1% Penicillin Streptomy-
cin (Gibco). 1 day before transfection cells were seeded 
in 12-well plates. Cells were co-transfected with plasmids 
encoding a C-terminally modified αS (SynT construct) and 
synphilin-1 [15] using FuGene (Promega), according to 
the manufacturer’s instructions. After 24 h of transfection, 
phthalocyanines and [H2PrTPCl4] were added to the cells in 
concentrations of 10 μM. Cells were treated with buffer A 
to exclude vehicle effects. Inclusion formation was assessed 
48 h post-transfection.

Immunocytochemistry

Cells were fixed with 4% paraformaldehyde in PBS 48 h after 
transfection and start of phthalocyanines and [H2PrTPCl4] 
treatment. For permeabilization, cells were subsequently 
treated with 0.1% Triton X-100 and blocked with 1.5% 
bovine serum albumin (BSA) in PBS. Cells were then incu-
bated with anti-αS primary antibody (BD 610787, 1:1000) 
and anti-V5 tag (Abcam ab9116, 1:100), either 4 h at room 
temperature or overnight at 4 °C, and 1 h in Alexa Fluor 488 
donkey anti-rabbit and Alexa Fluor 555 donkey anti-mouse 
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as secondary antibodies (Invitrogen A21202 and A31570, 
respectively, 1:1000). Cells were further stained with Hoe-
chst (Molecular Probes 33258) for 5–10 min. Images were 
captured using a Nikon C2 Plus confocal microscope.

Quantification of αS intracellular inclusions

Transfected cells were detected and scored based on the 
absence and presence of αS intracellular inclusions. We also 
quantify the pattern of αS intracellular inclusions, by clas-
sifying them in different groups: 1–4 inclusions, 5–9 inclu-
sions and equal to/more than 10 inclusions. Results were 
expressed as the percentage of the total number of trans-
fected cells obtained from three independent experiments 
[15]. At least 50–100 cells were counted per condition.

Results and discussion

Influence of metal coordination and peripheral 
substituents on the interaction of tetrapyrroles 
with αS

We investigated the details of the binding of [Na4(H2PcTS)] 
(Fig. 1b), its Zn-loaded form [Zn(H4PcTS)] (Fig. 1c) and 
the [H2PrTPCl4] (Fig. 1d) to the protein αS by NMR spec-
troscopy. To analyze these interactions we used 1H–15N 
HSQC spectroscopy. The 1H–15N HSQC spectrum of a 
100 μM sample of uniformly 15N-labeled αS recorded in 
buffer A at 15 °C is shown in Fig. 2a. The resonances were 
well resolved, with a limited dispersion of chemical shifts, 
reflecting the disordered state and the high degree of flexibil-
ity of the backbone. As previously reported, the interaction 
of αS with [Na4(H2PcTS)] caused significant broadening 
and chemical shift changes in a number of residues at the 
N-terminal region of the protein [35] (Fig. 2b). No perturba-
tions were observed for the amide groups of residues located 
in the NAC region or at the C terminus. Close analysis of 
the signals exhibiting severe changes on αS upon addition 
of [Na4(H2PcTS)] shows that the interaction is centered at 
Phe-4 and Tyr-39 residues. A small broadening and shift 
perturbation become also evident at Phe-94. The perturba-
tions caused by the [Zn(H4PcTS)] were also located at the 
N-terminal region of αS; however, the most affected residue 
was the histidine at position 50 (Fig. 2c). Minor effects were 
also detected at Phe-4 and Tyr-39, together with a lack of 
binding to Phe-94 (Fig. 2c). On the other hand, no broaden-
ing or chemical shift perturbations were detected when the 
interaction of αS with [Al(H4PcTS)Cl] (Fig. S1) [37].

To evaluate the influence that charged substituents located 
at the periphery of the macrocycle might exert on the molec-
ular interactions of these compounds with target proteins, we 
studied the binding features of the [H2PrTPCl4] molecule 

to the protein αS. Contrasting with the studied phthalo-
cyanines, the substituents groups located at the periphery 
of the macrocycle in [H2PrTPCl4] are positively charged 
(N-methyl-4-pyridyl). As observed in Fig. 2d, the titration of 
αS with [H2PrTPCl4] caused broadening and chemical shift 
changes of amide resonances in the segment Q120–A140, 
located at the highly acidic C-terminal region of the pro-
tein. The residues exhibiting the strongest perturbations in 
the amide resonances were Tyr-125, Tyr-133 and Tyr-136 
(Figs. 2d and S2). Thus, the substitution of the negatively 
charged sulfonate groups at peripheral positions of cyclic 
tetrapyrroles by positively charged N-methyl-pyridyl groups 
influences markedly the binding features of these molecules, 
by redirecting the interaction from the N-terminal region to 
the C-terminus of αS.

The interaction of the tetrapyrrolic compounds with aro-
matic moieties in the protein was then analyzed by NMR 
experiments aimed at detecting directly the selective per-
turbation of resonances of aromatic side chains in αS upon 
ligand binding (Fig. S3). The distribution of aromatic resi-
dues throughout the αS sequence provides excellent probes 
to investigate the interaction of cyclic tetrapyrroles with 
αS. The binding features observed for the [Na4(H2PcTS)], 
[Zn(H4PcTS)] and [H2PrTPCl4] complexes confirm the role 
as anchoring moieties played by the aromatic side chains 
of Phe-4, Tyr-39, and His-50 at the N-terminus and by Tyr-
125, Tyr-133 and Tyr-136 at the C-terminal region of αS 
(Fig. S3). In particular, these spectra allowed us to conclude 
that Phe-4 and Tyr-39 are the main anchoring residues for 
[Na4(H2PcTS)] binding to the N-terminal region of αS, 
highlighting the role of specific π–π interactions between 
the aromatic ring system of these molecules and aromatic 
residues in the amyloidogenic proteins in the formation of 
the αS-[Na4(H2PcTS)] complex. Interestingly, in the case of 
[Zn(H4PcTS)], whereas the divalent cation Zn(II) was shown 
to bind preferentially to the C-terminus of αS [66], electro-
static repulsions between the peripheral sulfonate groups in 
the ring system and the highly negatively charged C-terminal 
region disfavor the location of the [Zn(H4PcTS)] complex 
at that region, redirecting its binding toward the N-terminal 
interface. In that region, the His-50 residue acts as the main 
anchoring residue for [Zn(H4PcTS)] binding, indicating 
that the preferential affinity of the Zn(II) ion coordinated 
to the center of the phthalocyanine modulates the binding 
features of this compound by targeting other binding site in 
the αS protein. Although more work is needed to confirm 
this hypothesis, this interpretation is in agreement with the 
more pronounced propensity of Zn(II) ions to form flex-
ible and open coordination geometries, as we demonstrated 
recently for the interaction of [Zn(H4PcTS)] with the amy-
loid β-peptide [36].

Clearly, the presence of positively charged substituents 
at the periphery of the macrocycle in the [H2PrTPCl4] 
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Fig. 2   Structural characterization of the interaction between phthalo-
cyanines and [H2PrTPCl4] with αS monitored by NMR spectroscopy. 
a 1H–15N HSQC spectra of 100 μM αS. b Overlaid contour plots of 
1H–15N HSQC spectra and I/I0 profile of the backbone amide groups 
of 100 μM αS in the absence (black) or presence (green) of 50 μM 
[Na4(H2PcTS)]. c Overlaid contour plots of 1H–15N HSQC spectra 
and I/I0 profile of the backbone amide groups of 100 μM αS in the 

absence (black) or presence (red) of 50 μM [Zn(H4PcTS)]. d Overlaid 
contour plots of 1H–15N HSQC spectra and I/I0 profile of the back-
bone amide groups of 100 μM αS in the absence (black) and presence 
(orange) of 50 μM [H2PrTPCl4]. Amino acid residues of αS affected 
by the interaction with the tetrapyrrole compounds are identified. 
1H–15N HSQC spectra were recorded at 15 °C using 15N isotopically 
enriched αS (100 μM) samples
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molecule allows this molecule to interact electrostati-
cally with negative patches at the C-terminal region of 
αS, directing the location of the [H2PrTPCl4] molecule 
to that region of the protein structure. There, the clus-
ter of tyrosines (Y-125, Y-133 and Y-136) at the C-ter-
minus constitute the target site for [H2PrTPCl4] binding 
to αS, as shown in Figs. 2D and S2. As observed with 
the [Na4(H2PcTS)] molecule at the N-terminus binding 
interface, aromatic interactions between the macrocycle 
ring of [H2PrTPCl4] and the Tyr cluster at the C-terminus 
contribute strongly to the binding process.

Finally, from the analysis of panels b–d of Fig.  2 
we also found indications of significant differences in 
the degree of broadening induced by [Na4(H2PcTS)], 
its Zn(II)-loaded form and [H2PrTPCl4] on the amide 
resonances of αS. We demonstrated previously that the 
degree of phthtalocyanines self-association corrrelates 
well with their capabilities to bind αS, with low order 
stacked aggregates of the cyclic tetrapyrroles being iden-
tified as the active interacting species [37]. The planarity 
and aromaticity of the central heterocycle appear to be 
determining factors for such self-association reactions, 
which, however, can be perturbed or heavily impaired 
by the nature of the conjugated metal ion. Indeed, the 
smaller effects induced by [Zn(H4PcTS)] binding to αS 
reflect the lower tendency of this phthalocyanine deriva-
tive to self-associate [37]. As expected, this behavior 
becomes more evident in the Al(III) derivative, which 
was shown to remain mostly as a monomer in solution 
and thus, showed a complete lack of interaction with the 
protein (Fig. S1) [37]. In this compound, axial coordina-
tion of Al(III) with chloride anions give rises to distorted 
structures that impair the stacking of the [Al(H4PcTS)
Cl] molecules.

Effects of tetrapyrrolic compounds 
on the aggregation of αS in vitro and in cell‑based 
model

Ultrastructural visualization of the final product of 
aggregation of αS using TEM shows that normal amy-
loid fibrils are formed in the absence of tetrapyrrolic 
compounds (Fig. 3a). We found that [Na4(H2PcTS)] and 
[Zn(H4PcTS)] produced a variety of small, amorphous, 
non-fibrillar aggregates (Fig. 3b), as well as short, flat 
fibrillar αS aggregates, respectively (Fig. 3c). Conversely, 
the αS aggregates in [Al(H4PcTS)Cl]-treated samples 
showed an amyloid morphology comparable with that 
of untreated protein samples (Figure S4). On the other 
hand, Fig. 3d shows that αS amyloid assembly through 
[H2PrTPCl4] mediation are made of large and abundant 
aggregates, comprising clusters of fibrils.

Finally, we tested the potential toxicity of phthalocya-
nines and [H2PrTPCl4] in human neuroglioma (H4) cells. 
For this cell line, the compounds were innocuous at concen-
trations as high as 20 μM (data not shown). Then, we used a 
well-established cell model to assess αS inclusion formation. 
H4 cells were transiently transfected with C-terminally mod-
ified αS (SynT) and synphilin-1, which results in the forma-
tion of LB-like inclusions, as previously described [15]. The 
formation of αS inclusions was assessed 48 h after treat-
ment (Fig. 4a). Upon treatment with 10 μM [Na4(H2PcTS)] 
and [Zn(H4PcTS)] we observed a significant increase in the 
number of transfected cells devoiding αS inclusions rela-
tive to untreated samples (Fig. 4b). Analysis of αS inclusion 
formation in the [Al(H4PcTS)Cl]-treated cells showed a pat-
tern comparable with that of untreated samples (Figs. 4a, 
b and S5). By contrast, [H2PrTPCl4] treatment promoted 
an increase in the number of transfected cells displaying 
αS aggregates (Figs. 4a, b and S5). Overall, our results 

Fig. 3   Modulation of αS aggregation by phthalocyanines and 
[H2PrTPCl4]. Representative negative stain EM images of αS aggre-
gates (100  μM samples) generated in a the absence and presence 

of 100  μM, b [Na4(H2PcTS)], c [Zn(H4PcTS)] and d [H2PrTPCl4]. 
Fibrils of identical morphologies to that shown in panel A were 
obtained for αS in the presence of [Al(H4PcTS)Cl] (Fig. S4)
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demonstrated that the effects induced by phthalocyanines 
and [H2PrTPCl4] on αS fibril formation in vitro are repro-
duced well on the H4 cell-based model of αS aggregation.

Conclusions

The results reported in this work provide a firm basis to 
understand the structural rules directing the binding of 
tetrapyrrolic compounds to αS, and their implications for the 
amyloid aggregation of the protein. Because the structural 
basis for the activity of these molecules as modulators of 
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resentative images of intracellular αS inclusion formation in human 
cultured cells in the presence of phthalocyanines and [H2PrTPCl4]. 
Human H4 neuroglioma cells were co-transfected with plasmids 
encoding SynT and Synphilin-1, and inclusion formation was 
assessed 48 h post-transfection. Cells were incubated in the absence 
(vehicle) and the presence of the studied tetracyclic compounds 
(10  μM). b Quantification of αS inclusions. Transfected cells were 

detected and scored based on the absence or presence of αS inclu-
sions. Results were expressed as the percentage of the total number 
of transfected cells obtained from three independent experiments. At 
least 50 cells were scored per experiment (n = 3). A detailed quanti-
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amyloid aggregation is starting to emerge, combined efforts 
from the fields of chemistry, structural and cell biology are 
needed at this stage to elucidate their binding modes with 
the target proteins, the precise molecular mechanism(s) of 
action of these molecules and its biological activity on cell 
models of the disease. The interaction scenario described in 
our work revealed that both N- and C-terminal regions of αS 
represent binding interfaces for the studied compounds, a 
behavior that is mainly driven by the presence of negatively 
or positively charged substituents located at the periphery 
of the macrocycle, that can mediate electrostatic interac-
tion with positive or negative patches on the proteins struc-
ture. With the polyaromatic compounds located at the N- or 
C-terminus, the interaction mode is determined by (1) the 
planarity and hydrophobicity of the aromatic ring system in 
the tetrapyrrolic molecule and/or (2) the preferential affinity 
of the metal ion conjugated at the center of the macrocyclic 
ring.

The differences observed between the binding prefer-
ences and interaction profiles of [H2PrTPCl4] and phthalo-
cyanines provide a structural explanation for the promotion 
of αS amyloid fibril formation by [H2PrTPCl4] molecules 
against the inhibitory effect exerted by [Na4(H2PcTS)]. 
Regarding to the mechanistic basis behind the inhibitory 
effects of [Na4(H2PcTS)] and [Zn(H4PcTS)] on αS amyloid 
fibril assembly, the amyloid blocking effects of these phth-
alocyanines might be related to a loss of function of aromatic 
side chains involved in the filament-assembly mechanism, 
likely comprising early intra- and intermolecular interactions 
necessary for amyloid structural transition and implying to 
the affected residues. On the other hand, we propose that 
formation of the αS-[H2PrTPCl4] complex reduces and/or 
interferes with the attractive intramolecular interactions of 
the C-terminus with the N-terminal and NAC regions in the 
protein, decreasing the stability of monomeric αS and pro-
moting its aggregation.

Interestingly, the different capability of phthalocyanines 
and [H2PrTPCl4] to modulate αS aggregation in vitro was 
also observed in cell-based models of PD, demonstrat-
ing unequivocally that the inhibitory mechanism exerted 
by phthalocyanines on amyloid assembly is a direct con-
sequence of their interaction with target proteins. Added 
to that, the versatility of these compounds to condone the 
coordination of different metal ions and a wide range of 
peripheral substituents, which in turn can modulate physico-
chemical properties such as their solubility and distribution 
in biological fluids, emphasize the potential of this scaffold 
for further optimizations in terms of pharmacokinetics and 
delivery to the brain.
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