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Microscopic model for magnetoelectric coupling through lattice distortions
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We propose a microscopic magnetoelectric model in which the coupling between spins and electric dipoles is
mediated by lattice distortions. The magnetic sector is described by a spin S = 1/2 Heisenberg model coupled
directly to the lattice via a standard spin-Peierls term and indirectly to the electric dipole variables via the
distortion of the surrounding electronic clouds. Electric dipoles are described by Ising variables for simplicity.
We show that the effective magnetoelectric coupling which arises due to the interconnecting lattice deformations
is quite efficient in one-dimensional arrays. More precisely, we show using bosonization and extensive density
matrix renormalization group numerical simulations that increasing the magnetic field above the spin-Peierls gap,
a massive polarization switch-off occurs due to the proliferation of soliton pairs. We also analyze the effect of an
external electric field when the magnetic system is in a gapped (plateau) phase and show that the magnetization
can be electrically switched between clearly distinct values. More general quasi-one-dimensional models and
two-dimensional systems are also discussed.
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Multiferroic materials exhibit a magnetoelectric (ME)
coupling between their electrical and magnetic moments, a
promising feature for device designs controlling magnetiza-
tion with electric fields, or conversely electrical polarization
with magnetic fields. They have been the subject of intense
research in the last decade, a century later than the pioneering
insight of Curie [1] and 50 years after the first theoretical
prediction and experimental realization in Cr2O3 [2,3]. The
current revival may be traced back to the simultaneous dis-
covery of polarization and magnetization in bismuth ferrite
BiFeO3 [4] and gigantic magnetoelectric effects in rare-earth
perovskite manganites Tb(Dy)MnO3 [5]. Since then a series
of exciting new materials and new microscopic descriptions
have been developed (see the reviews [6–13], and references
therein). Still, technologically useful multiferroic materials
are very rare and constitute an active area of research.

Multiferroics are usually divided into two main groups,
named type I and II, depending on whether ferroelectricity and
magnetism have different or the same origin (see, e.g., [10,12],
and references therein). Within the second group, in which
ferroelectricity occurs in a magnetically ordered state, further
distinction can be made if the magnetic order is collinear [10]
or noncollinear [14,15].

Previous studies [16–23] have linked magnetostriction
effects to magnetoelectricity, in particular for quasi-one-
dimensional materials such as Ca3CoMnO6 [16], R2V2O7

(R = Ni, Co) [17], double perovskites R2CoMnO6 (R = Er,
Ho, Tm, Yb, Lu) [18], and also for more general cases such
as magnetic E-type HoMnO3 manganite [19,20], the nickelate
family RNiO3 (R = La, Pr, Nd, Sm, ..., Lu) (see, e.g., [21,22]),
RMn2O5 manganites (R = Tb–Lu) [23], etc.

In the present Rapid Communication we focus on quasi-
one-dimensional materials with collinear magnetic orders and

propose an effective microscopic model in which the ME cou-
pling is mediated by lattice distortions. Our main motivation
arises from many different experiments where the coupling
between magnetic moments, elastic distortions, and electric
dipoles has been observed, in particular those in [24,25] where
multiferroicity has been linked to magnetoelastic deforma-
tions in collinear spin models, which in turn produce a net
electric polarization.

In this context we aim to provide a natural microscopic
connection between the electroelastic and magnetoelastic ef-
fects and the resulting ME coupling. To this end we propose
a model describing magnetic ions with spin S = 1/2, dipolar
degrees of freedom, and deformations along a preferred axis,
which allows for a description in terms of almost independent
chains of octahedra, as is the case for [16,19,25], for example,
or any other structural units. We find, among other effects, that
this model allows for a switch-off of the electric polarization
by applying a magnetic field, as well as for a magnetization
jump induced by varying an electric field. These functional-
ities are key features that could lead to multiferroics-based
technologies [26].

We then consider a chain of spin-1/2 magnetic ions [27]
with the coupling to the lattice taken for simplicity as an adi-
abatic spin-Peierls term. We also assume that the ions whose
motion produce the electric dipoles move in a deep enough
double-well potential (the so-called order-disorder limit [28])
so that the orientation of electric dipoles is described by local
Ising variables σi. Under longitudinal distortions δi we assume
that dipoles remain located midway between magnetic ions.
This granted, the coupling between elastic deformations and
electric dipoles recognizes two contributions: one stems from
the natural 1/r3 dependence of the dipole-dipole interaction
and the other, central in our proposal, arises from a pantograph
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FIG. 1. Description of the pantograph mechanism and electroe-
lastic phase diagram. (a) Typical distortion of basic structural units
containing magnetic and electric variables. (b) Minimal model link-
ing ion displacements (blue arrows) with spin and dipolar variables
(black and red arrows), when a shear strain relates a distance re-
duction between magnetic ions with a dipolar strength enlargement.
(c) The two possible dimerized chain configurations (related by one
site translation, Z2), producing net polarizations in the presence of an
antiferroelectric dipolar phase. (d) Dipolar phases and electroelastic
distortions under an external electric field (α = 0, β = 0.2). Follow-
ing the dotted line at a given Je one finds jumps in the polarization at
Ec1 and Ec2.

mechanism [29]. As changes in longitudinal bond lengths
are related to the heights of the basic structural units, distor-
tions change the width of the double-well potentials which
in turn modify the dipolar strengths. A slight generalization
could include the so-called bond-bending effects, where the
magnetic superexchange is better described in terms of bond
angles [19]; the conclusions of the present work would remain
unchanged.

Assuming a preferred direction for the magnetoelastic dis-
tortions, a minimal geometry for the pantograph mechanism
is depicted in Figs. 1(b) and 1(c), where for definiteness we
set the dipoles to be perpendicular to the chain direction;
octahedra in three-dimensional materials [Fig. 1(a)] undergo
a similar process. In the following we analyze this simple
geometry, considering the Hamiltonian

HME = HSP + HD, (1)

where HSP is the usual spin-Peierls Hamiltonian for S = 1/2
spins �Si and bond length distortions δi,

HSP =
∑

i

Jm(1 − αδi ) �Si · �Si+1 + K

2

∑
i

(δi )
2 (2)

with antiferromagnetic exchange Jm and elastic stiffness K ,
and HD is the (long-range) electric dipolar energy. For trans-
verse uniaxial dipoles HD can be written as

HD = λ2

∑
i< j

1

r3
i j

pz
i pz

j, (3)

where the distance ri j = ri j ({δk}) between dipoles at links
j > i depends on distortions. The electric dipolar moments
also depend on distortions by the pantograph mechanism,

leading in a linear approximation to

pz
i = p0(1 − βδi )σi. (4)

External magnetic and electric fields along the z axis couple
to the spins and dipoles, respectively, by

Hfields = −h
∑

i

Sz
i − E

∑
i

pz
i . (5)

In a general geometry, both α and β should be understood
as phenomenological microscopic parameters, that could be
fitted by experiments or by first-principles computations.
The transversality condition on dipole orientations could be
relaxed, either because of classical tilting or the inclusion
of quantum fluctuations; in these cases our model requires
further elaboration, to be reported in a forthcoming work.

In the case that screening makes negligible dipolar inter-
actions beyond first neighbors, the Hamiltonian in Eq. (1)
simplifies to

HME = Jm

∑
i

(1 − αδi ) �Si · �Si+1 + K

2

∑
i

(δi )
2

+ Je

∑
i

[
1 −

(
β + 3

2

)
(δi + δi+1)

]
σiσi+1, (6)

where Je = λ2(p0)2 is the undistorted effective electric ex-
change coupling. Integrating out deformations would lead
to a quartic expression coupling directly the magnetic and
electric degrees of freedom, similar to that proposed in [27] to
describe organic molecular solids. The microscopic derivation
of this ME coupling will also be the subject of a forthcoming
paper. We recall that the pantograph effect in Eq. (4) and the
dependence of dipole-dipole electrostatic couplings on dis-
tance are at the root of the electroelastic coupling mechanism.

The electroelastic part of the Hamiltonian (setting α = 0)
is easily analyzed on classical grounds. Distinct dipolar con-
figurations are favored according to the electric field and
the different couplings considered, leading to a rich phase
diagram. We show in Fig. 1(d) the electroelastic phases in the
E -Je plane for β = 0.2; K sets the energy scale. The lattice
distortions can be analytically computed as a superposition
of period two and/or period four harmonic distortions. The
dimerized phase (Dim) has vanishing polarization at E = 0,
slightly raising until a critical field Ec1 where it jumps to
nearly half of saturation in a quadrumerized phase [Quad; see
Fig. 1(d)]. Distortions have contributions from both harmon-
ics along this phase and the polarization also raises slightly,
until a jump to saturation at a critical field Ec2.

On the other hand, the magnetoelastic part of the Hamilto-
nian (setting Je = 0) is formally the same as the one used to
describe the magnetoelastic effects in ferromagnetic materials
[30]. In this work we focus on the extreme quantum case
of spin S = 1/2 in one-dimensional chains and antiferromag-
netic couplings, which has been widely studied mainly since
the discovery of CuGeO3 [31] and where the spin-Peierls
effect is well established: the system is unstable towards
a lattice deformation pattern commensurate with magnetic
correlations. It then predicts a structural phase transition into
a dimerized phase at zero magnetic field with the opening of a
spin gap in the magnetic spectrum. This mechanism happens
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FIG. 2. Numerical results for E = 0 (setting Je = 0.5, α = 1, and β = 0.2). Left panel: Magnetization curve (infinite size extrapolation in
solid red) and net polarization (in solid blue), both relative to saturation. A finite magnetic field is necessary to overpass the spin gap, dropping
off the spontaneous polarization. Right panels: local magnetization and distortion profiles for Sz = 0 and the first two magnetized excitations
Sz = 1, 2 indicating that equidistant soliton pairs (analytically fitted by dashed lines) proliferate as the magnetic field is increased.

to be effective also in frustrated chains, to give rise to spin
gaps (magnetization plateaus) at nonzero magnetization M
[32]. Magnetic excitations with Sz = 1 (magnons) on top of
a given plateau split into a number of solitons which is fixed
by the plateau magnetization ratio. These solitons repel each
other and hence form a periodic array [33].

An efficient analysis can be made in the bosonization
framework (see [32] for details). In this language the contin-
uum expression for the spin energy density �Si · �Si+1 → ρ(x)
reads [34]

ρ(x) = a ∂xφ + b : cos(2kF x +
√

2πφ) : + · · · , (7)

where φ is the bosonic field, kF = π
2 (1 − M ), M is the mag-

netization (relative to saturation), a and b are M-dependent
nonuniversal constants, and the ellipses indicate higher har-
monics. The magnetoelastic coupling will then be effective
when distortion modulations are commensurate with spin
energy density oscillations.

Our approach to the full Hamiltonian in Eqs. (5) and (6)
is based on a self-consistent adiabatic procedure to minimize
the energy for a given (classical) dipolar and (quantum) spin
configuration, setting distortions as

δi = 1

K
[Je(β + 3/2)〈σiσi+1 + σi−1σi〉

+ Jmα〈 �Si �Si+1〉 − p0Eβ〈σi〉] (8)

(with a subtraction of their average in order to fulfill a fixed
length constraint). In this way we neglect both quantum and
thermal fluctuations in δi; this approximation is valid in the
low-temperature regime, when the phonon frequency is lower
than the spin-Peierls gap. We have performed an iterative nu-
merical analysis based on the density matrix renormalization

group (DMRG) to solve the magnetic and electric sectors
in the adiabatic equations (8), along the lines stated in [35]
and implemented in a similar context in [32]. We have used
periodic boundary conditions, keeping m = 300 states during
up to more than 100 sweeps in the worst cases, getting
truncation errors lower than O(10−12).

The present model is capable of displaying the ME inter-
play. In particular, when spin-Peierls dimerization occurs at
zero magnetic field and the magnetic subsystem is in a gapped
phase with M = 0, one has 2kF = π and the more relevant
modulation term which is commensurate with the spin energy
density oscillations reads δ(x) = δD cos(πx + qπ ), q = 0, 1.

For E = 0 the electric subsystem is in the antiferroelectric
Ising regime and exhibits a spontaneous polarization Pz

total ≡
1
p0

∑
i pz

i = ∑
i σi(1 − βδi ) = ±Psp where Psp = βδDN . No-

tice that the polarization is extensive and spontaneous, with
δD �= 0 due to the spin-Peierls effect. Moreover, the polariza-
tion has two possible orientations depending on the breaking
of the translational symmetry of the magnetoelastic chain
into Z2 as indicated in Fig. 1(c). This in turn induces a
spontaneous breaking of inversion symmetry along the z axis.
By increasing the magnetic field above the spin gap (h > hc1)
there occurs an incommensurate transition with the excitation
of localized singlets into triplets, which decay into pairs of
solitons. The double degeneracy of dipolar antiferroelectric
configurations has a dramatic effect in the polarization: as
solitons, for E = 0, form a regular array [33] interpolating
between q = 0, 1, Pz

total vanishes identically.
Thus the magnetic transition causes a complete switch-

off of electrical polarization, Pz
total(h > hc1) = 0. This effect

could be observed in inelastic neutron scattering experiments.
The numerical results shown in Fig. 2 illustrate the po-

larization switch-off mechanism: the left panel shows the
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(a) (c)

(a) (d)

FIG. 3. Magnetization curves for E �= 0 (setting Jm = 1, Je = 0.5, and β = 0.2); the insets show the infinite length extrapolation of the
main plateau widths, in order to assess their presence in the thermodynamic limit. A plateau at M = 0 is always present; when E drives the
dipolar system into a quadrumerized phase a second plateau opens at M = 1/2. h±, the lower and upper boundaries of the M = 1/2 plateau,
are marked for later discussion (see Fig. 6).

presence of a magnetization plateau at M = 0 and a critical
magnetic field hc1 to overcome it; the right panels show
the spin and distortion configurations, as well as the dipo-
lar background and the net polarization. For M = 0 the
alternating distortions are in phase (say q = 0) along the
chain, while for Sz = 1, 2 well-defined equidistant solitons
produce regions with q = 0, 1 and a vanishing net polariza-
tion; the analytical expression for the first soliton pair, δi =
±δD tanh( i−i1

ξ
) tanh( i−i1+N/2

ξ
), is indicated with dashed lines

in the right middle panel.
The presence of a finite electric field E < Ec1 penalizes the

region with dipoles and distortions having the same sign [see
Eq. (5)], gluing the soliton-antisoliton pairs and producing a
damping in the polarization switch-off effect (see Fig. 4, upper
right panel).

Higher electric fields Ec1 < E < Ec2 induce dipole flips,
driving the electric subsystem to a ↑↑↑↓ configuration. Being
the distortions a superposition of period two and four har-
monics, the presence of magnetization plateaus at M = 0 and

M = 1/2 is anticipated. We have checked numerically that
this picture remains qualitatively the same when the dipolar
subsystem is coupled with magnetism (α �= 0), with a smooth
renormalization of the phase boundaries in Fig. 1(d). Repre-
sentative magnetization curves exhibiting plateaus, computed
numerically from DMRG, are shown in Fig. 3, for values
of E = 0.2, 0.45 and α = 0.2, 1.0. One observes that the
plateau at M = 0 is always present, while a second plateau
opens at M = 1/2 when E drives the dipolar system into the
quadrumerized phase. The plateau widths are enhanced by
higher magnetoelastic coupling α.

Details on the quantum states at the M = 0 plateau and
their magnetic excitations are shown in Fig. 4. We show
distortion and magnetization profiles for low electric fields,
at Sz = 0 (a) and first magnetized excitation (b). In the latter
the continuous lines indicate the soliton profiles for E = 0,
to be compared with the finite field profiles (dashed lines)
that show the gluing of solitons. This gluing effect is more
pronounced for electric fields in the quadrumerized phase (c),
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(a) (b)

(d)(c)

FIG. 4. Distortion and magnetization profiles at the M = 0 plateau for E �= 0 (Jm = 1, Je = 0.5, α = 1, and β = 0.2, in a N = 60 sites
chain with periodic boundary conditions). The differences in local dipolar profiles are clearly seen for E below or above Ec1 [panels (a) and
(c)]. The soliton-antisoliton pair for the first magnetic excitation is glued together by the electric field [panels (b) and (d)]; blue and green
curves in panel (b) describe the repulsive soliton-antisoliton pair for E = 0, added for comparison.

as seen in panel (d) where distortions are fitted with δi =
(−1)iδD tanh( i−i1

ξ
) tanh( i−i2

ξ
) + δQ cos[π

2 (i − 1)], with i1,2 in-
dicating the soliton positions.

The plateau at M = 1/2 has particular features not present
in the spin-Peierls one at M = 0. On the one hand, the
magnetic wave function is compatible with an ordered direct
product of singlets and spin-up sites, as depicted in Fig. 5.
Magnetic excitations are simply given by magnons, that is,
singlet-triplet transitions that do not decay into solitons (see
Fig. 5, right panels). On the other hand, the quantum state is
topologically nontrivial, as signaled by the even degeneracy
of the entanglement spectrum [36]. This is an indication
that within this M = 1/2 plateau, the system belongs to a
Haldane phase, topologically equivalent to the spin-1 Heisen-
berg model. This is different than the situation in the M = 0
plateau, which is not topologically protected. We will further
explore these points in a forthcoming paper.

The present pantograph model also describes the effects of
an electric field on the system magnetization. Let us analyze
the scenario in which both dimerized and quadrumerized
phases appear as a function of E , e.g., by choosing Je = 0.5,
β = 0.2 [see Fig. 1(d)]. For Ec1 < E < Ec2 the dipolar sector
is quadrumerized and so is the lattice, which forces the
magnetic sector to open a plateau at M = 1/2, as clearly seen
from the numerical results in Fig. 3. Choosing a background
magnetic field h− at the lower boundary of this plateau, the
magnetization will jump from some value M− < 1/2 to M =
1/2 as the electric field crosses Ec1 from below; conversely,
choosing h+ at the upper boundary the magnetization will
jump from some value M+ > 1/2 to M = 1/2. This ME

response is schematically depicted in Fig. 6. Such a control
of magnetization by an electric field is one of the goals of
multiferroic technology developments [26].

Several quasi-one-dimensional materials showing multifer-
roicity have been studied in past years [11,16,24,25]. In most
of these systems, a similar mechanism to the one proposed
here seems to be relevant to describe the origin of the magne-
toelectricity; though the spin ordering in some of them is of
the type ↑↑↓↓ at zero magnetic field, spins may have a strong
Ising anisotropy or take alternating different values along
the relevant chain directions, etc. In order to describe these
observed phenomena, one needs to consider further neighbors
couplings between the neighboring spins and allow for higher
spin SU (2) representations or even consider Ising spins.

In the cases in which the magnetic moments can be treated
as Ising variables, such as Ca3CoMnO6, the ANNNI (axial
or anisotropic next nearest neighbours Ising) model has been
proposed to describe the physics [16]. Even in such cases, the
description of the process of magnetic depolarization must in-
clude excitations and/or quantum fluctuations. In this respect,
our model is expected to provide the correct description of the
transition and could be tested against experiments.

The extended J1-J2 model studied in [37] shows a M = 1/2
plateau with period four symmetry breaking and dissociation
of solitons as one increases or decreases the magnetization
out of the plateau. In experiments done in R2V2O7 (R = Ni,
Co) a similar situation has been observed, together with a
sharp change in P on both sides of the 1/2 plateau [17]. In
spite of these differences, the behavior of the magnetization
and electric polarization in a magnetic field for spin-gapped
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(a) (b)

FIG. 5. Quantum state signatures of the M = 1/2 plateau (parameters as in Fig. 4, E = 0.45; we show again results for 60 sites, zoomed to
visualize clearly the ordered direct product of singlets and spin-up sites). Local magnetization and nearest-neighbor correlations are compatible
with a factorized quantum state of alternating up-up and singlet states. This is depicted graphically by black, red, and blue bonds indicating,
respectively, singlet, weak antiferromagnetic, and ferromagnetic correlations. The lowest-energy spin excitation is a localized triplet; the green
line in panel (b) indicates the local increase in Sz.

phases even at nonzero field (plateau phases) seems to be
ubiquitous in all of the materials listed above.

The present mechanism is readily generalized to higher
dimensions by considering the relevant structural units such
as octahedra in perovskites, double tetrahedra in hexago-
nal manganites, etc. These units containing the magnetic
atoms are arranged, say, in the corners of a square/cubic
lattice and a kind of spin-Peierls mechanism can occur.
Linking again the deformation of the lattice along a given
preferential direction with the height of the basic unit [see
Fig. 1(a)], the magnetoelectric coupling arises in the same
way. Even in the case in which tunneling between double-well
potential minima were not negligible, and electric dipoles
were better described by a transverse Ising model, we ex-
pect our main conclusions to remain valid. Also higher

FIG. 6. Magnetoelectric response to the electric field in the
quadrumerized scenario (schematic). Under appropriate applied
magnetic fields h±, as the electric field produces a polarization jump
[see Fig. 1(d) at Je = 0.5] the magnetization switches from M± to
M = 1/2, the value at the plateau (see Fig. 3).

spin magnetic ions, either classical or quantum, could be
considered.

Recently in [38] multiferroic quantum criticality has been
introduced phenomenologically via a Landau–Ginzburg-like
effective action, with the suggestion that the quantum critical
point could be tuned by varying external strain. It would be
rather interesting to extend our present model to the higher
dimensional quantum case to analyze their results microscop-
ically, since strain plays a crucial role via the pantograph
effect. As a test case, the one-dimensional full quantum
version of the present model should be analyzed (work in
progress).

Though the relation between striction and multiferroicity in
quasi-one-dimensional systems has been discussed in several
works [10,19,20], in most of the cases dipolar moments are
not included as dynamical variables. In the present Rapid
Communication we fill this gap by proposing a more general
mechanism that includes electroelastic couplings via the dis-
tortion dependence of both local dipolar strengths and their
interactions. The full Hamiltonian couples spins and electric
moments via lattice deformations through the proposed pan-
tographlike effect.

We hope that the present pantograph mechanism will shed
light on the understanding of the microscopic origin of ME
coupling in type-II multiferroics.

D.C.C. acknowledges useful discussions with M. Jaime,
M. L. Medarde, M. Müller, and J. White. This work was
partially supported by CONICET (Grants No. PIP 2015-813
and No. PIP 2015-364), Argentina.
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