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Abstract Although chemotherapy is one of the most common treatments for

cancer, it can be only partially successful. Drug resistance is the main cause of the

failure of chemotherapy. In this work, we present a mathematical model to study the

impact of both intrinsic (preexisting) and acquired (induced by the drugs) resis-

tances on chemotherapy effectiveness. Our simulations show that intrinsic resis-

tance could be as dangerous as acquired resistance. In particular, our simulations

suggest that tumors composed by even a small fraction of intrinsically resistant cells

may lead to an unsuccessful therapy very quickly. Our results emphasize the

importance of monitoring both intrinsic and acquired resistances during treatment in

order to succeed and the importance of doing more experimental and genetic re-

search in order to develop a pretreatment clinical test to avoid intrinsic resistance.

Keywords Mathematical modeling and simulations � Chemotherapy � Intrinsic

resistance � Acquired resistance

1 Introduction

When mutations are present in oncogenes and/or tumor suppresor genes, uncon-

trolled cell division occurs, leading to cancer (Priestman 2008). Although

chemotherapy has been used for many years and is one of the most common

treatments for cancer, it has been only partially successful (DeVita 1983; DeVita

et al. 2008; McKinnell et al. 2006). Resistance to the drugs is the most common

cause of failure. It is known that the antitumor action of chemotherapeutic drugs can

be abolished by many different mechanisms. If these mechanisms are preexisting,
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i.e., if they are present before the drug application, the resistance is called intrinsic

resistance. On the other hand, if those mechanisms are induced by the action of the

drug, i.e., cancer cells develop resistance during the treatment, it is named acquired

resistance (Johnstone et al. 2002). A proper understanding of both intrinsic and

acquired resistances is very important. Clinical studies suggest that nearly 50 % of

cancer patients suffer from tumors that are intrinsically resistant to chemotherapy

(Lippert et al. 2008), and cellular models have shown that the ability to acquire

resistance may also be present during the early stage of tumor progression (Raguz

and Yagüe 2008). Although there are many clinical procedures to evaluate and

monitor acquired resistance, there is almost no pretreatment clinical test to evaluate

the presence of intrinsically resistant cells.

Various mathematical models have been developed to describe and study drug

resistance (Goldie and Coldman 2009). The nature of the applied methods depends

on the biological question they address. We find deterministic and stochastic as well

as discrete (agent-based) and continuum (differential equations) models. As

examples of the different approaches we can mention: logistic growth and Lotka

Volterra competition (Kansal et al. 2000), models where the rate at which cells

become resistant depends on the drug dose (Coldman and Goldie 1985), pulsed

chemotherapy considering that the drug affects cells instantaneously (Panetta 1998),

a mathematical model for the simultaneous application of chemotherapy and

immunotherapy (de Pillis et al. 2009), regrowth of tumor cords (Bertuzzi et al.

2003), partial differential equations considering different drug kinetics (Norris et al.

2006), optimization techniques (Murray and Coldman 2003), birth and death

processes (Foo and Michor 2010) and reaction-diffusion approaches (Garner et al.

2005; Lecca and Morpurgo 2012), among others. Although single-drug resistance is

considered in most of these works, mathematical models addressing multidrug

resistance have also been developed (Lavi et al. 2012). Additionally, we refer the

interested reader to the following papers: d’Onofrio and Gandolfi (2010), Frieboes

et al. (2009), Swierniak et al. (2009) and Silva and Gatenby (2010). Most of the

models focus on the temporal evolution of different cell populations, and just a few

study the spatial distribution of solid heterogeneous tumors. Some recent examples

of spatio-temporal models are: a cellular automaton model (Jackson 2003), a

stochastic reaction-diffusion model of non-small-cell lung cancer growth (Lecca

and Morpurgo 2012) and our previous work (Menchón and Condat 2011).

In this article, we extend and modify the model used previously (Menchón and

Condat 2008, 2009, 2011) to incorporate intrinsic and acquired resistances. This

model is based on the fact that competition for nutrients and space is a crucial

growth-controlling factor, and it pays close attention to the local spatial distributions

of nutrients and cells. Opposite to general models, we do not consider a very

simplified symmetric scenario; growth depends on the local resources availability.

Our goal here is to study how resistance could affect an otherwise successful

therapy; we are interested in evaluating and comparing the tumor aggressiveness

and its evolution concerning intrinsic and acquired resistances.

In our previous work (Menchón and Condat 2011), we showed that those cells

that were quiescent at the moment when the drug was applied could be resistant and

later become proliferative depending on the local microenvironment and nutrient
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availability (we will refer to these cells as ‘‘quiescent resistant cells’’ in the

conclusions section). In that approach, the drug affected cell reproduction and

induced cell apoptosis. Thus, once the active outer shield had been depleted by the

drug action, larger amounts of the nutrient could reach mostly quiescent interior

cells, which eventually became proliferative again and then sensitive to the drug.

However, if the delay was long enough, the level of drug concentration could be too

low to be effective. Thus, cells that were quiescent at the moment when the drug

was applied become ‘‘naturally’’ resistant. As was shown in that work, the resistance

of quiescent cells is enough to induce tumor relapse.

In this work, we focus on intrinsic and acquired resistances, and we want to

evaluate how a successful treatment can fail because of them. In order to analyze

just the effect of intrinsic or acquired resistance, we would like to suppress any other

kind of resistance, i.e., for instance, we would like to avoid the effect of quiescent

cell resistance. In other words, we want to create a theoretical scenario near reality,

which allows us to determine whether only the presence of intrinsic or acquired

resistant cells is enough to induce relapse and how it would be for each type of

resistance. Since in the presence of intrinsic or acquired resistance, the active outer

shield is not fully depleted, and all the nutrients that reach the interior cells have to

be distributed between the resistant cells (which can proliferate) and sensitive cells.

The possible relapse due to quiescent cells should be much less than the one

reported in Menchón and Condat (2011); then, the effect of the drug concentration

level on the sensitive cells (which was explained above) can be neglected. We will

also assume that the effect of the drug on the cancer cells is fast compared with the

temporal evolution of the tumor. Therefore, we consider that the drug has an

instantaneous effect upon application. We do not model either the drug delivery or

its spatial distribution; instead, we assume that the drug immediately affects all

sensitive cells. Due to the drug action, sensitive cells stop their cell cycle and

become nonproliferative. After the drug is applied, resistant cells will appear with

some probability. A more detailed description of the model is given in the next

section.

Using realistic parameter values, we show that intrinsic resistance can be as

aggressive as acquired resistance. Both intrinsic and acquired resistances can induce

tumor relapse with even a small fraction of resistant cancer cells. In particular, a

tumor composed of 2 % (or more) of intrinsic resistant cells may lead to an

unsuccessful treatment. Our simulations emphasize the importance of diagnosing

intrinsic resistance before treatment starts.

2 The Model

Here we extend the basic growth model developed by Scalerandi et al. (1999) to

describe cancer growth. In this model, the tissue is represented by a network whose

node points are associated with a volume element that contains many cells and

nutrient molecules. In order to model intrinsic and acquired resistances, we will add

a few rules and consider that most of the cancer cells become nonproliferating

because of the drug action. Since our goal is to describe the evolution of a tumor

The Effect of Intrinsic and Acquired Resistances 115

123

Author's personal copy



that is composed by sensitive and nonsensitive cancer cells, we write down the

equations of a generalized model considering the presence of N kinds of cancer

cells. In this work N ¼ 2.

2.1 Growth Rules

Healthy, cancerous and dead cells coexist at each node point, their concentrations

being denoted by hðiÞ, clðiÞ and dlðiÞ, respectively, where l ¼ 1; 2; . . .;N. For

simplicity, we consider a single critical nutrient that diffuses through the tissue, with

diffusion coefficient a0. It is called the free nutrient, and its concentration at the i-th
node is denoted by pði; tÞ. The total cell concentration is considered to be uniform

and normalized, i.e., hðiÞ þ
PN

l¼1 clðiÞ þ dlðiÞ
� �

¼ 1. The free nutrient is absorbed

by the healthy cells at a rate c0.

The rules governing cancer growth are the following:

G1. Feeding. The free nutrient is absorbed by cancer cells and converted into a

bound nutrient. The absorption rate is proportional to pðiÞ at low free nutrient

concentrations, and it saturates to a constant value, clas, at high concentrations.

We model the absorption rate by

clðiÞ ¼ clas 1 � e�pðiÞ
� �

:

G2. Consumption. The bound nutrient is consumed by i-th node cells at the rate

blðiÞ ¼ blas 1 � e�qlðiÞ=clðiÞ
� �

;

where qlðiÞ is the bound nutrient (by l-type cancer cells) concentration, and

the denominator clðiÞ has been included in the exponent because each cell can

consume only its own bound nutrient.

G3. Death. If the average amount of the bound nutrient per cell, qlðiÞ=clðiÞ, is

below a given threshold Ql
D, a fraction rlDc

lðiÞ of cancer cells dies, where rlD is

a constant.

G4. Mitosis. If the average amount of bound nutrient per cell is above a given

threshold Ql
M ðQl

M [Ql
DÞ, a fraction f lðiÞ of healthy cells is transformed into

cancer cells. This fraction is given by

f lðiÞ ¼ hðiÞ þ rlMc
lðiÞ � hðiÞ

� �
H hðiÞ � rlMc

lðiÞ
� �

;

where H is Heaviside’s step function and rlM is a constant.

G5. Migration. If the average amount of free nutrient per cell, pðiÞ=
PN

l¼1 c
lðiÞ, is

below a migration threshold, Pl
D, cells of type l at the i-th node migrate to its

neighboring nodes. Since healthy cells are less mobile and aggressive than

cancer cells, we assume that they are eliminated when cancer cells arrive in

such a way that the total cell concentration is preserved.
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2.2 Implementation

We represent the tissue of interest by a two-dimensional square grid, with lattice

constant ‘ and node points i ¼ ð‘i; ‘jÞ. The nutrient is supplied by a single capillary

vessel situated at the lower edge of the lattice. The nutrient concentration in the

blood vessel is constant, pðð‘i; 0Þ; tÞ ¼ P0. Periodic boundary conditions are used

for the left and right boundaries. Thus, for a tissue composed by healthy cells and N

kinds of cancer cells, the free nutrient evolution is given by:

pði; t þ sÞ ¼ pði; tÞ þ s
X

i0

a0

‘2
ðpði0; tÞ � pði; tÞÞ

 

�c0pði; tÞhði; tÞ �
XN

l¼1

clclði; tÞ
!

;

ð1Þ

where s is the discrete temporal step. The first term in the bracket has the contri-

bution due to diffusion between nearest neighbors; the second and third terms

represent the consumption due to healthy and cancer cells, respectively. According

to rules G3 and G4, cancer cell populations are updated by:

clði; tÞ �! clði; tÞ � rlDc
lði; tÞH Ql

Dc
lði; tÞ � qlði; tÞ

� �

þ f lði; tÞH qlði; tÞ � clði; tÞQl
M

� �
:

ð2Þ

The second and third terms on the right-hand side represent the variations due to

death and mitosis, respectively. The corresponding equation for the dead cell

population is given by:

dlði; tÞ �! dlði; tÞ þ rlDc
lði; tÞH Ql

Dc
lði; tÞ � qlði; tÞ

� �
: ð3Þ

The cancer cell population can also be modified because of migration. The equation

representing rule G5 is given by:

clði; t þ sÞ ¼ clði; tÞ þ s
‘2

�

hði; tÞ
X

i0
al1ði0; tÞclði0; tÞ

� al1ði; tÞcði; tÞ
X

i0
hði0; tÞ

	

;

ð4Þ

where al1ði; tÞ ¼ alH½pði; tÞ �
PN

l¼1 c
lði; tÞPl

D� as well as al is the diffusion coeffi-

cient for the l-type cancer cells. Since the dead cells do not migrate, there is no need

to change their concentration because of migration. Each time cancer cell popula-

tions are modified by rules G3-G5, the healthy cell population has to be updated by

hði; tÞ �! 1 �
PN

l¼1ðclði; tÞ þ dlði; tÞÞ. The bound nutrient concentrations are up-

dated according to rules G1, G2 and G5, since cancer cells migrate carrying their

bound nutrient. All these contributions are represented by the following equation:
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qlði; t þ sÞ ¼ qlði; tÞ þ s

�

clði; tÞclði; tÞ � blði; tÞclði; tÞ

þ hði; tÞ
‘2

X

i0
al1ði0; tÞqlði0; tÞ �

al1ði; tÞ
‘2

qlði; tÞ
X

i0
hði0; tÞ

	

:

ð5Þ

The first term in brackets represents the absorption of free nutrient, the second term

contains the consumption, and the last terms represent the migration between

nearest neighbors.

2.3 Resistance

Since in this work we are interested in the effect of intrinsic and acquired

resistances, we consider that the drug is fully effective against sensitive cancer cells

and has an instantaneous effect upon application. In other words, we assume that at

time tc the drug is applied and immediately affects all sensitive cells. The drug

effect is to stop the cell cycle, i.e., all the sensitive cells become nonproliferative

after tc. From this moment, sensitive cancer cells cannot reproduce anymore

because of the action of the drug, and only resistant cells can reproduce. Sensitive

cells do not die from the action of the drug, they just stop their cell cycle and cannot

reproduce, but they still consume nutrients, occupy space and migrate. Thus, we

consider that the resistant cells differ from the sensitive cells in having their cell

cycle active. We add a few rules according to the nature of the resistance.

2.3.1 Intrinsic Resistance

We consider that a cell is intrinsically resistant if it has inherent resistance to

chemotherapeutic drugs, i.e., its resistance is independent of the presence of the

drug. We consider that just a fraction of the tumor cells can be intrinsically resistant,

and we take a constructive approach to generating the distribution of those cells at

the moment when therapy is applied. To model cancer growth with intrinsically

resistant cells, we add the following rules:

I1. For t\tc, at each time the rule G4 is implemented, we choose a random

number m, uniformly distributed between 0 and 1. If m\/ all the cells in node i
become resistant. The parameter / is thus the probability to become resistant.

This procedure ensures that older cells have a bigger chance of becoming

resistant.

I2. At t ¼ tc cells that are not resistant are defined as sensitive and stop their cell

cycle. Mitosis is not allowed for them anymore.

2.3.2 Acquired Resistance

The acquired resistance is drug-induced, i.e., cells become resistant because of the

interaction with the drug. The new rules for this type of resistance are:
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A1. At t ¼ tc all the cells become sensitive, and rule G4 ceases to be operative.

A2. For t� tc, at each time we should check the mitosis threshold, we choose a

random number m, uniformly between 0 and 1. If m\/ all the cells inside node

i become resistant, and rule G4 starts to be operative for them again.

The conversion from sensitive to resistant cells can be expressed by the following

equations:

c1 i; nDtð Þ ! c1 i; nDtð Þ 1 �Hð/� mÞð Þ;
c2 i; nDtð Þ ! c1 i; nDtð ÞHð/� mÞ;
q1 i; nDtð Þ ! q1 i; nDtð Þ 1 �Hð/� mÞð Þ;
q2 i; nDtð Þ ! q1 i; nDtð ÞHð/� mÞ;

where c1ði; tÞ and c2ði; tÞ represent the sensitive and resistant cell population, re-

spectively. Here q1ði; tÞ and q2ði; tÞ are the concentrations of bound nutrient for each

cell population. This conversion can only take place at integer multiples of

Dt ¼ 12 h, the time at which the rule G4 is going to be implemented (I1) or should

have been implemented (A2). In the case of intrinsic resistance, these equation are

considered if nDt\tc; for acquired resistance, they are implemented if nDt[ tc. In

both cases for t[ tc, rule G4 ceases to be operative for c1ði; tÞ, but it is implemented

for c2ði; tÞ. In other words, intrinsically resistant cells are generated randomly before

drug application, and acquired resistant cells are generated randomly after therapy

has started. For all time, type 2 cancer cells are proliferative.

3 Results

Initially, we consider a healthy tissue with stationary nutrient distribution. At t ¼ 0,

a cancer seed of type 1 is placed at the center of the lattice, and a tumor starts

growing at the center of a completely healthy tissue. Tumor evolution is governed

by rules G1–G5 and simulated as in our previous works (Menchón and Condat

2008, 2009, 2011). We use the value of the parameters shown in Table 1. A

Table 1 Numerical values of computational parameters

Symbol Unit Value References

‘ lm 33

s h 0:001

P0 Mm 5:5 Fang et al. (2004)

a0 cm2=h 0:001 Casciari et al. (1988); Jiang et al. (2005)

c 1/h 0:002 Drasdo and Höhme (2005); Jiang et al. (2005)

cas 1/h 200 Drasdo and Höhme (2005); Freyer and Sutherland (1985)

bas 1/h 5 Kole et al. (1999)

a cm2=h 8:3 � 10�8 Chaplain and Matzavinos (2006); Swanson et al. (2003)
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complete explanation of the parameters related to cell growth is given in Menchón

and Condat (2008).

We assume that at time tc, a drug is applied. Due to the effect of the therapy,

sensitive cells stop their cell cycle immediately. For t� tc, the tumor will be formed

by two populations: one sensitive, i.e., nonproliferative (1) and the other resistant,

which is able to proliferate (2). If the therapy were not applied, cancer cells at the

tumor boundary would proliferate faster than the inner cells because of the

difference in space and nutrient availability between those regions. However, if the

therapy is applied, all sensitive cells stop replicating. Thus, free nutrient

consumption, for a tumor with sensitive cells, is reduced in comparison with a

tumor without sensitive cells because there are fewer cells absorbing it. After a few

days, the nutrient availability in the tumor interior increases (due to diffusion), and

resistant cells in those regions can proliferate if they have space availability. In other

words, once therapy has been applied, the absorption rate of the free nutrient at the

tumor periphery falls and increased amounts of nutrient reach the tumor interior,

allowing resistant cell proliferation. If / is small, ð/ � 5 � 10�4Þ, most of the cells

that are intrinsically resistant are located in the tumor interior. This means that they

probably need to wait longer until nutrient availability increases locally to be able to

proliferate, a process that may be even slower because of the lack of space.

Therefore, the cancer cells may first need to migrate and find their way to the

boundary before the tumor starts growing again. However, it occurs more frequently

that cells with acquired resistance are located near the tumor boundary. Thus, at the

moment they become resistant, it is likely that they have nutrient and space

availability. According to our simulations, if / is high enough, ð/ � 0:1Þ, around

35 % of live cells are intrinsically resistant at the moment when therapy is applied.

Although the tumor reduces its growth rate when therapy begins, in a short time

resistant cells can reactivate growth, leading to a tumor similar to the one that would

have resulted without any therapy. In Fig. 1a, we show a snapshot of a growing

tumor at the moment when the therapy is applied. In panel (c), we show a simulation

of tumor evolution after 120 days of therapy considering only intrinsic resistance

and / ¼ 0:0005. In panel (d), we also show a simulation of tumor evolution after

120 days of therapy with / ¼ 0:0005, but now this simulation presents only

acquired resistance. Spots of higher cell concentration can be seen in the interior of

the original tumor in panel (c), showing that some intrinsically resistant cells were

initially located in the inner region. Once resistant cells arrive at the boundary, i.e., a

place with enough nutrient and space availability, regrowth takes place, generating

regions that are composed mostly by resistant cells and giving to the tumor a

clustering structure. Although the simulation in panel (d) represents a more

aggressive tumor than the simulation in panel (c), it is important to notice that the

tumor simulated in panel (c) is composed by a small fraction of intrinsically

bFig. 1 Snapshots of growing tumors: 30 days after seeding (a); 150 days after seeding (b); 120 days of
treatment, tumor with intrinsic resistance / ¼ 0:0005 (c); 120 days of treatment, tumor with acquired
resistance / ¼ 0:0005 (d); 120 days of treatment, tumor with intrinsic resistance / ¼ 0:1 (e); 120 days of
treatment, tumor with acquired resistance / ¼ 0:1 (f). Scale bar 1 mm. For these simulations, parameters
shown in Table 1 are used
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resistant cells; less than 1 % of live cancer cells are resistant at the moment when

therapy is applied. In panels (e) and (f), we show simulations after 120 days of

therapy with intrinsic and acquired resistances, respectively. For both, we have used

/ ¼ 0:1. In panel (b), we show tumor evolution in the absence of therapy.

Fig. 2 Ratio between the total number of tumor cells with and without therapy, RðtÞ, for intrinsic (a) and
acquired (b) resistances as a function of time (solid lines, average of seven runs). For a more clear figure
only standard deviations for selected curves are plotted (dashed lines). Ratio between the total number of
live tumor cells with and without therapy, LðtÞ, for intrinsic (c) and acquired (d) resistances as a function
of time (solid lines, average of seven runs). Ratio between the total number of dead tumor cells with and
without therapy, DðtÞ, for intrinsic (e) and acquired (f) resistances as a function of time (solid lines,

average of seven runs). For all the panels and from the top down / ¼ 0:1, / ¼ 5 � 10�2, / ¼ 2 � 10�2,

/ ¼ 10�2, / ¼ 5 � 10�3, / ¼ 2 � 10�3, / ¼ 10�3, / ¼ 5 � 10�4
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Simulations in panels (e) and (f) represent tumors that seem to be equally aggressive

as that represented by the simulation shown in panel (b).

A measure of the apparent success of a therapy is given by the time evolution of

the ratio RðtÞ of the total number of (live and dead) cancer cells in a tumor subject to

therapy to the total number of cancer cells in the same tumor in the absence of

therapy. A successful therapy will keep RðtÞ � 1 for a long time. For a single

application of therapy, we expect RðtÞ to undergo a sharp decrease and then to

slowly grow toward unity as the tumor regrows. We also expect RðtÞ to be a

monotonically increasing function of the resistance degree. Indeed, this can be seen

in Fig. 2a, b, where we show RðtÞ for the cases of intrinsic and acquired resistances,

respectively, and for different values of /. The solid lines represent the average over

seven runs, and the dashed lines are the standard deviation for selected curves. It is

clear that for / � 0:1, in both cases the total number of cancer cells is very similar

to that for a tumor without any therapy. However, they are not identical, R being

greater for intrinsic resistance. Now, for small / we can observe a considerable

reduction in the number of total cancer cells. This reduction is even stronger for

intrinsic resistance having a reduction of about 50 % for / ¼ 0:0005 after 120 days

of therapy. However, for the same / we just have a reduction of �30% after 120

days of therapy with acquired resistance.

If we instead study the ratio LðtÞ between the total numbers of live cancer cells (see

Fig. 2c, d), we can also observe that for a small / the tumor with acquired resistance is

more aggressive than that with intrinsic resistance, a situation that is reversed for

greater/. Analyzing the ratio LðtÞ, we observe an important reduction a few days after

therapy has been applied. This reduction is followed by a fast increase due to

repopulation. This fast growth can generate tumors with more live cancer cells than

their counterparts without therapy (see Fig. 2d at t � tc �20 days for high /). Growth

slows down in the following days because of the increase in the number of cancer cells,

which enhances the local competition for limited resources. Again, for small (high) /
values, tumors with acquired (intrinsic) resistance have a faster repopulation than

those with intrinsic (acquired) resistance. The ratio DðtÞ between the total numbers of

dead cancer cells (see Fig. 2e, f) is very similar to RðtÞ due to the fact that the live cells

are a small fraction of the tumor (in general located at the outer rim).

The fraction of resistant cells at the moment when therapy is applied, in the

simulations performed with intrinsic resistance and / ¼ 2 � 10�3, is less than 2 %.

These results indicate that the therapy effectiveness can be really affected even with

a very small fraction of resistant cells, since for these simulations R ¼ 0:72 and

L ¼ 0:85. Figure 3 shows the ratio R as a function of the percentage of intrinsically

resistant cells at the moment when therapy is applied for different times. Tumors

composed by a very low percentage of intrinsically resistant cells, around 0.1 %,

can be considered as tumors that still respond to the therapy. However, a fast relapse

takes place in tumors with 2 % or more of intrinsically resistant cells at the moment

when treatment starts.

In Stein et al.’s paper (2008), clinical data for several patients with prostate

cancer are reported. Many of the curves presented in that work correspond to

acquired resistance. Unfortunately, in the present work we do not model the drug-
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cell interaction, and then we cannot model the temporal window between the drug

application and presence of resistant cells for each patient. However, some of the

clinical data are related to intrinsic resistance since they present almost no

improvement after the drug has been applied. In Fig. 4, we compare some clinical

data reported in the supplementary information of Stein et al. (2008) with our

simulations of intrinsic resistance. In this figure, the total number of cancer cells is

shown as a fraction of the value at the start of treatment versus time in days. The

agreement between our simulations and the clinical data indicates the great

importance of diagnosing intrinsic resistance before treatment starts.

4 Conclusions

Cytotoxic agents are effective against tumor cells because they reproduce faster than

normal cells. However, since cells of vital organs also grow quickly, they may also

be destroyed or damaged, causing severe side effects. Therefore, ineffective

Fig. 3 Ratio between the total
number of tumor cells with and
without therapy, R, for intrinsic
resistance as a function of the
percentage of intrinsic resistant
cells at the moment when
therapy is applied. Each curve
represents a different time. From
top down: t � tc ¼ 120 days, t �
tc ¼ 100 days, t � tc ¼ 75 days,
t � tc ¼ 50 days

Fig. 4 Comparison between clinical data of the prostate-specific antigen level as a fraction of the value at
the start of treatment (dots) and simulations of intrinsic resistance (solid lines). In the left panel
/ ¼ 0:0005, in the middle panel / ¼ 0:002 and in the right panel / ¼ 0:1. The clinical data were
reported in the supplementary material of Stein et al. (2008) and correspond to patients 13 (downward
triangles), 42 (circles), 73 (upward triangles) and 67 (squares) in the left panel; 57 (circles) and 63
(squares) in the middle panel; 18 (squares) and 97 (circles) in the right panel
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chemotherapy treatments make patients suffer from both tumor growth and side

effects of the drugs. It is known that nearly 50 % of cancer patients have tumors that

are formed by intrinsic chemotherapy-resistant cells (Lippert et al. 2008). Although

there are some commercial tests that register tumor resistances with an accuracy of

around 90 %, there are no standard clinical procedures to identify intrinsic

resistance (Lippert et al. 2008). On the other hand, nowadays it is possible to

monitor drug resistance during treatment by positron-emission tomography (PET),

which allows determining the metabolic activity of neoplastic tissue (Lippert et al.

2011). Intrinsic resistance tests and PET could be useful for the early detection of

acquired resistance and give an idea of the time interval from drug administration to

resistance development. Although these techniques to detect individual resistance

are available, they can be very expensive and out of reach for most patients.

In this article, we used a simple spatio-temporal mathematical model to describe

intrinsic and acquired resistances. Using realistic values and a minimum number of

rather general assumptions, we have shown how an otherwise successful therapy

can fail because of the presence of resistant cells. We have considered that resistant

cells only differ from sensitive cancer cells in having an active cell cycle. In the case

of intrinsic resistance, we have seen that simulations of tumors with just about 1 %

of their live cancer cells being resistant may affect treatment effectiveness (Fig. 1c),

and those with 35 % of their live cancer cells being resistant lead to the complete

failure of the treatment (Fig. 1e). Although before treatment intrinsically resistant

cells are randomly distributed and well mixed with sensitive cells, after drug

application, they find their way out to regions with more resources, as a result

leading to tumors with clustering structures of sensitive and resistant cells. This

clustering of structures has also been observed in kidney (Gerlinger et al. 2012) and

breast cancer considering phenotype clustering (Almendro et al. 2014). Our

simulations also show that, for tumors with acquired resistance, it takes only a

few days (between 5 and 10) to have tumor regrowth after the first resistant cell

appears (Fig. 2d). This aggressiveness is similar to that for tumors composed of a

small fraction of intrinsically resistant cells at the moment when therapy is applied.

According to our model, the delay in tumor relapse for intrinsic resistance is

basically caused by the time resistant cells need in order to migrate to regions with

more space and nutrients. The agreement in the comparison between our results and

clinical data seems to validate our assumptions.

The model presented here has some limitations. In particular, we do not consider

the effect of the drug and pressure in the extracellular matrix. We also do not

consider drug distribution and quiescent cell resistance. Although these effects

deserve to be considered in the future, chemotherapy effectiveness would be even

more reduced if we added them to the model. In particular, if drug administration

and distribution dynamics are included, according to Menchón and Condat (2011)

and considering that the drug is distributed by diffusion, the nutrient concentration

inside the tumor increases after the drug has been applied, allowing the interior cells

to live longer. This result suggests that, in general, an intrinsically resistant cell

population would survive, even if the drug does not have an instantaneous effect.

However, it might have a different impact on the tumor evolution, since interior

intrinsically resistant cells should compete for space and nutrients with ‘‘quiescent
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resistant cells’’ (see introduction). In this case, it would be interesting to evaluate

whether therapy effectiveness is mainly reduced because of ‘‘quiescent resistant

cells’’ or because of intrinsically resistant cells. Thus, in a future work, it would be

worth analyzing the tumor composition and its temporal evolution, studying the

ratio of ‘‘quiescent resistant cells’’ to intrinsically resistant cells in the function, for

instance, of the drug distribution speed. Even more, the fact of including drug

distribution would allow considering different schedules for drug application and

the possibility to use optimal control theory tools, like in Swan (1990), to evaluate

different clinical procedures and determine the best strategy for each patient.

We have shown that tumors with resistance may repopulate very quicly even in

cases with a small probability of developing resistant cells. Our results underline the

crucial importance of an early diagnosis of resistance and the need to intensify the

development of individual resistance tests in order to provide more effective

treatments.
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