
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 200.16.16.13

This content was downloaded on 21/07/2015 at 17:18

Please note that terms and conditions apply.

Molecular dissociation in the presence of catalysts: interpreting bond breaking as a quantum

dynamical phase transition

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Condens. Matter 27 315501

(http://iopscience.iop.org/0953-8984/27/31/315501)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/27/31
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2015 IOP Publishing Ltd  Printed in the UK

1.  Introduction

When do two individual atoms become a molecule, or vice 
versa? This question is a fundamental one for chemistry as 
much as it is for physics. Certainly, it should involve a sort of 
discontinuity as in a phase transition. In this context, Anderson 
hinted in his well-known article ‘More is different’ [1]4 that 
a condition for a quantum phase transition is the presence of 

infinite degrees of freedom. Sometimes, these are provided by 
the environment [2].

A paradigmatic example of molecular formation and dis-
sociation is the Heyrovsky reaction [3], one of the steps of the 
hydrogen evolution reaction at metallic electrodes; after the 
adsorption of a hydrogen atom at the surface, a second proton 
approaches and an electron is transferred from the metal. It is 
during this last step when the hydrogen molecule is formed 
and a discontinuity is hinted by DFT calculations as a jump in 
energy and spin polarization. This occurs at a critical distance 
of the farthest hydrogen [4].

In quantum mechanics, a phase transition is recognized 
as a non-analytic behaviour of an observable, typically the 
ground state energy, as a function of a control parameter. This 
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Abstract
In this work we show that molecular chemical bond formation and dissociation in the presence 
of the d-band of a metal catalyst can be described as a quantum dynamical phase transition 
(QDPT). This agrees with DFT calculations that predict sudden jumps in some observables as 
the molecule breaks. According to our model this phenomenon emerges because the catalyst 
provides for a non-Hermitian Hamiltonian. We show that when the molecule approaches 
the surface, as occurs in the Heyrovsky reaction of H2, the bonding H2 orbital has a smooth 
crossover into a bonding molecular orbital built with the closest H orbital and the surface 
metal d-states. The same occurs for the antibonding state. Meanwhile, two resonances 
appear within the continuous spectrum of the d-band, which are associated with bonding and 
antibonding orbitals between the furthest H atom and the d-states at the second metallic layer. 
These move toward the band center, where they collapse into a pure metallic resonance and an 
almost isolated H orbital. This phenomenon constitutes a striking example of the non-trivial 
physics enabled when one deals with non-Hermitian Hamiltonian beyond the usual wide band 
approximation.
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phenomenon, absent in a few atom systems, is an emergent 
property of the thermodynamic limit, i.e. when N, the number 
of atoms or degrees of freedom, tends to infinity [5, 6]. Such 
a limit is a necessary condition for the Fermi Golden Rule 
(FGR). For concreteness, let us recall the case of an adatom 
introduced in the Anderson–Newns theory of adsorption  
[7, 8]. This is often invoked to describe molecular dissocia-
tion and electrocatalysis when an atom of energy EB interacts 
with the surface of a metal described by N eigenenergies Ek 
[9]. In assessing the effect of the interactions VB,k through the 
second order perturbation theory, one assigns an infinitesimal 
imaginary part η−i  to each of the N involved metal energies, 

ηΔ = ∑ ( − + )E V E E/ i .B k B k B k,
2  Then, η is made zero only 

after taking → ∞N  [2]. Thus, the initial energy EB acquires, 
besides the expected real shift Δ0, an imaginary correction 
Γ .0  This describes a finite energy uncertainty or broadening 
associated with a decay rate Γ ℏ2 /0 . A straightforward way 
to account for this decay is to introduce an effective non-
Hermitian Hamiltonian where the adatom energy acquires 
an imaginary component, e.g. → + Δ − ΓE E iB B 0 0. Although 
this procedure dates back to Majorana [10], its deep phys-
ical implications only recently became evident. One of these 
is the possibility of a quantum dynamical phase transition 
(QDPT) [11].

Clear experimental evidence of such a dynamical transi-
tion was shown in NMR experiments in a 2(CH)5Fe crystal. 
There, the nuclear spins of the rare 13C-1H dimers can perform 
Rabi oscillations. Beyond some critical crystal orientation, 
these spins are seen to abruptly decouple. This occurs when 
the interaction between the 1H spin and the rest of the crystal 
becomes stronger than the 13C-1H one [11]. This QDPT can 
also be interpreted as a particular case of the superradiance 
phenomenon predicted by Dicke [12–16]. This discontinuity 
suggests that the atom-molecule transition observed both in 
nature and DFT calculations could also be a form of QDPT. 
Thus, the main objective of this work is to provide the essen-
tial conceptual ingredients that feed this idea.

As a preliminary notion of how a non-Hermitian 
Hamiltonian can provide a framework for non-analytical dis-
continuity, let us consider the simplest tight-binding model 
for a homonuclear diatomic molecule A  −  B interacting with 
a metal. This model would display some of the concepts rel-
evant for the main discussion with much simpler algebra. Let 
δ =E V2 AB0  be the usual bonding-antibonding splitting (figure 
1(a)). In this case, atom B has a hypothetical interaction with 
a wide metallic sp-band of width Wsp. When δ≫W Esp 0, − Γi 0 
does not depend on the precise position of the atomic ener-
gies respective of the band center and the shift results, then 
Δ ≡ 00 . This is the wide band approximation, where the weak 
tunnelling into the metal, Γ ≪ W/2 sp0 , is our free parameter that 
accounts for the interaction. This results in the effective non-
Hermitian molecular Hamiltonian [10],

⎡

⎣
⎢

⎤

⎦
⎥=

−

− − Γ

E V

V E i
.

A AB

AB B
eff.

0

H� (1)

The eigenenergies of effH  are now complex numbers. The 
difference between their real parts is the splitting between the 

bonding and antibonding molecular levels, δ δ= [ ] − ΓE E0
2

0
2. 

This splitting is now weakened by the interaction with the sub-
strate. Their corresponding imaginary parts Γ /20  are identical. 
However, δ (Γ )E 0  has a non-analytic collapse when Γ0 reaches 
the critical value δΓ = E .c 0  Beyond this Exceptional Point (EP) 
[17–20], the real parts of the eigenvalues become degenerate 
while the imaginary parts bifurcate. For δΓ ≫ E0 0 values, one 
of the eigenvalues is associated with B and has an imaginary 
part Γ0 that indicates that B remains strongly mixed with the 
substrate. The other eigenvalue is associated with A and has an 
uncertainty proportional to ΓV2 /AB

2
0. This indicates an almost 

isolated orbital [10]. The detailed analytical and numerical 
solution of the above model is discussed in great detail in the 
context of QDPT by Dente et al [21].

Although very appealing for its simplicity this previous 
picture can not be directly applied to a typical metallic cata-
lyst, it is in a very different physical regime. The delocalized 
orbitals that constitute the wide sp-band does not have enough 
overlap with the molecule orbitals to afford a relevant role in 
the molecular dissociation. Thus, our attention should turn to 
the strong interaction of the molecule with the highly oriented 
orbitals of the d-band [22]. These orbitals have large overlap 
with the molecule orbitals and have long been recognized as 
responsible for catalysis [8]. However, in general, the d-band 
has a width Wd smaller than the molecular level splitting δE0; 
see figure 1(b)). This prevents using the wide band approxima-
tion and the previous analysis. Thus, the sp-band has the width 
but not the interaction strength to provide a transition, and the 
the d-band has the interaction strength but not enough width 
to support the previous analysis. Consequently, we are back to 
the question of which mechanism could lead to non-analyticity 
associated with bond breaking in presence of a d -band?

In this article, we answer this question to solve our model 
exactly, i.e. beyond the wide band limit and the Fermi Golden 
Rule. This will allow us to show that an actual analytical dis-
continuity appears if one includes a description of the metallic 
d-band with enough detail. This requires choosing an appro-
priate combination between the molecular levels and the dif-
ferent metallic layers and solving them in a non-perturbative 
way. In our terms, while the molecule approaches to the sur-
face, the farther A atom experiences a resonant through-bond 
coupling [23] with the second layer of the metal. This inter-
action, mediated by the B atom and the first surface layer, 
manifests as two resonances inside the d-band. The transition 
occurs when these resonances collapse at the center of the d-
band, releasing the A atom. Meanwhile, the B atom hybridiza-
tion with A is swapped into B-metal bonding.

2.  A model for molecule dissociation

We consider the molecule Hamiltonian to be 
= + − ( + )H E A A E B B V A B B Aˆ A B ABS . The degen-

eracy of the atomic energies EA and EB is broken by the bonding 
interaction VAB. According to the standard wisdom [9], the dz2 
(top) or combination of the dxz and dyz (for hollow sites) are 
the only d-orbitals with a finite overlap with the molecule. The 
orbital B  interacts with the closest d-orbital combination, 
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for example 1 , going along the connecting path through the 
binding energy V0, = − ( + )V V B Bˆ 1 1SM 0 . The interac-
tion energy V0 is approximately an exponential function of 
the molecule-substrate distance. Therefore, the complete 
Hamiltonian becomes = + +H H H Vˆ ˆ ˆ ˆS M SM. This can describe 
the Heyrovsky reaction, i.e. a H2 molecule approaching per-
pendicularly to the metal surface.

Let us now focus on ĤM, which describes the d-band. Since 
the pioneering work of Newns [8], it is usually assumed that 
a semi-elliptical shape is a good approximation for the Local 
Density of States (LDoS):

ε
π

ε ε ε( ) = − × Θ[ − ] × Θ[ − ]N
W

W W W
1

4 2 2 ,d
d

d d d
2 2� (2)

where Θ[ ]x  is the Heaviside function. Indeed, the validity of 
this proposal for an actual metal can be visualized through 
the Lanczos transformation [24]. This is a unitary transforma-
tion that maps the actual 3D substrate into an equivalent 1D 
linear chain. Figure 2 represents this procedure for a 2D case. 
Starting from the 1  surface d-orbital, a sequence of ‘collec-
tive orbitals’ is built up mainly from the atomic orbitals at 
layers progressively distant from the original surface orbital. 
Regardless of the precise original Hamiltonian ĤM, according 

to Lanczos the metal Hamiltonian ĤM
L
 has identical ‘site’ ener-

gies ≡E En d and only nearest neighbor Vn interactions that 
account for the coupling among the Lanczos collective states 
[24]. Their rapid convergence to ≡ =∞V V W /4d  justifies the 
Newns proposal of a homogeneous linear chain to describe 
the actual metal. The kets n  are the collective d-orbitals, now 
the nth site of the metallic chain. On the surface of the metal 
the coupling between layers is weaker than in the bulk, so we 
assume ≲ ≲V V V1 2  and we set ≡V Vn  for ⩾n 3.

∑ ∑= + − ( + + + )
=

∞

=

∞

H E n n V n n n nˆ 1 1 .
n

n

n

nM
L

1 1

� (3)

With the purpose of defining an optimal configuration 
for the molecular dissociation we base our model on the 
Anderson–Newns theory and set up the Fermi energy level 
at Ed, the center of the d-band, and thus EA   =   EB   =   Ed. 
Thus, the molecular bonding VAB yields a symmetric split-
ting around the center of the band. Additionally, we set the 
coupling elements V1/V   =   0.8, V2/V   =   0.9, and VAB/V   =   2.5, 
which results in various fairly representative situations [25].

At this point it is necessary to list some of the main approx-
imations implied by this model. First, the fixed value of VAB 
neglects the variation of the distance between the atoms A and 
B. This does not affect our main results since the molecule 
breaking can be viewed as a competence among interactions. 
Second, as usual the atoms in the metal are considered fixed 

Figure 1.  (a) Energy levels of an sp-band interacting with atomic orbital B through V0. The molecular levels are also shown to support the 
validity of the wide band approximation. V0 leads to the level broadening Γ0. This case does not describe the catalysis process. (b) Energy 
levels of an d-band interacting with the atomic orbital B through V0. The molecular levels are also shown to stress the fact that their splitting 
is further widened by the interaction V0. This model is suitable for describing the catalysis.

Figure 2.  Effective non-Hermitian Hamiltonian: diatomic A–B 
molecule (in gray) in a configuration perpendicular to a 2D metal. 
The Lanczos unitary transformation combines orbitals at the same 
distance. The resulting tridiagonal Hamiltonian can be represented 
as a linear chain. A decimation procedure leads to a ×4 4 non-
Hermitian Hamiltonian. The same procedure can be applied to the 
3D metal. Dot 1 represents a single atom for top interaction or a 
combination of them for hollow.
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VAB V0 V1 V2 V

Lanczos's Transformation

-iΓ
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Hamiltonian
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in the whole problem. However, variations are minor in the 
Lanczos approach. Third, We assume a null coupling between 
the metal and A the furthest atom. A residual exponentially 
small interaction would be completely masked by the through-
bond interaction.

3.  Molecule dissociation as a spectral bifurcation

The solution of a linear chain model is better expressed in 
terms of the retarded Green’s function matrix ε= ( − )−1G I H , 
whose divergences occur at the Hamiltonian eigenstates. For 
example, for the case of equation (1), in absence of a metal, 
we have Γ ≡ 00  and:

ε
ε ε

ε
ε

( ) =
− − Σ ( )

Σ ( ) =
−

( )G
E

V

E

1
,  where   .AA

S

A A
A

AB

B

2

� (4)

Clearly, EA, the isolated A atom energy, is modified by the 
presence of B through the self-energy εΣ ( )A , which here is a 
real function accounting for the bond and providing for the 
exact molecular bonding and antibonding eigenenergies. As 
discussed, one uses a regularization energy η, η˜ = −E E ik k  (for 
k   =   A, B, n) to facilitate the study of the spectral density. This 
also accounts for restricted charge dynamics whose physical 
origin can be traced back to small ‘environmental interac-
tions’, a possible role played by the sp-band states [26]. When 
the molecule is coupled with the d-band, the retarded Green’s 
function results [27]:

ε
ε

( ) =
− ˜ −

ε − ˜ −
ε

ε ε

− ˜ −

− ˜ − Σ( )

G
E

1
.AA

A
V

E

AB

B
V

E
V

E
V

V

2

0
2

1
1

2

2
2

2

2

� (5)

Here, εΣ( ) is the self-energy correction describing the bulk 
of the metal d-band in the Lanczos representation:

ε
ε ε

ε εΣ( ) =
− ˜ − Σ( )

= Δ( ) − Γ( )V

E
i

d

2

� (6)

from now on we set Ed   =   0, and, thus, the solution of equa-
tion (6) results [28]:

⎛
⎝
⎜

⎞
⎠
⎟ε ε η εΣ( ) = + − ( ) ⋅ + + ⋅ ( ) ⋅ −r x

y
r xi

2
sgn

2
i sgn

2
,

� (7)

with = −ε η−x V
2

2
2 2

, = εηy
2

 and = +r x y2 2 . For the effec-

tive site at the second layer we have:

ε
ε η ε ε

( ) =
+ − Σ ( ) − Σ( )

G
1

i
,

L
V

V

22

2
2

2

2

� (8)

with

ε
ε η

Σ ( ) =
+ −

ε η+ −
ε η+

V

i
,L V2

1
2

i
VAB

0
2

2

i

� (9)

and similar equations  for the other sites. In all these cases 
the LDoS is obtained from the imaginary part of the Green’s 

function: ε ε( ) = − [ ( )]
π η→

N Glim Imi ii
1

0
.

The imaginary part of the self-energy εΣ( ) accounts for the 
quantum diffusion of the electrons into the metallic substrate. 
In a finite system εΣ( ) would be a collection of divergences 
at discrete eigenenergies as εΣ ( )L2 . In contrast, the imaginary 
part, εΓ( ), and the continuum spectrum are consequences of 
taking the thermodynamic limit of infinitely many sites in the 
chain. Within the d-band, the imaginary part survives the limit 
η → +0 , indicating that each atomic orbital merges into the 
metallic band [29]. However, the mere existence of Γ ≠ 0 does 
not warrant the QDPT. In this narrow band model, a QDPT 
emerges as consequence of the specific non-linear dependence 
of Γ and Δ on ε, which accounts for the different metal layers. 
This is also responsible for the fully non-Markovian nature 
of our treatment [30]. The crucial distinction with respect to 
the introductory example is that the self-energies acquire a 
non-linear dependence on ε that contains all the wealth of the 
molecule–catalyst interaction.

Finding the corresponding energy spectrum involves a 
fourth-order polynomial on ε with complex coefficients. 
A simple procedure is to find the eight complex roots of 

ε( )G1/ AA
2. Half of them are non-physical because they are 

divergences for ε( )GAA
2 but not for ε( )GAA . Thus, we eval-

uate the poles numerically. Once we obtain the solutions, we 
choose the physical ones, i.e. those whose imaginary compo-
nent is negative, i.e. poles of the retarded Green’s function.

In figure 3 we show the real part of the Green’s function 
poles. There, we observe two energies outside the d-band, 

Figure 3.  Collapse of resonances in the d-band. The real part of 
the poles is plotted versus the molecule–substrate interaction, V0. 
Small V0 values represent a far away molecule. For larger V0’s 
the molecule is close to the metal. The gray area represents the d-
band, which goes from  −2 V to 2 V. Outside the band the bonding 
molecular orbital AB  smoothly becomes a bonding combination 
between the atom and the metal B1  (black curve). The same occurs 
for the antibonding state ( )*AB  that becomes ( )*B1  (red curve). 
Poles within the d-band correspond to the bonding and antibonding 
resonances A2  and ( )*A2  (green and blue curves, respectively); 
after the transition they become an almost isolated A  orbital and a 
2  orbital strongly coupled to the metal.
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which for V0   =   0 correspond to the bonding ( +A B )/ 2 
(shorted as AB ) and antibonding ( −A B )/ 2 (shorted as 
( )*AB ) localized states of the lonely molecule (i.e. H2) at 
∓VAB. When V0 increases strongly, e.g. for V0   =   3V, these 
energies split further and become bonding and anti-bonding 
states between B  and 1  orbitals, B1  and ( )*B1 , respec-
tively. As in the quantum Zeno effect, increasing this interac-
tion would dissociate the A atom from the rest of the system 
[31]. This does not preclude a small amount of tunneling of A 
into the substrate’s second layer passing through the orbitals 
B and 1. For intermediate V0, this originates a through-bond 
interaction [23] that favors the formation of a bonding state 
between A  and 2  , as well as an antibonding one ( A2  and 
( )*A2 , respectively). They are not localized states but reso-
nances, because the electrons can be exchanged with the bulk.

The aforementioned resonances appear as poles of the 
Green’s function with a finite imaginary part accounting 
for their coupling with the metal (figure 4). However, and 
this is the main point of this work, when V0 increases and 
reaches V C

0 , a quantum phase transition occurs and the state 
A  becomes almost purely atomic. Simultaneously, state 2  
recovers its purely metallic nature. At the precise V C

0  of the 
transition the bonding and antibonding resonances (identified 
by the real parts of the poles) collapse into a degenerate value. 
Simultaneously, the pole’s imaginary parts have non-analytic 
bifurcation into a decreasing part, which accounts for a long-
lived atomic level, and an increasing uncertainty that repre-
sents the metallic delocalization of 2 . This process can be 

interpreted as a manifestation of the Quantum Zeno Effect, 
meaning that when the interaction V0 between atom B and 
the metal increases, the interaction between A and B becomes 
weaker [11, 31]. In addition, the imaginary part of the states 
out of the band remain zero for the whole range of V0, due to 
the fact that they are localized states with an infinite lifetime.

At this point it is important to stress that the collapse of 
the real part of the poles at V C

0  occurs with an infinite slope, 
as in the experimental QDPT [11], a fact that is further clari-
fied in figure 6. This indicates a first-order transition , such 
as the simple wide-band model discussed in the introduction. 
In a classical context, a first-order phase transition requires 
a total-energy level crossing for an infinite system. In the 
described molecule⟺atomic quantum transition, a transition 
occurs at the level of resonances. A second-order character 
of the quantum phase transition, which would be associated 
with an acute crossing angle would be far more subtle, as it 
would involve singular quantum fluctuations. Although our 
mathematical approach can successfully account for diverging 
perturbation terms, no such acute angle was observed in the 
studied parametric regimes.

The detailed analysis of the spectral properties can be cor-
related with a study of the LDoS at different orbitals. Figure 5 
shows the results from such an evaluation. In (a) and (b), we 
can see that for long distances ( ≃V 00 ) the LDoS at A  and 
B  show a dominant presence outside the d-band. In contrast, 
(c) and (d) show that the sites 1 and 2 of the metal do not 
have appreciable participation at these energies. As the mol-
ecule approaches the surface and V0 increases, the LDoS at 
the orbital A , shown in figure 5 (a), loses its weight over the 
states outside the d-band. When ≈V V0 , we observe the emer-
gence of two broad resonances inside the band accounting for 
the A2  and ( )*A2  orbitals. Close to the non-analyticity point 
V C

0 , we observe that both resonances collapse into a single 
peak at ε = =E 0A . This is precisely the energy of an electron 
at the isolated orbital A .

An interesting complementary behaviour is observed on 
the LDoS at 2 . Figure 5(d) shows that as V0 increases, the 
two separate peaks, typical of a second layer [32], become 
close and almost collapse. They are still separated by anti-
resonance [23], i.e. destructive interference with A , which 
manifests as a pole for equation (9).

In figure 5 (c) we observe that as V0 increases, the first metal 
site starts losing participation on the d-band. Simultaneously, 
it increases its participation on the bonding and antibonding 
states localized outside the d-band. Accordingly, the B  orbital 
maintains substantial weight in these localized states (figure 5 
(b)). This accounts for the fact that after the phase transition, 
when atom A decouples from B, the out-of-band localized 
states become the bonding and antibonding B1  and ( )*B1 .

One might wonder how these prediction match with those 
of more realistic DFT calculations, such as the H2 molecule 
interacting with a silver catalyst [4]. A first interesting effect, 
reproduced by DFT calculations and observed in the tight 
binding model, is the screening effect that the furthest atom 
suffers because of the presence of the adsorbed one. This result 
is observed in our LDoS on the bonding energies outside the 

Figure 4.  Bifurcation of decay rates. The imaginary part of the 
poles is plotted versus the V0 molecule–substrate interaction. Small 
V0 values represent a far away molecule. Black and red lines over 
the abscissa account for the infinite lifetime of the localized states 
out of the band. At V C

0  the imaginary part of the resonances (blue 
and green curves) show bifurcation. One branch accounts for a the 
increasingly long-lived atomic level, and the other branch describes 
the uncertainty of 2  that transforms it into the metallic delocalized 
band.
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d-band of figure 5. There, the participation of the A  orbital 
is smaller than that of B . However, the highly structured d-
band masks the spectral branching that characterizes a QDPT 
and is made evident in our tight-binding model after renor-
malization to the LDoS maximum (figure 6). Nevertheless, 
in DFT the hidden spectral bifurcation still constitutes the 
input for the full non-linear self-consistent calculation of the 
Coulomb interaction. Thus, it still may trigger the disconti-
nuity on some of the observables that occur in the numerical 
solution. Although a hydrogen atom approaches another one 
adsorbed at the silver surface, a jump is observed in the total 
energy of the system. Simultaneously, the adsorbed atom also 
jumps to form the H2 molecule. Thus, these discontinuities 
are consistent with the spectral discontinuities described by 
our QDPT model.

4.  Conclusions

We analyzed the molecular dissociation in an Heterogeneous 
Catalysis process under the framework of Quantum 
Dynamical Phase Transitions [11, 18, 20]. As hinted by 
Anderson [29], the non-analyticity of the observables is an 
emergent phenomenon enabled by an infinite number of envi-
ronmental degrees of freedom, in this case provided by the 
catalyst’s d-band. We first observe a smooth crossover of the 
localized bonding and antibonding molecular states, which 

Figure 5.  LDoS for different atoms and metallic sites. (a) and (b) A and B atomic orbitals, respectively. (c) and (d) 1 and 2 effective metal 
orbitals, respectively. For atom A we observe a decrease of the LDoS over the energies outside the band and an increment of its participation 
on the d -band resonances. Atom B, instead, does not lose its participation over the states outside the d-band as V0 increases. The metallic 
orbital 1  loses its participation inside the band and gains presence over the localized states. The LDoS at orbital 2  shows almost no 
participation in the localized states outside the band. Consistently, the anti-resonance at the band centre ensures no mixing with A .
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Figure 6.  LDoS of A inside the d-band normalized to the local 
maximum. There we can see the two broad resonances collapse as 
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0 . This collapse describes the Quantum Dynamical 
Phase Transition. Furthermore, after V C

0  the LDoS becomes 
narrower as A becomes isolated.
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lie outside the narrow d-band, into a bonding and antibonding 
combination between the closest atomic orbital and the first 
layers of the metal d orbitals. By reducing the LCAO model 
to a non-Hermitian Hamiltonian in which the imaginary parts 
have specific non-linear dependence on energy, we show 
that this system undergoes a collapse of resonances that pro-
vides the key to understanding the dissociation phenomenon. 
More specifically, each of the resonances is formed from the 
bonding and antibonding interaction between the furthest 
atom and a combination of d orbitals at the second layer of 
the metal. Before the molecule dissociation, both resonances 
are equivalently broadened by the rest of the metal. However, 
due to the interaction with the surface they merge into a col-
lective metallic molecular orbital centered in the second layer 
of the substrate and an isolated atomic orbital at the center of 
the d-band.

In summary, we show that molecular dissociation consti-
tutes a striking example of the Quantum Dynamical Phase 
Transition, a simple but non-trivial phenomenon that could 
emerge only because we dealt with the thermodynamic limit 
through non-Hermitian Hamiltonians.
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