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Córdoba, Instituto de Fı́sica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria
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Abstract
We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de
Sitter black holes in the canonical ensemble of fixed angular momenta J1 and
J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting
phenomena known from the ‘every day thermodynamics’ of simple substances.
For q = 0 the system exhibits recently observed reentrant large/small/large
black hole phase transitions, but for 0 < q � 1 we find an analogue of a
‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the
system displays the presence of a large/intermediate/small black hole phase
transition with two critical and one triple (or tricritical) points. This behavior is
reminiscent of the solid/liquid/gas phase transition except that the coexistence
line of small and intermediate black holes does not continue for an arbitrary
value of pressure (similar to the solid/liquid coexistence line) but rather
terminates at one of the critical points. Finally, for q > 0.0985 we observe
the ‘standard liquid/gas behavior’ of the Van der Waals fluid.
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1. Introduction

Asymptotically AdS black hole (BH) spacetimes demonstrate various phase transitions, which,
due to the AdS/CFT correspondence offer a dual interpretation in the boundary conformal field
theory. Particularly interesting is the Hawking–Page transition [1] which corresponds to the
confinement/deconfinment phase transition in the dual quark gluon plasma [2]. For charged
or rotating BHs in four dimensions one observes a small/large BH first-order phase transition
reminiscent of the liquid/gas transition of the Van der Waals fluid [3–11].

Interesting new phenomena appear in higher dimensions. Recently it has been shown
[12] that in all d � 6 dimensions the single spinning vacuum Kerr-AdS BHs demonstrate the
peculiar behavior of large/small/large BH transitions reminiscent of reentrant phase transitions
observed for multicomponent fluid systems, gels, ferroelectrics, liquid crystals, and binary
gases, e.g., [13].

In this communication we find a more elaborate phase structure for multiply rotating Kerr-
AdS BHs. Specifically, for d = 6 we find, dependent on the ratio q = J2/J1 of the two angular
momenta, the existence of a triple point along with other qualitatively different interesting
phenomena known from the ‘every day thermodynamics’. (i) For q = 0 we recover (for a
certain range of temperature) the aforementioned reentrant phase transition [12]. (ii) For q � 1
we observe an analogue of a solid/liquid phase transition. (iii) For q ∈ (0.00905, 0.0985), the
system displays a small/intermediate/large BH phase transition with one triple (or tricritical)
and two critical points, reminiscent of the solid/liquid/gas phase transition. (iv) Finally, for
q > 0.0985 the ‘standard’ liquid/gas behavior of the Van der Waals fluid [3–11, 14–18] is
observed.

2. Black hole spacetimes

To treat even (ε = 1) odd (ε = 0) spacetime dimensionality d simultaneously, we parametrize
d = 2N + 1 + ε. General Kerr-AdS BHs admit N independent angular momenta Ji, described
by N rotation parameters ai; the metric is [19, 20]:
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Here, the azimuthal coordinates μi are constrained to obey
∑N+ε

i=1 μ2
i = 1, in even dimensions.

We have set for convenience aN+1 = 0, and
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The metric obeys the Einstein equations with cosmological constant: Rab = − d−1
l2 gab.

The mass M, the angular momenta Ji, and the angular velocities of the horizon �i are [21]
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while the temperature T and the entropy S read
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with the horizon radius r+ being determined as the largest root of F − 2m = 0.
To discuss the phase diagram of these spacetimes we shall re-interpret the negative

cosmological constant as positive pressure [6, 8, 9, 12, 15–17, 22–24]

P = − �

8π
= (d − 1)(d − 2)

16π l2
. (5)

In the canonical (fixed Ji) ensemble, the information about the equilibrium thermodynamics
is captured by the Gibbs free energy

G = M − T S = G(P, T, J1, . . . , JN ). (6)

Namely, we assume the thermodynamic postulate that for a fixed (T, P, Ji) the state of a system
corresponds to the global minimum of G. We also accept the positivity of the specific heat at
constant P and Ji

CP ≡ CP,J1,...,JN = T

(
∂S

∂T

)
P,J1,...,JN

, (7)

as a local criterion of thermodynamic stability.
Specifying to d = 6 (for which N = 2), we consider the Gibbs free energy G =

G(P, T, J1, J2), obtained from the expression (6) by eliminating parameters (l, r+, a1, a2) in
favor of (P, T, J1, J2) using equations (3)–(5). An analytic solution is not possible since higher-
order polynomials are encountered and so we proceed numerically: for a given P, r+, J1 and
J2, we solve the second equation in (3) for a1 and a2 and thence calculate the values of T and
G using (4) and (6), yielding a G–T diagram. Once the behavior of G is known, we compute
the corresponding phase diagram, coexistence lines, and critical points in the P–T plane. We
display our results in figures 1–6. Since the qualitative behavior of the system depends only
on q = J2/J1 we set everywhere J1 = 1.

3. Reentrant phase transition

The q = 0 results (recently considered in [12]) are displayed in figure 1. For each isobar,
the horizon radius of the BH increases as we move along the line from upper right to lower
left. For small pressures (P < Pt ≈ 0.0553), there is only one phase of stable large BHs, the
corresponding Gibbs free energy being the left-most curve in figure 1.

3
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Figure 1. Gibbs free energy for q = 0. Pressures increase from left to right and solid-
red/dashed-blue lines correspond to CP positive/negative respectively; at their joins CP

diverges. Moving from right to left, ‘near vertical’ solid red curves have an increasingly
large negative slope. As T → ∞ they asymptote to −∞; for sufficiently small T , each
curve joins its blue-dashed counterpart at some large positive value of G, the limit of zero
temperature is attained in the asymptotically flat case P → 0. As with Schwarzschild–
AdS black holes, for P � Pc, the (lower) large BH branch is thermodynamically stable
whereas the upper branch is unstable. For P = Pc we observe critical behavior. For
P ≈ 0.0564 ∈ (Pt , Pz) we observe a ‘zeroth-order phase transition’: a discontinuity in
the global minimum of G at T = T0 ≈ 0.2339 ∈ (Tt , Tz) (denoted by the vertical line
in the inset) signifying the onset of an reentrant phase transition. For P < Pt only one
branch of stable large BHs exists.

The inset (a magnification of the second left-most curve) illustrates the reentrant
phase transition: for the pressure/temperature ranges P ∈ (Pt, Pz) ≈ (0.0553, 0.0579) and
T ∈ (Tt, Tz) ≈ (0.2332, 0.2349), the global minimum of the Gibbs free energy experiences a
finite jump (in the inset at T = T0), a ‘zeroth-order’ phase transition, whose physics remains to
be understood. At a slightly higher temperature there is a standard first-order phase transition
(a jump in the first derivative of G). As the temperature decreases from right to left, the
system follows the lower solid red curve (large BH) until it joins the middle solid red curve
(small BH), corresponding to a first-order small/large BH phase transition. As T decreases
further, the system follows this middle red curve (small BH) until T = T0 ∈ (Tt, Tz), where
G has a discontinuity at its global minimum, at which point it jumps to the uppermost red
line where BHs are again larger for all smaller T —this corresponds to the zeroth-order phase
transition between small and intermediate BHs. In other words, a continuous decrease of one
thermodynamic state variable, temperature, induces a phase change from large to small and
back to large BHs. This is the reentrant phase transition observed in [12].

For pressures P > Pz the jump in the global minimum of G disappears while the first-order
small/large BH phase transition still persists. This behavior terminates at the critical point,
corresponding to the third curve and characterized by (Tc, Pc) ≈ (0.3004, 0.0958), above
which only one phase of BHs exists (the right-most curve).
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Figure 2. P–T diagram for q = 0. The coexistence line of the first-order phase transition
between small and large black holes is depicted by a thick black solid line. It initiates
from the critical point (Pc, Tc) and terminates at (Pt , Tt ). The red solid line (inset)
indicates the ‘coexistence line’ of small and intermediate black holes, separated by a
finite gap in G, indicating the reentrant phase transition. It commences from (Tz, Pz)
and terminates at (Pt , Tt ). The ‘No BH region’ is to the left of the dashed oblique curve,
containing the (Tz, Pz) point. Below Tt , the lower dashed curve terminates at the origin
P = T = 0.

The overall situation is summarized in the P–T phase diagram (figure 2). Since for any
given pressure P there is a minimum temperature Tmin(P) for which any BH can exist, there is
always a ‘no BH region’ (not displayed in [12]), which starts from zero at P → 0 and ‘grows
bigger’ as P increases; this occurs to the left of the dashed oblique curve and contains the
(Tz, Pz) point.

4. Solid/liquid analogue

For 0 < q � 1 the situation completely changes: the unstable branch of tiny hot BHs on
the right of the G–T diagram in figure 1 disappears and a new branch of (locally) stable tiny
cold BHs appears to the left. The q = 0 ‘no BH region’ is eliminated and the situation is
very similar to what happens when a small charge is added to a Schwarzschild BH [3]. The
zeroth-order phase transition is ‘replaced’ by a ‘solid/liquid’-like phase transition of small to
large BHs.

The behavior of G for q < q1 ≈ 0.00905 is displayed in figure 3. Although in this range
of angular momenta G admits two critical points, only one of them occurs for stable BHs that
minimize G globally. Consequently we observe one phase transition between small and large
BHs. The corresponding coexistence line in the P–T diagram is similar that of non-rotating
charged BHs [9], monotonically increasing and terminating at a critical point characterized
by Pc and Tc. These quantities both increase as q decreases; in the limit q → 0 we find an
‘infinite’ coexistence line, similar to what happens for a solid/liquid phase transition.
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P=Pv

Pv<P<Pc

P<Pv

P=Pc

G

T
0

2

4

321

Figure 3. Gibbs free energy for q = 0.005 is displayed for decreasing pressures (from
top to bottom). The horizon radius r+ increases from left to right. The uppermost isobar
corresponds to P = Pc = 4.051; for higher pressures only one branch of (stable) black
holes with positive CP exists. The second uppermost isobar displays the swallowtail
behavior and implies the existence of a first-order phase transition. For P = Pv ≈ 0.0958
another critical point emerges but occurs for a branch that does not minimize G globally.
Consequently, out of the two swallowtails for P < Pv only one occurs in the branch
globally minimizing G and describes a ‘physical’ first-order phase transition.

5. Triple point and solid/liquid/gas analogue

At q = q1 a new phenomenon occurs: a triple point and a second critical point emerge from
the coexistence line at Ptr = Pc2 ≈ 0.09577 and Ttr = Tc2 ≈ 0.30039. As q increases, the
triple point moves away from the second critical point (the values of Tt and Pt decrease). A
small/intermediate/large BH phase transition may occur and the situation resembles that of
the solid/liquid/gas phase transition. At the same time the first critical point moves towards
the triple point (Tc1 and Pc1 decrease). At q = 0.08121 both critical points occur at the
same pressure Pc1 = Pc2 ≈ 0.0953, whereas Tc1 ≈ 0.2486 < Tc2 ≈ 0.2997. Increasing q
even further, the first critical point moves closer and closer to the triple point and finally for
q = q2 ≈ 0.0985 the two merge at Ptr = Pc1 ≈ 0.049. Above q2 only the second critical point
remains.

The Gibbs free energy for q = 0.05 is displayed in figure 4 and the corresponding P–T
diagram in figure 5. Note that for this value of q, the critical pressure Pc1 is bigger than Pc2 and
the solid/liquid/gas behavior is present.

6. Van der Waals behavior

For q > q2 only one small/large BH coexistence line exists and terminates at a corresponding
critical point. We observe an analogue of a Van der Waals ‘liquid/gas’ phase transition.

In fact, the situation is a little more subtle. For q2 < q < q3 ≈ 0.1274, similar to
the ‘solid/liquid analogue’, the second critical point still exists, but occurs for the locally
unstable branch of BHs with negative heat capacity that does not globally minimize the
Gibbs free energy. Hence, only one phase transition is physical. For q > q3 this second
critical point completely disappears. In both cases we observe a ‘standard liquid/gas’ Van der

6
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P=Pc1

Pc2<P<Pc1

Ptr<P<Pc2P=PtrP<Ptr

G

T

1

1.2

1.4

1.6

0.1 0.2 0.3 0.4

Figure 4. Gibbs free energy for q = 0.05, displayed for various pressures (from top to
bottom) P = 0.259, 0.170, 0.087, 0.0641, 0.015. The horizon radius r+ increases from
left to right. The uppermost isobar corresponds to P = Pc1 = 0.259; for higher pressures
only one branch of stable black hole with positiveCP exists. The second uppermost isobar
displays the swallowtail behavior, implying a first-order phase transition. The third isobar
corresponds to Pc2 = 0.0956 < P < Pc1 for which we have ‘two swallowtails’. For
such pressures there are two first-order phase transitions. The fourth isobar displays the
tricritical pressure Ptr = 0.087 where the two swallowtails ‘merge’ and the triple point
occurs. Finally the lower-most isobar corresponds to P < Ptr.

Pc1

Pc2

Ptr

Tc1Tc2Ttr

P

T

INTERMEDIATE BH

SMALL BH

LARGE BH

Tricritical Point

Critical Point 1

Critical Point 2

0

0.1

0.2

0.3

0.2 0.4

Figure 5. P–T diagram for q = 0.05. The diagram is analogous to the solid/liquid/gas
phase diagram. Note however that there are two critical points. That is, the solid-
liquid coexistence line does not extend to infinity but rather terminates, similar to the
‘liquid/gas’ coexistence line, in a critical point.
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Figure 6. Triple point in q–T plane. A ‘solid/liquid/gas’ phase structure appears for
fixed �, here given by l ≈ 2.491. We observe three coexistence lines corresponding
to the associated first-order phase transitions. Two of them terminate at corresponding
critical points. All three then merge in a triple point.

Waals phase transition [3–11, 14–18]. Qualitatively similar behavior persists for all-spin-equal,
a1 = a2 = · · · = aN , rotating BHs in any odd dimension d � 5.

7. Discussion

We have shown that multiply-rotating black holes exhibit a rich set of interesting
thermodynamic phenomena known from the ‘every day thermodynamics’ of simple
substances. Specifying to six dimensions, we have demonstrated that reentrant phase
transitions, triple points, multiple first-order transitions, solid/liquid/gas phase transitions,
and Van der Walls ‘liquid/gas’ phase transitions can all occur depending on the ratio of the
two angular momenta. Note that neither the existence of the reentrant phase transition, nor of
the triple point depends on a variable P ∼ �. For any fixed P within the allowed range, these
phenomena will take place; in the AdS/CFT context there will be a corresponding reentrant
phase transition within the allowed range of N in the dual SU (N) gauge theory. We illustrate
triple point behavior in a q–T diagram for fixed P in figure 6. We have evidence that such
phenomena will take place in dimensions d > 6, though the details remain to be worked out.
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[19] Gibbons G W, Lü H, Page D N and Pope C N 2004 Phys. Rev. Lett. 93 171102
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