
  
 

  
Abstract— An animat approach to dynamic team formation in a 
group of distributed robots is studied.  The goal is that robots 
learn to align with the others in order to form a row or a column 
without having communication among them, just local sensing 
and a reinforcement signal.  The action of the robot is controlled 
by a biologically plausible neural network model of operant 
learning. The remarkable performance achieved by the 
proposed model allows the building of new Artificial Intelligence 
agents based on neurobiology, psychology and ethology 
research. 
 

Index Terms—Operant behavior, Multiagent System, Neural 
Networks, Reinforcement Learning 

I. INTRODUCTION 

In the last few years, multiagent systems engaged in 
collective behavior have been of growing interest among 
Artificial Intelligence researchers[1][2][3][4]. This interest 
comes from several reasons[5]. First, tasks may be too 
complex to be accomplished by a single robot, or a better 
performance can be obtained by performing the same tasks 
with multiple robots. Second, constructing a group of simple 
robots can be easier, more flexible, more fault-tolerant and it 
might have economical benefits compared to using a single 
powerful robot. Third, even though there are many definitions 
of cooperation in the robotics literature[6][7][8] there is a 
general agreement that given a specific task, a multiagent 
system performing cooperative behavior involves an increase 
in the total utility of the system by an underlying cooperation 
mechanism[5]. Last, animals’ adaptation and social 
interaction skills can be borrowed from natural sciences by 
building autonomous robots inspired by biology, ethology, 
psychology and neurobiology research.  

In this work, we have studied the problem of achieving 
global behavior in a group of simulated agents with only local 
sensing and a reinforcement signal. The global goal is to 
establish and maintain a specific geometrical shape ( a row or 
a column). Additionally, each robot receives a reinforcement 
signal depending only on its individual action, and not on 
specific global situations. Thus, the proposed algorithm 
allows the accomplishment of the task, learning by trial-and-
error and without having a centralized control or explicit 
communication. Moreover, as in Mataric proposal[9], there 
are no leaders and agents are not specifically designed to 

cooperate, instead cooperation is implicit by the design of the 
task and the reinforcement signals.  

Even though, the fact that there have been a variety of 
approaches to create global behavior in multiagent 
systems[1][10][11][12], little research has been made to 
incorporate biologically inspired models of animal learning to 
solve coordination tasks in mobile robots. We studied how a 
model that learns to associate stimuli and rewards can learn to 
achieve global-level formation coordination without 
communicating or having global knowledge of the other 
robots’ position. 

Algorithms proposed to solve coordination problems are 
not usually restricted by biological constraints. Touretzky and 
Saksida[13] said that mobile robots trained by methods such 
as Q-Learning[14][15] have not come close to matching the 
sophistication, versatility and adaptation of the animals. They 
suggest that closer attention be paid to animal training 
literature and a serious attempt to model the effects described 
there may yield benefits of immediate value to robot learning 
researchers, and also provide a new computationally oriented 
perspective on animal learning. 

On the other hand, simple artificial animals (‘animats’), 
which operate as autonomous, adaptive robots in the real-
world, can serve both as models of biology behavior and as a 
radical alternative to conventional methods of designing 
intelligent systems[16]. McFarland and Bösser [17] pointed 
out that it has been recently realized, that robots might better 
be designed along the zoological lines of primitive animals 
than along the traditional lines of autocratic control.  
Dean[18] said that the anim at approach is the most recent 
attempt to simulate the adaptive behavior characteristic of 
animals as well as the acquisition of this competence. 
Moreover, he suggested that both in analysis and design, the 
animat approach borrows heavily from ethology, psychology, 
neurobiology and evolutionary biology. 
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Animat studies can also provide models of emergent behavior 
in biological systems[19], also Dean[18] pointed out that: 
“for AI and robotics researchers, understanding the 
mechanisms behind adaptive behavior is secondary to 
creating them, but natural scientists can hope for tools and 
concepts to aid understanding of biological systems”. It is 
clear that if we knew how animals control their behavior this 
might provide us new ideas about how to make robots do it. 

We studied the ability of the model of operant behavior 
presented in [20][21] to learn how to make formations with 
only local information. The hypothesis of this adaptive neural 
network model of aversive and appetitive behavior comes 
from theories of behavior, experimental results in animals 
and neurobiological evidence. Although the investigation in 
adaptive neuronal networks is not a new area, most of it has 
been used to explain behavior experiments in animals and 
they have not been used to control autonomous robots. 

The model of operant learning has not been designed 
specifically to solve this task. It was originally proposed as a 
theory of operant learning to explain formally most of the 
relevant psychological experiments of appetitive and aversive 
stimulus in animals. In this way, the purpose of this paper is 
to approach some autonomous robot problems from models 
inspired in psychology, biology and neuroscience. Moreover, 
we have shown that this operant learning model is able to 
learn how to cooperate in the Prisoner Dilemma game [22], 
and it outperforms Q-Learning in an obstacle avoidance task 
[23]. These results suggested us that the same model could be 
able to learn how to cooperate in simple multiagent formation 
task. 

I. OPERANT CONDITIONING 

Psychologists have identified classical and operant 
conditioning as two primary forms of learning that enable 
animals to acquire relevant characteristics of their 
environment in order to get reinforcements or to avoid 
punishments. Classical conditioning is an open-loop 
experiment procedure where the controlled stimuli delivered 
by the experimenter are not contingent on the animal’s 
behavior. The learning occurs by repeated association of a 
conditioned stimulus (CS) with an unconditioned stimulus 
(US) that elicits an unconditioned response (UCR). For 
example, in Pavlov’s experiment [24], the dog hears a bell 
(the CS) and after a short time, a piece of meat is presented 
(US) that elicits a salivation UCR. After repeating the 
experiment several times, the sole presentation of the CS 
elicits the salivation response (conditioned response or CR). 

On the other hand, operant conditioning is a closed-loop 
experiment procedure, in the sense that stimuli received by 
the animal are contingent on its behavior. The animal learns 
to perform the actions that led to reward and to avoid the 
actions to the ones that led to punishment. For example, a rat 
can be trained to press a key when he sees a red light as CS, 
in order to receive a food reward (US). 

II. MODEL OF OPERANT CONDITIONING 

Zanutto and Lew[20][21] presented a neural network 

model that, based on biological plausible hypotheses, 
explains the relevant features of operant conditioning for 
appetitive and aversive stimuli[25][26] (for further details 
about the model, its psychological, neurobiological and 
anatomical bases, see [20][21][25]). 

Behavioral experiments suggest that learning is driven by 
changes in the expectation about the future salient events, 
mainly reward and punishment. In operant and classical 
conditioning, the conditioned stimulus (CS) anticipates the 
unconditioned stimulus (US). Rescorla and Wagner[27] 
proposed that animals learn comparing what they expect from 
a given situation and what actually happens. As Staddon[28] 
has pointed out, animals act as the CS allows them to 
elaborate an expectation or prediction of the unconditioned 
stimulus. Furthermore, there are neural substrates of 
prediction and reward, such as the involvement of dopamine 
neurons of the ventral tegmental area (VTA) and sustantia 
nigra, identified with the processing of prediction and reward 
[29].  

The model is shown in Fig. 1. The inputs to the model are: 
all the conditioned stimuli (CSs), the unconditioned stimulus 
(US) and the outputs are all the possible responses of the 
animal (Rs). The network has three basic functional blocks. 
The stimuli and response traces, the prediction neuron, and 
the response neurons.  

 
Fig. 1. The Neural network model of operant learning. There is an artificial 
neuron computing the prediction (P), and one for each response R[j]. VC: 
visual cortex; AC: auditory cortex; OC: olfatory cortex; GC: gustatory 
cortex; LS: limbic system; PFC: prefrontal cortex; PMC: premotor cortex; 
PRIMC: primary motor cortex; MDS: mesocortical dopaminergic system; 
VTA: ventral tegmental area. The traces (TCS[i]) representing the short-term 
memory of the conditioned stimuli are computed in the PFC-M[30], the 
unconditioned stimulus (TUS), and the responses (TR[j]) are inputs of the 
neurons computing P and R[j]. The synaptic weights V[CS[i]], V[R[j]] and 
V[US] represent the associations between the inputs and P. The synaptic 
weights W[R[j],TS], are associations between P, TCS[i] and TUS, and the 
PFC-L[31]. 

 
In the model, the prediction neuron has all the stimuli and 

the responses traces as inputs. The synaptic weights are 
modified by the Rescorla-Wagner rule, except the US that 
remains fixed. The response neurons have all the CS and US 
traces and the prediction as inputs. If it exceeds a certain 
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threshold, the learning in the responses will be hebbian[32] in 
the appetitive, and antihebbian in the aversive case. The 
reverse if the prediction is under the threshold. When one of 
the response neurons exceeds a certain level, the associated 
response is executed. The model equations are provided in 
the appendix.  

III. IMPLEMENTATION 

We developed an application to simulate an environment 
where a group of homogenous robots move freely, and 
receive rewards depending on specific local conditions. The 
environment is a grid of 5 by 5 and no agent can occupy the 
same cell. Each of the five robots has five different signals as 
inputs: North, South, East, West and “Double Union”.  The 
first four indicate the direction that has more number of 
robots. The signal “Double Union” is received when an agent 
has in the same line two other agents, one on each side of it, 
or when it is besides a wall and another agent is adjacent to it 
(see Fig. 2). Robots have five possible actions, to move in 
either direction or to reaffirm the “Double Union”, that is, to 
remain in the same position. In each time step robots decide 
to take an action depending on the allowed moves, (i.e. they 
cannot move to an occupied cell, and the action “Double 
Union” can be executed only if its signal is presented). 
Agents always have to move, except when they are blocked, 
or when they have the possibility of taking the “Double 
Union” action. 

 

 
Fig. 2. The signal “Double Union” is presented to the robot 1 when it has two 
other robots adjacent to it, or when it is adjacent to a wall and to another 
robot. If in this situation robot 1 takes the action to reaffirm the “Double 
Union”, it will receive a reward, and stay in the same position. 

 
Agents move in turns (the order is selected at random). If 

after a move the agent lies on a cell that is adjacent to an 
occupied cell, the first agent receives a reward (an US in the 
model). However, there is no reward if it remains in the same 
position. The other possibility to obtain a reward is when an 
agent has a signal of “Double Union”, and performs the 
correspondent action. The only way that all the robots make a 
stable formation is that all of them take the action of “Double 

Union” when they have adjacent robots in both of their sides. 

IV. EXPERIMENTAL RESULTS 

Each experiment starts by putting the five agents 
distributed in the grid at random. An step consists of one 
action of each of the robots. The experiment finishes when 
the five robots form a row or a column and it is maintained 
during 10 steps, and a new experiment begins by again 
placing them randomly in the grid. To get an average of the 
performance, we made 50 repetitions and averaged the time 
to make a formation in function of the steps performed. 

We compared the performance of the operant model with 
other two types of agents: random and programmed. Random 
agents move randomly, but when the “Double Union” signal 
is present, they execute the action that reaffirms the “Double 
Union” (otherwise it would be very improbable that they 
could maintain a formation for 10 consecutive steps). 
Programmed agents always move in the direction where there 
are most agents.  

Fig 3. Average steps performed per agent in function of the number of 
formations completed.  

 
Fig. 3 shows the amount of steps required to make a 

formation for each type of agent. It can be seen that at the 
beginning the operant model performance is near the random 
one, but after making a few formations, it achieves almost the 
same performance as the programmed agent.  

This improvement occurs because operant model agents 
gradually learn to get more rewards (see Fig. 4) and as a 
consequence, they are able to achieve the collective property 
of making formations.  Fig. 4 shows the amount of rewards 
that all agents received per step. Random and Programmed 
agents received rewards under the same conditions as the 
operant model. 
The gradual rise in rewards obtained by operant agents is 
correlated with Fig. 5 where the percentage of correct 
responses in function of the number of steps is shown. Here, 
a correct response is considered when the agent moves in the 
direction of the activated CS. Operant agents are able to 
achieve almost a 90% of correct response, with a 
performance similar to the maximum one (considering the 
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restrictions of the environment). This shows that the 
emergent property of collective behavior achieved is robust 
from mistakes performed by individual agents. 

 
Fig 4. Average of the total rewards obtained by the five agents in function of 
the step number. 

 
. 

 
Fig 5. Percentage of correct response made by operant learning agents in 
function of the step number. 

 
Fig. 6 shows the probability of making a formation in 

function of the number of moves done. It can be seen that 
operant and programmed agents are almost indistinguishable. 

 
Fig 6.  Estimated probability density function of the steps needed to achieve 
a formation. 

 
Fig. 7  was made by counting the amount of times that 

agents occupied each cell. We made graphs for the three 
types of agents, and in two blocks of trials. In the first block 
we counted the time each cell was occupied between the start 
of the experiment and 10% of the time that was required to 
make the formation. The second block was between 90% and 
100% of the formation time. It can be seen that programmed 
and operant learning agents tend to move around the center, 
and in the horizontal and vertical line that cross it. In contrast, 
random agents tend to move in a more disperse way. In the 
case of programmed and operant learning agents, there is 
almost no difference in the occupancy graphs between 0-10% 
and 90-100% of time to formation. This means that agents 
can rapidly join and stay close to each other, but most of the 
time is employed to rearrange in such way that the formation 
is completed.  

Fig. 8 shows the number of steps needed to make a 
formation for each type of agent with their correspondent 
error bars. The figure clearly shows that there is almost no 
difference in the performance achieved by the programmed 
and operant learning model. 

V. DISCUSSION 

Most of the work in multiagent systems has assumed that 
cooperation is explicitly designed into the system[5]. On the 
other side, another approach is to study how cooperation can 
arise from selfish agents. Kube & Zhang[33] pointed out that: 
“Designing autonomous robots that accomplish useful tasks 
is a challenging and still elusive goal of scientific research. 
The main hypothesis of the approach lies on the hope that 
such a population of machines will achieve a higher level of 
competence due to an emergent property of the system 
making it more than just the sum of the parts”. 
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Fig 7. Density graph of occupied cells of the five agents. The first column is 
the average occupancy density graph for each cell between 0 to 10% of the 
time needed to make a formation (from top to down, random, programmed 
and operant learning agents). The second column is the average occupancy 
density graph between 90 and 100% of the time needed to make a formation. 
White colored cells represent cells that are occupied longer than black ones. 

 
 

 
Fig 8. Mean steps needed to make a formation for each of the three types of 
simulated agents. Error bars represent s.d. 
 

In nature such emergent property is found in many cases 
[34][35][36]. Despite multiagent cooperation, and 
specifically team formations having a growing interest from 
the Artificial Intelligence research 
community[1][10][11][12], little study has been made in 
building robots with models based on the neural mechanism 
that allows animals to learn. The architecture of the neural 
network of the operant model we presented relies on a neuron 
that predicts the reinforcement, where its main objective is to 
control the learning of the response neurons in order to take 
the actions that are more likely to be linked to a reward in a 

specific situation. 
We showed that with operant capacities a group of robots 

is able to make formations. Despite its simplicity, the model 
is able to explain many characteristical behaviors observed in 
animals and, as the present work showed, it is suitable to 
control autonomous robots in order to have the emergent 
property of making formations. With simple hypotheses 
borrowed from psychological and neurobiological 
experiments, the proposed operant model is a clear example 
of how research in control of autonomous robots can be 
benefited from research in psychology and neuroscience. 

 

VI. CONCLUSION 

We studied how to make formations with a group of 
distributed robots without global information. The actions of 
the robots were controlled by a biological plausible neural 
network model of operant learning. This model, built with the 
aim of explaining real behavioral experiments in animals, can 
solve complex tasks in different environments from those 
where animal experiments are made. Thus, the results 
obtained suggest a further study of the feasibility of using 
operant learning as a method for controlling animats. 

APPENDIX 

In this purposed model all stimuli generates a short-term 
memory given by: 

11 )1( −− ⋅+−⋅= nnn STSTS αα                                   
nnRnn iRiTRiTRiTR ][)][1()1(][][ 11 ⋅−⋅+−⋅= −− εβ  

Where S is: CS[1], CS[2]…, or US...; n is the time unit. 
Here Greek letters represents constants. When Sn is greater 
than 0, α=ε, and when Sn=0, α=β.  

The prediction (P) is calculated as: 
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Where V represents the synaptic weights of the neuron that 
computes the prediction, these are the associations between 
the inputs and P. 

i: conditioned stimulus index and j: responses index 
NCS: is the number of conditioned stimuli, 
NR: is the number of the possible responses. 
The inputs to response neurons are: P, TCSs and TUS. The 

output of the response neurons (R[j]) is calculated as: 
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Where W represents the synaptic weights of the neuron 

that computes R[j], and noise(n): white noise ( 
amplitude=1/32). 

 i: conditioned stimulus index 
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µ : is the threshold. 
The animal executes the response R[j] when Y[j] is greater 

than µ.. 
The synaptic weights (V) of the prediction neuron 

(bounded between –1 and 1) are calculated as follows: 
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)(1][][ nXnUSnTSnSVXnSVX −⋅⋅+−= η  
Where η can take two values, ηi  controls the rise and ηd 

controls the decay of VX[S]n. Values are bounded between –
10 and 10. The synaptic weight V[US] of the prediction 
neuron is fixed to 0.1.  

   The synaptic weights of response neurons j are calculated 
by Hebbian or anti-Hebbian learning [32] depending on P as 
follows: 

 Ω⋅⋅⋅+⋅= − ][]][[]][[ 1 jTRTQqjWqjW nnnn φψ                
Where TQ is: P, TUS or TCSi] and the respective index q 

is: P, US or i; the first term includes a momentum 16]. If P < 
λ then Ω = -λ-, otherwise Ω = λ+.  

To simulate the animals exploratory behavior at the 
beginning of the experiment, the probability of generating 
random responses (Pb) decreases exponentially from a 
starting value (ϕ). 

ω⋅= −1nn PbPb  
In each trial a CS is presented to the model, then it makes a 

response, and depending on the CS and the response 
performed, it will receive the reward or not. Each trial 
consisted of 80 time steps of the algorithm. The CS was 
presented during 20 time steps, the US during 10 time steps, 
and the response persisted for 5 time steps. 

The constants are: β=0.005, βR=0.025, δ=.0001, ε=0.25, 
φa=0.01, φpav=0.07, γ=5, ηi=0.02, ηd=0.01, κ=0.2, λ+=0.6,      
λ-=0.06 µ=0.35, ρ=0.0003, σ=0.4, τ=0.45, υ=10, ω=0.9997, 
ξ=0.6, ψ=.9985, χ=20, ϕ=0.99, ζ=10, noise=0.03125, 
VUS=0.1. CS intensity=1, US intensity=6, Response 
intensity=1. There is also a context stimulus that it is 
presented all the time, and its intensity is of 0.15. 
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