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Abstract
Bekenstein bounds for the entropy of a body imply a universal

inequality between size, energy, angular momentum and charge. We
prove this inequality in Electromagnetism. We also prove it, for the
particular case of zero angular momentum, in General Relativity. We
further discuss the relation of these inequalities with inequalities be-
tween size, angular momentum and charge recently studied in the
literature.

1 Introduction

A universal bound on the entropy of a macroscopic body has been proposed
by Bekenstein [2]

~c
2πkB

S ≤ ER (1)

where S is the entropy, kB is Boltzmann’s constant, R is the radius of the
smallest sphere that can enclose the body, E is the total energy, ~ is the
reduced Planck constant, and c is the speed of light. Using a similar kind of
heuristic arguments, a generalization of (1) including the electric charge Q
and the angular momentum J of the body has been also proposed [9] [22] [4]

~c
2πkB

S ≤
√

(ER)2 − c2J2 − Q2

2
. (2)
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The original physical arguments used to present these inequalities involve
black holes. However, a remarkable feature of these inequalities is that the
gravitational constant G does not appear in them.

The bound (1) has been extensively studied, see, for example, the review
articles [3], [5], [20] and references therein. However, the generalization (2)
appears to have received much less attention. In particular, since the entropy
S is always non-negative, the bound (2) implies the following inequality in
which the entropy S and the constant ~ are not involved

Q4

4R2
+
c2J2

R2
≤ E2. (3)

Equality in (3) implies, by (2), that the entropy of the body is zero and hence
the system should be in a very particular state. Then, we expect some kind
of rigidity statement for the equality in (3).

The main purpose of this article is to study inequality (3). The only
fundamental constant that appears in (3) is c. Hence, the obvious theory
to test inequality (3) is Electromagnetism. To the best of our knowledge,
such basic study, in full generality, has not been done before. In section 2 we
prove that (3) holds as a consequence of Maxwell equations. This theorem
provides an indirect but highly non-trivial evidence in favor of the bound (2).

In section 3 we first discuss the relation of the inequality (3) with in-
equalities between size, angular momentum and charge recently studied in
General Relativity [8]. Then, we point out that a result of Reiris [16] proves
inequality (3) in spherical symmetry in General Relativity. Finally, we gen-
eralize this result and prove inequality (3), with J = 0, for time-symmetric
initial data.

2 Electromagnetism

To fix the notation, let us write Maxwell’s equations in Gaussian units

∇×B− 1

c

∂E

∂t
=

4π

c
j, ∇ · E = 4πρ, (4)

∇× E +
1

c

∂B

∂t
= 0, ∇ ·B = 0, (5)

where E, B are the electric and magnetic field, and ρ, j are the charge and
current density. These equations are written in terms of inertial coordinates
(t,x) where t is the time coordinate and x are spatial coordinates centered
at an arbitrary point x0.
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R
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Figure 1: The domain U is colored with gray. The radius R is defined as the
radius of the smallest sphere that encloses U . For this particular domain U
the center x0 of that sphere is not in U .

Let U be an arbitrary region in space. The electric charge contained in
U is given by

Q(U) =

∫
U

ρ, (6)

and the energy of the electromagnetic field in U is

E(U) =
1

8π

∫
U

|E|2 + |B|2 . (7)

The angular momentum in the region U in the direction of the unit vector
k with respect to the point x0 is given by

J · k =
1

4πc

∫
U

(x× (E×B)) · k . (8)

Finally, in order to study inequality (3) we need to provide a definition of
the radius R for an arbitrary region U .

Definition 2.1. We define the radius R of the region U as the the radius of
the smallest sphere that encloses U .

Given a domain U , we denote by BR the smallest ball that encloses U
and x0 denote the center of this ball. Note that, in general, x0 is not in U ,
see figure 1. We denote by ∂BR the boundary of BR, that is, the sphere of
radius R centered at x0.

Before dealing with the general case, it is useful to begin with Electro-
statics, which in particular implies J = 0. We will see that the proof for
the dynamical case is based on the proof for the Electrostatics case. Also, in
Electrostatics is simpler to discuss the scope of inequality (3).
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The equations of Electrostatics are given by

∇ · E = 4πρ, ∇× E = 0. (9)

The potential Φ is defined by E = −∇Φ and it satisfies the Poisson
equation

∆Φ = −4πρ. (10)

Using equation (10) and Gauss’s theorem we obtain that the charge can be
written as boundary integral

Q(U) = − 1

4π

∮
∂U

∂nΦ, (11)

where ∂n denote partial derivative along the exterior unit normal vector of
the boundary ∂U . The total Electrostatics energy is given by

E =
1

8π

∫
R3

|E|2. (12)

Theorem 2.2. Assume that the charge density ρ has compact support con-
tained in the region U . In Electrostatics (i.e. we assume equations (9)), the
following inequality holds

Q2 ≤ 2ER, (13)

where Q is the charge contained in U , R is the radius of U defined above
and E is the total electromagnetic energy given by (12). The equality in (13)
holds if and only if the electric field is equal to the electric field produced by
an spherical thin shell of constant surface charge density and radius R. In
particular, this implies that the electric field vanished inside U .

Proof. The system has electric field E (with potential Φ), charge density ρ
with support in U and total charge Q. Let R be the radius of the domain U
defined in 2.1 and BR its corresponding ball centered at x0.

Consider the following auxiliary potential defined by

Φ0 =

{
Q
r

if r ≥ R,
Q
R if r ≤ R, (14)

where r is the radial distance to x0. The potential Φ0 corresponds to the po-
tential of an spherical thin shell of radius R, constant surface charge density
and total charge Q.

Define Φ1 by the difference

Φ1 = Φ− Φ0. (15)
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By construction Φ1 satisfies

∆Φ1 =

{
0 if r > R,
−4πρ if r < R, (16)

and ∮
∂BR

∂rΦ1 = 0. (17)

Equation (17) follows since in the definition of Φ0 we have used the total
charge Q of the potential Φ.

The total energy of the system is given by

E =
1

8π

∫
R3

|∇Φ|2, (18)

=
1

8π

∫
R3

|∇Φ0|2 + |∇Φ1|2 + 2∇Φ0 · ∇Φ1, (19)

where in line (19) we have used the definition (15). To calculate the last
term in (19) we decompose the domain of the integral in R3 \ BR and BR.
We have ∫

BR

∇Φ0 · ∇Φ1 = 0, (20)

since Φ0 is constant in BR. For the other integral we have∫
R3\BR

∇Φ0 · ∇Φ1 =

∫
R3\BR

∇ · (Φ0∇Φ1)− Φ0∆Φ1. (21)

Since ∆Φ1 = 0 on R3 \ BR the second term in the right hand side of (21)
vanishes. The first term can be converted in a boundary integral∫

R3\BR
∇(Φ0∇Φ1) = lim

r→∞

∮
∂Br

Φ0∂rΦ1 −
∮
∂BR

Φ0∂rΦ1. (22)

The first term on the right hand side of equation (22) vanishes by the decay
conditions of Φ0 and Φ1. For the second term we have∮

∂BR

Φ0∂rΦ1 = Φ0

∮
∂BR

∂rΦ1, (23)

= 0. (24)

Where in line (23) we have used that Φ0 is constant on spheres and in line
(24) we have used (17). Hence, we have proved that

E =
1

8π

∫
R3

|∇Φ0|2 + |∇Φ1|2 . (25)
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The first term in (25) can be computed explicitly using (14). It is the binding
energy of an spherical shell of radius R with constant charge surface density
and total charge Q. Then, we finally obtain

E =
Q2

2R +
1

8π

∫
R3

|∇Φ1|2. (26)

This equality proves inequality (13) and also the rigidity statement: if the
equality in (13) holds, then (26) implies ∇Φ1 = 0 and hence E = ∇Φ0.

Note that the equality (26) implies the following estimate for the fields
inside the domain U

E − Q2

2R ≥
1

8π

∫
U

|E|2, (27)

where we have used that in U we have ∇Φ1 = ∇Φ = E.
Let us discuss the scope of inequality (13). The first important observa-

tion is that in inequality (13) the energy E is the total energy of the system,
which in electrostatic is equivalent to the binding energy. That is, E rep-
resents the work needed to assemble the charge configuration from infinity.
Inequality is clearly false if instead of the total energy we use the integral
of the energy density on the domain U given by (7): for example, take the
spherical shell of radius R and constant surface charge density. Then, the
domain U is given by the ball BR, but the integral of the energy density over
BR is zero since the electric field vanishes in BR.

Inequality (13) is not valid if we consider many disconnected regions and
take Q and R to be the corresponding radius and charge of only one region
and E the total energy of the system. The counterexample is the following.
Consider two spherical thin shells of constant surface density with radius R1

and R2 and total charge Q and −Q. The separation between the centers is
L, and we assume that they do not overlap, i.e. L ≥ R1 + R2. The total
energy of this system is given by

E = E1 + E2 −
Q2

L
, (28)

where the self energy of each shell is given by

E1 =
Q2

2R1

, E2 =
Q2

2R2

. (29)

For a simple way to compute the third term in (28) (namely, the interaction
energy) see, for example [21] p. 75. At the contact point L = R1 + R2 we
have

E − E1 =
Q2(R1 −R2)

2R2(R1 +R2)
. (30)
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Take R2 > R1, then if the shells are close enough to the contact point, from
(30) we deduce that

E − E1 < 0. (31)

But then

E < E1 =
Q2

2R1

, (32)

and hence inequality (13) is not valid for the shell R1 if we take in (13) E as
the total energy and Q and R as the charge and radius of the shell.

An alternative and useful way to prove inequality (13) in electrostatic is
the following. By Thomson’s theorem the electrostatic energy of a body of
fixed shape, size and charge is minimized when its charge Q distributes itself
to make the electrostatic potential constant throughout the body (see, for
example, [21] p. 128). That is, the original configuration is replaced by a
conductor with the same total charge and size which has less or equal energy.
For conductors inequality (13) is related with the capacity of the conductor,
defined as follows. Consider a conductor U and define the potential Φ1 by

∆Φ1 = 0 in R3 \ U, (33)

Φ1 = 1 at ∂U, (34)

lim
r→∞

Φ1 = 0. (35)

The capacity of U is given by

C = − 1

4π

∮
∂U

∂nΦ1. (36)

The capacity C satisfies the well-known relation

E =
Q2

2C
, (37)

where E is the total electrostatic energy of the conductor. Then, for a con-
ductor, inequality (13) is equivalent to

C ≤ R. (38)

Since, by Thomson’s theorem conductors minimize the energy, we have proved
that inequality (13) for general configurations reduces to the inequality (38)
for conductors.

To prove (38) we use the variational characterization of C

C =
1

4π
inf

Φ∈K

∫
R3\U
|∇Φ|2, (39)
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where K is the set of all functions Φ that decay at infinity and are equal to
1 at ∂U . Consider the following test function

ΦR =

{
R
r

if r ≥ R,
1 if r ≤ R. (40)

We have that ΦR ∈ K and hence we can use (22) to obtain

C ≤ 1

4π

∫
R3\BR

|∇ΦR|2 = R. (41)

This characterization in terms of the capacity is useful to find interesting
examples and estimates. In particular it allows to prove the following relevant
statement: inequality (13) is not valid if we replace the definition of R by
the area radius, namely

RA =

√
A

4π
, (42)

where A is the area of the boundary ∂U . Note that the area radius RA repre-
sents perhaps the simplest definition of radius that can be directly translated
into curved spaces. The following counterexample shows that even in flat
space RA is not an appropriate measure of size in our context.

Consider a prolate conducting ellipsoid with radius a and b with a > b.
The capacity of this conductor is given by (see [14], p. 22)

C =

√
a2 − b2

cosh−1 a/b
, (43)

and the surface area is given by

A = 2πb2

(
1 +

a

b

sin−1 e

e

)
, e2 = 1− b2

a2
. (44)

We calculate the dimensionless quotient

C

RA

=

√
2
√

a2

b2
− 1(

cosh−1 a
b

)√
1 + a

b
sin−1 e
e

. (45)

Note that C/RA depends only on the dimensionless parameter a/b. We take
the limit a/b→∞

lim
a/b→∞

C

RA

≈ 2√
π

√
a/b

log(a/b)
→∞. (46)
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And hence inequality (38) is not satisfied for RA.
With this example we conclude the study of inequality (13) in Electro-

statics. From now on, we will deal with the full Maxwell’s equations (4)–(5).
As a preliminary step, we prove inequality (3) with Q = 0 and J 6= 0. This
particular case will also be used in the general proof of inequality (3).

Theorem 2.3. Consider a solution of Maxwell’s equations (4)–(5) in the
domain U . Let R be the radius of U defined in 2.1 and let x0 be the center
of the corresponding sphere. Then the following inequality holds

c|J(U)| ≤ RE(U), (47)

where J(U) is the angular momentum of the electromagnetic field given by
(8) with respect to the point x0. Moreover, the equality in (47) holds if and
only if the electromagnetic field vanishes in U .

Note that inequality (47) is purely quasilocal, in contrast with the pre-
vious inequality (13): in (47) there appears only quantities defined on the
domain U and not global quantities like the total energy E . Of course, since
E ≥ E(U), inequality (47) implies the global inequality

c|J(U)| ≤ RE . (48)

Moreover, theorem 2.3 implies also a rigidity statement for the inequality
(48): equality holds if and only if the electromagnetic field vanishes every-
where.

Proof. We estimate the difference

E(U)− c

R|J(U)| = 1

8π

∫
U

|E|2 + |B|2 − 1

4πR

∣∣∣∣∫
U

(x× (E×B)) · k
∣∣∣∣ , (49)

≥ 1

8π

∫
U

|E|2 + |B|2 − 2

R|(x× (E×B)) · k|. (50)

The integrand of the angular momentum (i.e. the angular momentum den-
sity) satisfies the elementary inequality

|(x× (E×B)) · k| ≤ |(x× (E×B))||k|, (51)

= |(x× (E×B))|, (52)

≤ |x||E||B|, (53)

where in line (51) we used the inequality |a ·b| ≤ |a||b|, in line (52) we used
that k is an unit vector and in line (53) we used the inequality |a×b| ≤ |a||b|.
Using this inequality, we obtain

|E|2 + |B|2 − 2

R|(x× (E×B)) · k| ≥ |E|2 + |B|2 − 2
|x|
R |E||B|. (54)
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We write the right hand side of the inequality as follows

|E|2 + |B|2 − 2
|x|
R |E||B| = (55)

= |E|2 + |B|2 − |x|R
(
|E|2 + |B|2

)
+
|x|
R
(
|E|2 + |B|2

)
− 2
|x|
R |E||B|, (56)

=

(
1− |x|R

)(
|E|2 + |B|2

)
+
|x|
R (|E| − |B|)2 , (57)

≥
(

1− |x|R

)(
|E|2 + |B|2

)
. (58)

Collecting these inequalities we arrive to our final result

E(U)− c

R|J(U)| ≥ 1

8π

∫
U

(
1− |x|R

)(
|E|2 + |B|2

)
. (59)

By the definition of R we have |x| ≤ R on U , and hence the integrand
on the right hand side of inequality (59) is non-negative. This proves (47).
Moreover, inequality (59) also proves the rigidity statement: if equality holds,
then the integrand on the right hand side of inequality (59) should vanish.
Then, for every x ∈ U that is not on the sphere ∂BR we have that both E
and B are zero. By continuity, the fields are also zero on the points on the
sphere ∂BR

The proof of inequality (47) (but not the rigidity statement) can be di-
rectly generalized to any classical field theory. It is a direct consequence of
the dominant energy condition1. Let Tµν be the electromagnetic energy mo-
mentum tensor of the theory. The indices µ, ν, · · · are 4-dimensional and we
are using signature (−+ ++). For example, for electromagnetism we have

Tµν =
1

4π

(
FµλFν

λ − 1

4
gµνFλγF

λγ

)
, (60)

where Fµν is the (antisymmetric) electromagnetic field tensor that satisfies
Maxwell’s equations. Consider a spacelike surface U with normal tµ. The
energy is given by

E =

∫
U

Tµνt
µtν . (61)

Let ηµ be a Killing vector field that corresponds to space rotations. The
angular momentum corresponding to the rotation ηµ is given by

J(U) =
1

c

∫
U

Tµνt
µην . (62)

1I thank to G. Dotti for providing me this argument.
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Choosing coordinates such that xi are spacelike Cartesian coordinates on the
surface U and tµ = (1, 0, 0, 0), then the space rotations are characterized by

ηi = εijkk
jxk, (63)

where k is an arbitrary constant spacelike unit vector that represent the axis
of rotation and the indices i, j, k . . . are 3-dimensional. For the case of the
electromagnetism, it is easy to check, using (60), that the definition (62)
coincides with (8).

Assume that Tµν satisfies the dominant energy condition, namely

Tµνξ
µkν ≥ 0, (64)

for all future directed timelike or null vectors kµ and ξµ.
Denote by η the square norm of ηi, that is η = ηiηi = ηµηµ and define

the unit vector η̂µ = ηµη−1/2. Then, the vector

kµ = tµ − η̂µ, (65)

is null future directed (since tµηµ = 0 ). Choosing ξµ = tµ and kµ given by
(65), from (4) we obtain

Tµνt
µtν ≥ Tµνt

µη̂ν . (66)

Since η is the square of the distance to the axis, we have that

η ≤ R2, (67)

where R is the radius a the ball that encloses U . Hence we deduce

J(U) =
1

c

∫
U

Tµνt
µην =

1

c

∫
U

Tµνt
µη1/2η̂ν , (68)

≤ R
c

∫
U

Tµνt
µη̂ν , (69)

≤ R
c

∫
U

Tµνt
µtν , (70)

=
RE(U)

c
. (71)

Hence, we have proved inequality (47) for a general energy momentum tensor
that satisfies the dominant energy condition (64). Note, however, that we
have not proved the rigidity statement as in theorem 2.3.

Finally, we prove inequality (3) for Electromagnetism in full generality.
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Theorem 2.4. Assume that ρ(x, t0), for some t0, has compact support con-
tained in U . Consider a solution of Maxwell’s equations (4)–(5) that decay
at infinity. Then the following inequality holds at t0

c|J(U)|
R +

Q2

2R ≤ E . (72)

In particular, inequality (72) implies

Q4

4R2
+
c2|J(U)|2
R2

≤ E2. (73)

Moreover, if the equality in (72) holds, then the electromagnetic field is that
produced by a electrostatic spherical thin shell of radius R and charge Q. For
that case, the magnetic field vanished everywhere and hence J = 0.

Proof. Consider the Coulomb gauge2

B = ∇×A, E = −∇Φ− ∂A

∂t
, (74)

where the potential A satisfies the Coulomb gauge condition

∇ ·A = 0. (75)

In this gauge, the total energy can be written in the following form

E =
1

8π

∫
R3

|E|2 + |B|2, (76)

=
1

8π

∫
R3

|∇Φ|2 + 2∇Φ · ∂A

∂t
+

∣∣∣∣∂A

∂t

∣∣∣∣2 + |B|2, (77)

where in line (77) we have used the expression (74) for the electric field in
terms of the potential A. For the second term in the integrand of (77) we
use the identity

∇Φ · ∂A

∂t
= ∇ ·

(
Φ
∂A

∂t

)
− Φ

∂∇ ·A
∂t

, (78)

= ∇ ·
(

Φ
∂A

∂t

)
, (79)

where in line (79) we have used the Coulomb gauge condition (75). Using
the asymptotic falloff conditions for Φ and A and Gauss theorem, from (79)
we obtain ∫

R3

∇Φ · ∂A

∂t
= 0. (80)

2I thank O. Reula for suggesting the idea of using the Coulomb gauge.
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Then, we have the following expression for the total energy

E =
1

8π

∫
R3

|∇Φ|2 +

∣∣∣∣∂A

∂t

∣∣∣∣2 + |B|2. (81)

The potential Φ(x, t) satisfies the Poisson equation

∆Φ(x, t) = −4πρ(x, t), (82)

for all t. At a fixed t, we can perform the same decomposition (15) for the
potential Φ(x, t) used in theorem 2.2. Then, using equation (26), we obtain

E =
Q2

2R +
1

8π

∫
R3

|∇Φ1|2 +

∣∣∣∣∂A

∂t

∣∣∣∣2 + |B|2, (83)

where Φ1 is defined by (15) and (14). By the same integration by parts
argument used to deduce (80) we obtain that∫

R3

∇Φ1 ·
∂A

∂t
= 0. (84)

Hence, we can write the energy (83) in the following way

E =
Q2

2R +
1

8π

∫
R3

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 + |B|2. (85)

We decompose the integral in (85) over the domains R3 \ U and U and we
use the following simple but important identity∫

R3

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 =

∫
R3\U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 +

∫
U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 , (86)

=

∫
R3\U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 +

∫
U

∣∣∣∣∇Φ +
∂A

∂t

∣∣∣∣2 , (87)

=

∫
R3\U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 +

∫
U

|E|2, (88)

where in line (87) we have used that ∇Φ1 = ∇Φ in U since Φ0 is constant in
U . And in line (88) we have used the expression for the electric field in the
Coulomb gauge (74). Then we obtain the following expression for the energy
E

E =
Q2

2R + E(U) +
1

8π

∫
R3\U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 + |B|2, (89)
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where E(U) is the electromagnetic energy density integrated over the domain
U , namely

E(U) =
1

8π

∫
U

|E|2 + |B|2. (90)

We use theorem 2.3 to bound E(U) (i.e. the estimate (59)) and we finally
have

E−Q
2

2R−
c|J(U)|
R ≥ 1

8π

(∫
R3\U

∣∣∣∣∇Φ1 +
∂A

∂t

∣∣∣∣2 + |B|2 +

∫
U

(
1− |x|R

)(
|E|2 + |B|2

))
.

(91)
Since the left hand side of (91) is non-negative we have proved the inequality
(72). Inequality (91) implies also the rigidity statement. Assume the equality
in (72), then the integrand on the right hand side of (91) should vanish. This
implies that B = 0 everywhere, and hence the potential A is a gradient.
Using equation (75) and the falloff condition for A we deduce that A = 0.
Then, using again (91) we obtain that ∇Φ1 = 0 and hence the statement is
proved.

Taking the square of inequality (72), we obtain

c|J |Q2

R +
Q4

4R2
+
c2J2

R2
≤ E2, (92)

which, in particular, implies inequality (73).

3 General Relativity

In this section we study inequality (3) in General Relativity. In section 3.1
we discuss a remarkably relation between this inequality and inequalities
between size, charge and angular momentum. In section 3.2 we present a
proof of inequality (3), with J = 0, for time-symmetric initial conditions.

3.1 Inequalities between size, charge and angular mo-
mentum

For a black hole the entropy is given by the horizon area A

Sbh =
kBc

3

4G~
A. (93)

Inequality (2) is constructed in such a way that for a Kerr-Newman black
hole, using the formula (93), we get an equality. Moreover, Szabados [18]
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observed that for dynamical black holes this inequality is also expected to
hold. It is the generalization of the Penrose inequality including charge and
angular momentum (see the review article [15] and [7] [6] and the discussion
therein)

For ordinary bodies, inequality (3) is closely related to inequalities be-
tween size, angular momentum and charge recently studied in [8]. To show
this relation we argue as follows. The Hoop conjecture essentially says that
if matter is enclosed in a sufficiently small region, then the system should
collapse to a black hole [19]. Then if the body is not a black hole we expect
an inequality of the form

G

c4
E ≤ kR, (94)

where k is an universal dimensionless constant of order one. The exact value
of k will depend on the precise formulation of the Hoop conjecture and this
is not important in what follows.

Using (94) to bound E in (3) we obtain

Q4

4
+ c2J2 ≤ k2 c

8

G2
R4. (95)

Note that the constant G appears in (95). That is, inequality (95) involves
two fundamental constants (c and G), in contrast to (3) that involves only
one (c). On the other hand inequality (95) involves fewer physical quantities
(charge, angular momentum and size) than inequality (3) (charge, angular
momentum, size and energy).

The bound (95) implies

G

c3
|J | ≤ kR2. (96)

Inequality (96) was conjectured in [8] using different kind of arguments as
those leading to (3). With an appropriate definition of size, a version of this
inequality was proved for constant density bodies in [8]. Recently Khuri [12]
has proved it in the general case, using the same measure of size as in [8].
However, these inequalities are not expected to be sharp. We will came back
to this point bellow.

Also from (95) we get the inequality

|Q| ≤ (2k)1/2 c2

G1/2
R. (97)

This inequality can be also deduced using similar arguments as in [8] and it
was studied for some particular examples in [17]. Recently Khuri [13] has
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proved a general version of inequality (97) using a similar (but not identical)
measure of size as the one used in inequality (96). As in the case of angular
momentum, this result is not expected to be sharp.

The relation between the Bekenstein bounds and inequalities (96) and
(97) provides two important new insights. The first one is the following. We
pointed out that in that inequality (96) was conjectured in [8] using heuristic
physical arguments and also the inequality (97) can be deduced using similar
kind of arguments. However, with these arguments inequalities (96) and (97)
are deduced individually. These kind of arguments do not seem to provide
a way of deducing the complete inequality (95), which is obtained here for
first time using the Bekenstein bounds. Moreover, the arguments presented
above suggest that there is only one universal constant k to be fixed. This
constant can be fixed analyzing a simple limit case, for example spherical
symmetry, with J = 0. We are currently working on this problem [1].

The second, and perhaps most important point concerns the rigidity of
the inequality (95). The arguments presented in [8] do not give any insight
about what happens when equality is reached in (95). The Bekenstein bounds
provide such statement. Let assume that the equality is reached in (95). Since
we have assumed that it is not a black hole we can use the Hoop conjecture
inequality (94) to obtain

Q4

4
+ c2J2 = k2 c

8

G2
R4 ≥ E2. (98)

But then we can use inequality (3) to conclude that if the equality is reached
in (95) then the equality should also hold in (3). By the Bekenstein bound (2),
this implies that the entropy of the body is zero. Hence we have the following
rigidity statement for inequality (95): the equality is achieved if and only the
entropy of the body is zero. In General Relativity, this statement appears to
imply that in fact the equality is achieved if and only if the spacetime is flat.
We will further discuss this point in the next section.

3.2 Proof of the inequality between charge, energy and
size for time-symmetric initial data

In General Relativity, the inequality (95) was proved in spherical symmetry
(in a different context) by Reiris [16]. In the following we generalize this
result to time-symmetric initial data.

The most important difficulty to study these kind of inequalities in curved
spaces is how to define the measure of size R. We propose a new measure
of size which is tailored to the proof of theorem 3.2. This measure of size
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represents a natural generalization to curved spaces of the definition 2.1 used
in section 2.

The definition of size and the proof of the theorem is based on the in-
verse mean curvature flow (IMCF). A family of 2-surfaces on a Riemannian
manifold evolves under the IMCF if the outward normal speed at which a
point on the surface moves is given by the reciprocal of the mean curvature
of the surface. For the precise definition and properties of the IMCF we refer
to [10]. The IMCF has played a key role in the proof of the Riemannian
Penrose inequality [10].

Using the IMCF we define the following radius R of a region U in a
Riemannian manifold

Definition 3.1. Consider a region U on a complete, asymptotically flat,
Riemannian manifold. Take a point x0 on the manifold and consider the
inverse mean curvature flow starting at this point. Consider the area of the
first 2-surface on the flow that encloses the region U , and define Rx0 to be
the area radius of this surface. The radius R of the region U is defined as
the infimum of Rx0 over all points x0 on the manifold.

In figure 2 we draw an schematic picture of the flow starting at a typical
point x0. In flat space, the IMCF starting at a point develop spheres, and
hence the definition 3.1 coincides with the definition 2.1 presented in the
previous section. However, we emphasize that this definition is very different
as the one used in [8] [12] [13].

The radiusR defined above certainly involves sophisticated mathematics,
however it is important to recall that it can be explicitly estimated numeri-
cally for arbitrary curved backgrounds.

It is important to recall that, in general, the flow will develop singular-
ities. These singular behaviour can be treated using the weak formulation
discovered in [10]. In what follows, for simplicity of the presentation, we will
assume that the flow is smooth, however all the arguments are also valid in
the weak formulation.

We have the following result.

Theorem 3.2. Consider an asymptotically flat, complete, time-symmetric
initial for Einstein’s equations that satisfy the dominant energy condition
and with no minimal surfaces. Assume that there is a region U outside of
which the data are electrovacuum. Then we have

Q2 ≤ 2ER, (99)

where E is the ADM mass, Q is the charge contained in U and R is the
radius of U defined above. Moreover, if the equality in (99) holds, then the
data is flat inside the region U .
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Figure 2: Schematic drawing of the inverse mean curvature flow from a typical
point. The last surface is defined as the first one that enclosed the domain
U .

Proof. The proof is inspired in Reiris’s proof [16] and it is a simple conse-
quence of the results presented in [11] and [10].

The crucial property of the IMCF is the Geroch monotonicity of the
Hawking energy. The Hawking energy of a closed 2-surface S is given by

EH(S) =

√
A

16π

(
1− 1

16π

∫
S
H2

)
, (100)

where H is the mean curvature of the surface and A its area. The Geroch
monotonicity can be written in the following form. Assume that the flow
runs between a surface Sr and a surface Ss, with r < s, then we have

EH(Ss) ≥ EH(Sr) +
1

(16π)3/2

∫ s

r

(At)
1/2

∫
St
Rdt, (101)

where R is the scalar curvature. Note that the dominant energy condition
for time-symmetric data implies that R ≥ 0. We will use inequality (101) in
two steps.

First, consider an arbitrary point x0 and run the IMCF from x0. Since
the data satisfy the dominant energy condition, an small sphere around x0

has non-negative Hawking mass. Moreover, the assumption that there are
no minimal surfaces on the data guarantees that the flow runs up to infinity
(even in the presence of singularities, see [10]). Then, using (101) we conclude
that any level set of the flow has non-negative Hawking energy. In particular,
the surface Sx0 that encloses the region U used in the definition 3.1, that is

EH(Sx0) ≥ 0. (102)

Denote by Ax0 the area of Sx0 and the area radius is given by Rx0 =√
Ax0/4π.
In the second step, we continue the flow from the surface Sx0 to infinity.

Following [11], we bound the integral of the scalar curvature in terms of the
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charge
1

(16π)3/2

∫ ∞
x0

(At)
1/2

∫
St
Rdt ≥ Q2

2Rx0

, (103)

where we have used that the charge is conserved outside Sx0 , since by con-
struction Sx0 encloses the region U and by assumption the support of the
charge density is contained in U . Using (103) and (101) we obtain

E − Q2

2Rx0

≥ EH(Sx0). (104)

Using (102) we finally get

E − Q2

2Rx0

≥ 0. (105)

In particular this inequality applies to the radiusR and hence inequality (99)
follows.

If the equality holds in (104), then we have EH(Sx0) = 0 and hence we
can use the same rigidity argument as in [10] to conclude that inside Sx0 the
data are flat.

We have obtained a similar kind of estimate as in the electromagnetic
case (27) in which EH(S0) is interpreted as the quasilocal energy inside S0.

Comparing theorem 3.2 with theorem 2.4 in Electromagnetism, we see
that there is no rigidity statement outside the region U in theorem 3.2. The
natural question is whether a similar statement as in theorem 2.4 holds,
namely, the equality implies that the field is produced by a charged thin shell.
However, it is likely that the charged thin shell in General Relativity never
saturate the inequality (in contrast with Electromagnetism). The reason is
that the rest energy of the shell is now taken into account. Hence, a stronger
rigidity statement is expected for theorem 3.2: the equality holds if and only
if the complete data are flat. We are currently working on this problem [1].

It will interesting to include angular momentum in theorem 3.2. However,
this appears to be a difficult problem. In particular it is not clear how to
include angular momentum in the inequality using the IMCF.

4 Acknowledgements

This work was inspired by a talk of Horacio Casini, in the conference Strings@ar,
La Plata, Argentina, November 2014. This work was supported by grant PIP
of CONICET (Argentina) and grant Secyt-UNC (Argentina).

19



References

[1] P. Anglada, S. Dain, and O. E. Ortiz. The inequality between size and
charge in spherical symmetry, 2014. in preparation.

[2] J. D. Bekenstein. A Universal Upper Bound on the Entropy to Energy
Ratio for Bounded Systems. Phys.Rev., D23:287, 1981.

[3] J. D. Bekenstein. How does the entropy / information bound work?
Found.Phys., 35:1805–1823, 2005, quant-ph/0404042.

[4] J. D. Bekenstein and A. E. Mayo. Black hole polarization and new
entropy bounds. Phys.Rev., D61:024022, 2000, gr-qc/9903002.

[5] R. Bousso. The Holographic principle. Rev.Mod.Phys., 74:825–874, 2002,
hep-th/0203101.

[6] S. Dain. Geometric inequalities for axially symmetric black holes. Clas-
sical and Quantum Gravity, 29(7):073001, 2012, 1111.3615.

[7] S. Dain. Geometric inequalities for black holes. General Relativity and
Gravitation, 46(5):1–23, 2014, 1401.8166.

[8] S. Dain. Inequality between size and angular momentum for bodies.
Phys. Rev. Lett., 112:041101, Jan 2014, 1305.6645.

[9] S. Hod. Universal entropy bound for rotating systems. Phys.Rev.,
D61:024018, 2000.

[10] G. Huisken and T. Ilmanen. The inverse mean curvature flow and the
Riemannian Penrose inequality. J. Differential Geometry, 59:352–437,
2001.

[11] P. S. Jang. Note on cosmic censorship. Phys. Rev. D, 20(4):834–837,
1979.

[12] M. A. Khuri. Existence of Black Holes Due to Concentration of Angular
Momentum, 2015, 1503.06166.

[13] M. A. Khuri. Inequalities Between Size and Charge for Bodies and
the Existence of Black Holes Due to Concentration of Charge, 2015,
1505.04516.

[14] L. Landau and E. Lifshits. Electrodynamics of continuous media:. Perg-
amon international library of science, technology, engineering, and social
studies. Pergamon, 1984.

20

http://arxiv.org/abs/quant-ph/0404042
http://arxiv.org/abs/gr-qc/9903002
http://arxiv.org/abs/hep-th/0203101


[15] M. Mars. Present status of the Penrose inequality. Class. Quant. Grav.,
26:193001, 2009, 0906.5566.

[16] M. Reiris. On the shape of bodies in General Relativistic regimes.
Gen.Rel.Grav., 46:1777, 2014, 1406.6938.

[17] M. Rubio. Desigualdad entre carga y tamaño en Relatividad General.
Master’s thesis, FaMAF, Universidad Nacional de Córdoba, 2014.
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