SAN2021 EBOOK

EXECUTIVE BOARD

DR. LILIANA CANCELA, PRESIDENT IFEC (UNC-CONICET) / DF (FCQ-UNC)

DR. MARTA ANTONELLI, VICE-PRESIDENT IBCN-CONICET, FMED UBA

DR. MARIO GUIDO, PAST-PRESIDENT CIQUIBIC (FCQ, UNC-CONICET)

DR. MARÍA ANA CONTÍN, SECRETARY CIQUIBIC (FCQ, UNC-CONICET)

DR. JUAN E. FERRARIO, TREASURER IB3 (UBA), CONICET / DFBMC (FCEN-UBA)

DR. MARCELA BROCCO, VOCAL INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS (IIB-UNSAM)

DR. PATRICIA SETTON, VOCAL IQUIFIB (UBA-CONICET) / FFYB UNIVERSIDAD DE BUENOS AIRES.

DR. NICOLÁS UNSAÍN, VOCAL INIMEC (UNC-CONICET)

ORGANIZING COMMITTEE

JORGE MARIO ANDREAU IBYME - FAC DE PSICOLOGIA, UNSAL - INVESTIGADOR

MARTA ANTONELLI FAC DE MEDICINA - UBA VICEPRESIDENTA SAN

LILIANA CANCELA IFEC, UNC. PRESIDENTA SAN - COORDINADORA

CAMILA COLL IFIBIO. DOCTORANDA

MACARENA FERNANDEZ IIPSI-CONICET-UN. POST-DOC

GRACIELA LUJAN MAZZONE UNIVERSIDAD AUSTRAL. INVESTIGADORA

DIEGO RAYES INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS DE BAHÍA BLANCA (INIBIBB). INVESTIGADOR

PATRICIA SETTON FFYB, UBA. VOCAL SAN

ALEJANDRO SODERO BIOMED, UCA. INVESTIGADOR

AGOSTINA STAHL IFIBIO. DOCTORANDA

CELLULAR AND MOLECULAR NEUROBIOLOGY

The ketone body β-hydroxybutyrate (βHB) rescues behavioral defects in DAF-18/PTEN mutants of C. elegans

Sebastián Giunti¹, María José De Rosa¹, Diego Rayes¹

1. Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), 2. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur

Presenting Author: Sebastián Giunti, sebagiunti@gmail.com

Mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of the Akt/PKB pathway, are associated with neurodevelopmental disorders (NDDs). In recent years, ketogenic diets (KGDs) have been shown to have beneficial behavioral effects in animal models of NDDs. Ketogenic diets trigger a metabolic shift by forcing the production of ketone bodies (KBs) to generate ATP. The mechanisms underlying the beneficial effects of KGDs on NDDs are unknown. Here we used daf-18/PTEN mutants of C. elegans to gain molecular and cellular insights into the effects of KGDs on neurodevelopment. We find that these mutants are defective in exerting a complex behavior such as the escape response. These behavioral defects improve in animals cultured in the presence of KB β -hydroxybutyrate (β HB). Surprisingly, exposure to β HB at early stages is sufficient to achieve this improvement throughout adulthood, suggesting that β HB is necessary at a critical stage of development. We have also found that the effect of β HB is abolished in daf-16/FOXO mutants, revealing a key role for this transcription factor. Finally, we observed morphological defects in GABAergic motor neurons in daf-18 mutants. We are exploring whether exposure to β HB can amend these abnormalities. Given the high level of conservation of the pathways involved (PTEN/AKT/FOXO) across the animal kingdom, this work could contribute to better understand NDDs and establishing potential therapeutic options in mammals.