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Abstract
This paper describes a homogenization model for evaluating the effective elastodynamic properties of acoustic metamaterials 
in problems involving wave propagation. The methodology is based on determining the constitutive equations in terms of av-
eraged quantities observed at the macroscale. In this sense, the approach very closely follows the pioneering ideas introduced 
by Willis, and afterwards, followed by several authors in the last ten years. The distinctive characteristic of our approach is that 
we write the microscale equation in the spatial domain. The model is validated with previous results published in the literature, 
and our results replicate them almost exactly. The resulting homogenization model could be used as an additional tool for the 
topology design of acoustic metamaterials.
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1. Introduction

The construction of dispersion curves characterizing 
the response of acoustic metamaterials, or phononic 
crystals, displaying periodic micro-architectures sub-
jected to wave propagation problems, is nowadays rath-
er standard. There exists a consensus about how these 
curves have to be evaluated. Particularly, in layered 
composites, there are exact procedures and solutions 
available in the literature. Hussein et al. have studied 
this problem in several works and they have reported 

efficient numerical techniques to compute these dis-
persion curves (see the revision work of Huseein et al. 
(2014) and references cited therein, see also Krattiger 
and Hussein (2018)).

Alternatively, there is not a  general agreement 
about how to evaluate the effective properties, observed 
at the macroscale level, of such acoustic metamaterials. 
This problem has been reported by several researchers, 
and many of the described models were derived from 
previous analyses coming from photonic crystals. We 
remark that the evaluation of the effective elasticity 
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and density properties in an elastodynamic problem is 
the most typical case in metamaterials where non-con-
ventional situations can arise, as shown by Dong et al. 
(2017). For example, an interesting discussion about 
the attainment of non-conventional effective proper-
ties in heterogeneous materials with a  microstructure 
is reported by Milton and Willis (2007). These authors 
discuss the consequences that such effective properties 
impose on the very fundamental responses of accelerat-
ing bodies in classical mechanics, in particular, the im-
pact that they have on Newton’s second  law. A tenso-
rial non-isotropic effective density, negative densities, 
or stiffnesses are typical results that can be obtained in 
these cases (double negative materials).

In this paper, we propose a  numerical model to 
evaluate the effective properties of an acoustic metama-
terial. These effective properties are obtained through 
an averaging procedure involving the constitutive 
response connecting the mechanical magnitudes ob-
served at the macroscale as averaged quantities: stress-
es (Σ), momentum density vector (P), strains (E), dis-
placements (U) and velocities (U̇ ), with those observed 
at the microscale: stresses (σ), momentum density vec-
tor (ρ), displacements (u) and velocities (u̇). Our pro-
cedure follows closely the pioneering works of Willis 
(1997, 2012) to find the general form of constitutive 
relations in dynamic media with microstructure.

The original ideas of Willis were based on the en-
semble averaging concept of a  non-periodic compos-
ite, with these ideas then particularized for periodic 
materials. Nemat Nasser and co-authors have followed 
this line in several works. To cite only a few, we would 
mention Nemat-Nasser and Srivastava (2011) and 
Nemat-Nasser et al. (2011), and a good review is pre-
sented in the paper of Srivastava (2015). Nassar et al. 
(2016) also have followed the original ideas of Willis to 
implement a homogenization model in dynamic prob-
lems. Particularly relevant for the development of our 
present proposal is the paper by Nassar et al. (2015). 
The works of Willis, Nemat-Nasser et al., and Nassar et 
al. use the Green’s function technique to solve the mi-
croscale problem arising from the mechanical formula-
tion. They need to transform the mechanical variables 
to the Fourier or Laplace space. In our case, however, 
and as a distinctive characteristic, we formulate the mi-
croscale equations in the spatial domain that allows re-
solving pointwise eigenfields (displacements, stresses, 
etc.) with the conventional finite element method.

The effective properties obtained with the ap-
proach developed by Willis show a  cross-coupling 
effect between the averaged stresses and momentums 
with the averaged strains and velocities. This result is 
also replicated by our model. Nevertheless, considering 

that these couplings have been widely studied in the 
literature, see the review of Willis (1997), we will not 
give any further details about this issue.

In our approach, we assume that the solutions of 
the elastodynamic wave propagation problem in peri-
odic media are Bloch waves. An interesting description 
of Bloch waves in periodic media is found in the paper 
by Gazelet et al. (2013).

Several limitations of Willis’ approach have been 
previously reported and the non-uniqueness of the solu-
tion was originally mentioned in the works of Willis. 
This author suggests including an additional eigenstrain 
in the constitutive equation of the average stress to re-
cover uniqueness (see Nassar et al., 2015). Also, limita-
tions of the model at high frequencies have been report-
ed in Srivastava & Nemat-Nasser (2014). However, our 
primary interest in this work is to avoid the analysis of 
these issues. Such analysis is left for future work.

In the next section, we introduce a very short sum-
mary of the Bloch wave solutions for an elastodynamic 
problem in periodic media. We introduce the average 
field of a Bloch wave within a periodic micro-architec-
ture. In Section 3, the homogenization model is intro-
duced. The bridging scale equations, connecting both 
scales of analysis, are developed using a  generalized 
version of the Hill–Mandel lemma. Section 4 presents 
the numerical treatment given to the microscale equa-
tion. We use a Lagrange Multiplier technique to relax 
the field constraint required by the homogenization 
model at the microscale. In Section 5 we describe some 
details of the numerical implementation of the homog-
enization algorithm. In Section 6, the methodology is 
numerically validated by comparing the results of the 
present model with those reported in the literature. Fi-
nally, the conclusions of this work are presented.

2. Theory

Let us consider the Bloch solution (Bloch type solutions 
are denoted by a  superimposed hat) of a  propagating 
wave in a periodic media with unit cell Ωμ, φ̂(x), with 
(possible) complex wavenumber vector k, which is also 
harmonic in time with frequency ω, whose expression is:

φ̂(x) = φ(x)ei(k ∙ x – ωt)� (1)

This is typically a periodic function in space, φ(x), 
modulated by a plane wave function eik ∙ x and by the har-
monic time function e–iωt. The periodicity of φ(x) is related 
to the unit cell of the periodic material Ωμ. The function φ(x) 
is identically repeated for every unit cell, and therefore, it 
satisfies the following identity: φ(x) = φ(x + n1a1 + n2a2)  
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where a1 and a2 are the primitive vectors of the Bravais 
lattice underlying of the periodic material (see Fig. 1), 
and n1 and n2 are arbitrary integer numbers.

Following the conventional treatment of harmonic 
problems in time, we replace the time derivative by the 
factor –iω and remove the explicit time dependence e–iωt 
from the momentum balance equation, while only the 
spatial dependence is held explicit.

According to the ideas introduced originally by Willis, 
and particularly following the work of Nassar et al. (2015), 
we define the effective value of the mechanical terms. 

Let us consider a particular term of the momentum 
balance equation, the divergence of the stress field. Us-
ing the Bloch wave expression for the stress:

∇x ∙ σ̂(x) = ∇x ∙ σ(x)eik ∙ x� (2)

we multiply this expression by eik ∙ y (see Fig. 2) and re-
place the variable X = x – y:

∇x ∙ σ(x)eik ∙ (x – y) = ∇X ∙ σ(X + y)eik ∙ X � (3)

Finally, we average this expression in the micro-
cell Ωμ, such as proposed in Nemat-Nasser and Srivas-
tava (2011), to get:

〈∇X ∙ σ(X + y)eik ∙ X〉y∈Ωμ
 = ∇X ∙ 〈σ(X + y)〉y∈Ωμ

eik ∙ X� (4)

where the notation 〈(∙)〉 means the average operator in 
Ωμ. Following this concept, we define the average value 
of the generic field φ(x) as follows:

Φ̂(X) = Φ(X)eik ∙ X � (5)
where:

�
��

�

( ) ( )
|

( )X X x X x yy� � � � � �� �� �
�

��

1

|
d

�
(6)

There are three important issues which are re-
marked in the following items:

	– due to the periodicity of φ(x), its average value 
〈φ(X + y)〉 denoted Φ(X), is identical for every mi-
cro-cell Ωμ at different positions X. The macroscale 
coordinate X identifies the position of Ωμ. There-
fore, the effective value Φ does not depend on X;

	– the averaging procedure applied to all mechanical 
fields, preserves the form of the balance equation at 
the macroscale. These equations are derived below;

	– in the following, we will not make a further dis-
tinction between the two variables x and X. Ad-
ditionally, it is understood that the domain where 
the average operation is performed is the micro-
cell Ωμ. In consequence, we remove the sub-index 
in the notation: 〈∙〉y∈Ωμ

.

Fig. 1. Lattices of the physical and reciprocal spaces. 
Microcell Ωμ with the boundaries Γμ

+ and Γμ
–. The points A and B  

(as well as A’ and B’) have identical displacements 

The following identities hold for the symmetric 
gradient of a vector field φ̂ and the corresponding av-
erage field Φ̂(x):

∇xφ̂(x) = ∇k(φ(x))eik ∙ x� (7)

∇k(∙) = ∇x(∙) + ik ⊗s (∙)� (8)

∇xΦ̂(x) = (∇k〈φ(x)〉)eik ∙ x = ik ⊗s (Φ)� (9)

where ∇x is the symmetric gradient and ( ∙ ⊗s ∙ ) is the 
symmetric tensor product. The complex conjugate of 
the gradient is:

 ∇̅k
̅ (∙)  = ∇̅x

̅ (∙) – ik ̅ ⊗s (∙) � (10)

3. Homogenization model

Let us consider the displacement and velocity fields as 
Bloch waves:

û(x) = u(x)eik ∙ x; u̇ ̂ (x) = u̇(x)eik ∙ x � (11)

where the periodic functions u(x) and u̇(x), in Ωμ, are 
approached as follows:

u(y) = U + u ̃(y); 〈u〉 = U; 〈u ̃〉 = 0� (12)

u̇ (y) = U̇ + u ̃̇ (y); 〈u̇ 〉 = U̇;  〈u ̃̇ 〉 = 0� (13)

Considering item 1 of the previous section, we 
note that U does not depend on X, and the macroscale 
displacement results: Û (X) = U(X)eik ∙ x.

The strain field in Ωμ is:

ε̂(x) = ε(x)ei(k∙x – ωt)� (14)

��( ) ( )x U u k U u E uk
E

k k� � � � � �� � ��� ��� �� � �i s

�
(15)

Note that u ̃ is a  periodic function with a  null 
average value (see Equation (12)). Therefore, 
〈∇ku ̃〉 = 〈∇xu ̃〉 + ik ⊗s 〈u ̃〉 = 0, resulting:

〈ε(x)〉 = E� (16)
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3.1. A generalized version of  
the Hill–Mandel homogenization lemma

We assume that U and u ̃ can be arbitrarily defined with 
the condition that u ̃ is periodic and 〈u ̃〉 = 0. Then, ad-
missible variations of the average displacement U and 
displacement fluctuations u ̃ are defined as follows: δU 
is an arbitrary vector in ℝndim, and δu ̃ ∈ Vu, where the 
vector space Vu is defined as follows:

Vu = {δu ̃ | δu ̃  is periodic; and  〈δu ̃〉 = 0 }� (17)

Admissible variations of the average strain 
are δE  = ik ⊗s δU and admissible strains in Ωμ are:  
δε = ik ⊗s δU + ∇k(δu ̃).

The Hill–Mandel homogenization principle is pre-
sented as follows:

	
Σ: δE— – iωP ∙ δU— = 〈σ: δε— – iωp ∙ δu ̃

— 〉� (18)
∀ δU— ∈ ℝndim; ∀ δu ̃

— ∈ Vu

The symbols (:) and (∙) denote internal products 
of second-order tensors and vectors, respectively. Also, 
the symbol –(∙)– represents the complex conjugate term1.

In Equation (18), the expressions Σ and P are av-
eraged variables conjugate to E  and U̇, respectively. 
Arbitrary variations of U and u ̃ define the connection of 
Σ and P with the microscale (non-averaged) variables, 
as shown in the following:

	– performing arbitrary variations of δU, expres-
sion (18) gives:

ikΣ + iωP = 〈ikσ – iωp〉� (19)

Considering each term separately, and given that this 
expression has to be satisfied for different values of  
k and ω2, then, the Equation (19) is satisfied if:

Σ = 〈σ〉 and  P = 〈p〉� (20)

	– performing arbitrary variations of δu ̃, expression 
(18) gives:

〈σ: —∇kδu ̃
—  – iωp ∙ δu ̃

— 〉 = 0; ∀ δu ̃
— ∈ Vu� (21)

4. The Lagrange Multiplier approach

In (21), to relieve the null average value constraint char-
acterizing the functions in Vu and following Roca et al. 
(2019), we introduce a  Lagrange Multiplier approach. 
In this case, Equation (21) can be rewritten as follows:
1  Note that by adopting admissible displacement variations, δu ̃, which have a Bloch-wave form with conjugate admissible displacements given 
by δû 

—
 = δue–ik∙x, then, the virtual internal work results: σ̂:∇x

—
δû     = σ ̃: 

—
∇k

—
δu ̃ Thus, this internal product can be written only in terms of the periodic 

parts of σ̂  and δσ̂ 
—

. This property is used in all the internal products reported in this paper.
2  The wavenumber k and frequency ω are not arbitrary. They have to be consistent with the dispersion curves of the material.

〈σ: —∇kδũ—  – iωp ∙ δũ— 〉 – λ ∙ 〈δũ〉 = 0; ∀ δũ periodic� (22)

–〈δu ̃〉 ∙ δλ = 0;  ∀ δλ ∈ ℝndim� (23)

where λ ∈ ℝndim is the Lagrange Multiplier. In this for-
mulation, the variations δu ̃ are not constrained to have 
a null average.

Taking the variational Equation (22), and particu-
larizing the variational displacement δu ̃ to be an arbi-
trary uniform vector a ∈ ℝndim, result:

〈ikσ + iωp〉 = –λ� (24)

which, jointly with Equation (19), provides a balance 
equation of averaged terms:

ikΣ + iωP + λ = – ̅∇k
̅ Σ + iωP + λ = 0� (25)

The intermediate identity arises after considering 
that Σ does not depend on x.

5. Microcell problem

Let the constitutive equation be given in terms of the 
periodic functions as follows:

σ = ℂ∇k u = ℂ(E + ∇k u ̃)� (26)

p = ρu̇ = ρ(U ̇  + u ̃̇ )� (27)
where ℂ is the elasticity tensor and ρ the density. Re-
placing both expressions in (22) and (23), result:

〈ℂ∇ku ̃: 
—∇kδu ̃

— – ω2ρu ̃ ∙ δu ̃
— 〉 – λ ∙ 〈δũ〉 =

– 〈ℂE: —∇kδu ̃
— – iωρU̇ ∙  δu ̃

— 〉�
(28)

–〈δu ̃〉 ∙ δλ = 0� (29)
∀ δu ̃  periodic;  ∀ δλ ∈ ℝndim

5.1. Numerical implementation

The displacements u ̃ in Ωμ are interpolated through 
a conventional FE approach:

u ̃(y) = N(y)[u ̃]� (30)

∇ku ̃ = B[u ̃] + ik ⊗s N[u ̃] = Bk[u ̃]� (31)

where N is the matrix of shape functions and [u ̃] ∈ ℝndof  
is the vector gathering the full nodal displacement set 
of the finite element mesh. The total number of Degrees 
of Freedom (DOFs) is denoted ndof. The matrix B is the 
conventional finite element strain-displacement matrix. 
Also, for notation consistency, we call [λ] ∈ ℝndim the 
Lagrange Multiplier vector.
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Introducing this approach into equations (28) 
and (29), results in the following discrete equation 
system:

	
     dyn

T T Ti�� �
�� �

�

�
�

�

�
�
�

�
�

�

�
� �

�� � ��

�
�
�

N
N

u B E N Uk

0

[ ]

[ ]

� �
��

��
0

��

�
�
� �

(32)

where 𝕂dyn = (𝕂(k) – ω2𝕄) is the sum of an averaged 
stiffness matrix 𝕂(k) = 〈B̅k̅ 

T ℂBk〉 and an averaged mass 
matrix 𝕄 = 〈ρNTN〉. 

Fig. 2. Schematic description of the Bloch wave solution φ̂(x) 
for a periodic material and its average field Φ̂(x)

The periodicity of the field u ̃ requires that the nod-
al values of [u ̃] on the boundary Γμ

–, of Ωμ, are identical 
to those of the nodes on the boundary Γμ

+. This restric-
tion is imposed via the following expression:

[u ̃] = ℙ[u ̃]r � (33)

where [u ̃]r is the vector gathering the displacement 
DOFs of the interior nodes of Ωμ plus the nodes on the 
boundary Γμ

+ of Ωμ, see Figure 1. For a one-dimensional 
(1-D) system, Equation (33) is written as follows:

	

[ ] [ ]int

int

 u u u
u

�
�

�

�
�
�

�

�

�
�
�
� �

�

�

�
�
�

�

�

�
�
�

�
u

u

u

end

r

1

1

1

0

1

   

0
1
0 ��
�

�

�
�

�

(34)

where, as schematized in Figure 1, the u1 DOF is on the 
boundary Γμ

+, uend is the DOF on the boundary Γμ
– and 

uint are the full set of interior DOFs.
Using the reduced DOFs, equation system (32) is 

rewritten as follows:

	

� � �
�� �

�

�
�

�

�
�
�

�
�

�

�
� �

� �

   

   

   

T T
r

T T

N
N

u

Bk

0� ����� �����

�[ ]

[ ]��

   E N U� ��

�
�
�

�

�
�
�

i T�� �

0 �

(35)

Thus:
[ ]

[ ]

�
�

u E
U��

�

�
�

�

�
� �

�

�
�

�

�
�
�

�
�

�

�
�

    

    �
(36)

where:

� � � � � � � ��               ( )1

11

T T T
� �� ��

B Bk k � (37)
𝔽 = +iωℚ〈ρN T〉� (38)

𝔾 = –(𝔻–1)21ℙT〈B̅k̅ 
Tℂ〉� (39)

𝕀 = +iω(𝔻–1)21ℙT〈ρN T〉� (40)

where (𝔻–1)11 and (𝔻–1)21 are the corresponding sub-
blocks of the inverse matrix (𝔻–1) which multiply the 
non-null right-hand side of (35) to provide [u ̃]  and [λ], 
respectively. 

The expressions (36) are replaced in equations 
(26) and (27); and the resulting stress and momentum 
terms are finally replaced into equation (20), giving:

P
E B u
U N u

E
U

k�

�
�
�

�
� �

� � �
� � �
�

�
�

�

�
� �

�

�
�

�

�
�
�

�

   ( [ ])

( [ ]) *

�
� � �� �i �� ��

�

�
�

�
(41)

where the matrices ℂ* , 𝕊 and ρ*  are:

ℂ*  = 〈ℂ〉 + 〈ℂBk〉𝔸 = 〈ℂ〉 – 〈ℂBk〉ℚ〈B̅k̅ 
Tℂ〉� (42)

𝕊1 = 〈ℂBk〉𝔽 = iω〈ℂBk〉ℚ〈ρNT〉� (43)
𝕊2 = iω〈ρN〉ℚ〈B̅k̅ 

Tℂ〉� (44)
ρ*  = 〈ρ〉1 – iω〈ρN〉𝔽 = 〈ρ〉1 + ω2〈ρN〉ℚ〈ρNT〉� (45)

Note that 𝔻 is a Hermitian matrix, as well as it’s 
inverse 𝔻–1 and the sub-matrix (𝔻–1)11. Therefore, the 
matrix ℚ is also a Hermitian matrix, which determines 
real matrices ℂ* and ρ*

 .

5.2. Dispersion curves

We observe in the present model that the average bal-
ance Equation (25) jointly with the microcell Equa-
tion (21) result equivalent to solve the microcell vari-
ational problem (21) with admissible displacement 
variations δu ̃ being not necessarily spatial functions 
with null average. Thus, these equations can be similar-
ly written as follows:

〈σ(u): —∇kδu—  – iωp(u̇) ∙  δu— 〉 = 0; ∀ δu ̃ periodic� (46)

and the discrete problem is:

ℙT𝕂dynℙ[u]r = [ℙT(𝕂(k) – ω2𝕄)ℙ][u]r = 0� (47)

The solution of this eigenvalue problem provides 
the dispersion curves of the periodic material.

𝕂 ℂ

ℙ

ℙT𝕂dynℙ ℙ
ℙ

𝔻

ℙ ℂ

𝔽 𝔸
𝔾 𝕀

ℙ ℙ ℂ ℂℚ𝔻
ℚ

𝔸

Σ ℂ ℂ*    𝕊1

𝕊2
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It is important to remark that even when the matrix  
ℙT𝕂dynℙ is singular for every pair (ω – k) lying on the 
dispersion curves, the matrix 𝔻 in Equation (35) is not 
singular for these pairs, and therefore, it can be invert-
ed. A good condition number of this matrix 𝔻 requires 
that the column vectors –ℙT〈N〉T and the row vector  
–〈N〉ℙ be scaled. We suggest multiplying both vectors 
by the scalar factor α = ω2〈ρ〉. 

6. Numerical assessment of  
the homogenization model 

In this section, we validate the homogenization mod-
el. First, we solve two 1-D wave propagation prob-
lems with symmetric and non-symmetric multilayer 
configurations (sub-Sections 6.1 and 6.2, respective-
ly). The obtained solutions are compared with re-
ported results.

In the last sub-Section, we solve a two-dimension-
al (2-D) problem whose band structure has also been re-
ported in several works. Therefore, these results allow 
us to validate the computation of dispersion diagrams 
in 2-D cases. The homogenized properties obtained 
with our model are finally plotted.

6.1. Effective properties of  
one symmetric layered composite

We evaluate the effective properties of the layered 
composite whose unit cell is depicted in Figure 3a. It 
consists of a heavy and stiff layer (Layer 3) placed be-
tween two soft and light layers (Layers 2). These layers 
are embedded into a  pair of stiffer layers (Layers 1). 
The effective properties of this composite have been 
reported by Nemat-Nasser and Srivastava (2011). The 
objective that we pursue in this case is to validate our 
model by comparing our results with those reported in 
Nemat-Nasser and Srivastava (2011)3. 

The first two modes of the dispersion curves are 
shown in Figure 3b. Figure 3c depicts the effective 
compliance (1/Ceff), which is computed by following to 
Nemat-Nasser and Srivastava (2011):

Ceff = ℂ*  �
�
k  
𝕊1� (48)

This identity is derived by assuming 1-D condi-
tions, as well as, that4 U̇ = –(iω)E/(ik), which is re-
3  The approach adopted in Nemat-Nasser and Srivastava (2011) to evaluate the effective properties consists on formulating the microscale 
problem through a pair of integral equations involving the eigenfields σ and u ̇̃. Then, instead of seeking a point-wise solution of these field, as 
we do, they calculate their volume averages in terms of the average stress and velocity: Σ  and U̇ .
4  The identity –iωE = ikU̇  results from the kinematical relation at the macroscale (averaged variables): Ê ̇ = ∇XÛ ̇ .

placed in the first Equation of (41). Identically, in 
the second Equation (41), the term E  is replaced by 
E = –(ik)U̇ /(iω) to obtain the effective density:

	
ρeff = ρ*  �

k
�

 𝕊2 � (49)

that is depicted in Figure 3d.
These results have been plotted for different FE 

mesh refinement. Three curves are plots for Nelem = 5, 
Nelem = 15, and Nelem = 21 (Nelem: number of finite 
elements used to discretize the microcell). The finite el-
ements in the case of Nelem = 21 are distributed as fol-
lows: 6 elements for each Layer 1, 3 for each Layer 2, 
and 3 for Layer 3. In the remaining cases, the number 
of finite elements is uniformly distributed in the layer 
domains.

In Figure 3d, effective density vs. frequency 
plot, we copy the results taken from the reference 
work. Note the good agreement between both solu-
tions.

6.2. Effective properties of  
one asymmetric layered composite

For asymmetric unit cells (i.e., when the phases are 
not disposed in a  symmetrical spatial pattern), the 
out-of-diagonal terms (𝕊1, 𝕊2) in the matrix on the 
right-hand side of Equation (41) are complex-valued 
and introduce the fully coupling complex-relationship 
between (E, U̇) and (Σ, P).

Following Nemat-Nasser and Srivastava (2011), 
we present the results of the unit cell displayed in Fig-
ure 4a. Note that the material parameters are similar to 
the previous multilayer case, however, the thicknesses 
of the Layers 2 are dissimilar, introducing a non-sym-
metrical distribution of layer thicknesses.

The following results have been obtained with 
a finite element mesh of 21 finite elements (6 elements 
for each Layer 1, 3 for each Layer 2, and 3 for Lay-
er 3).

Figure 4b displays the dispersion curves of the first 
two modes. Figure 4c displays the effective compliance 
(1/ℂ*), which is comparable to the plots reported by the 
reference work. Also, to compare the results of the ref-
erence work we plot in Figure 4d and Figure 4e the out-
of diagonal terms (– 𝕊1/ℂ*) and (𝕊2/ℂ*), respectively. As 
can be noted, our results compare very well with those 
of the reference work.
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Fig. 3. Effective properties of one symmetric layered composite: a) configuration of the composite multilayer  
and the wave propagation problem; b) dispersion curves of the first two modes; c) effective compliance; d) effective density

Fig. 4. Effective properties of an asymmetric layered composite obtained with (Nelem = 21): a) schematic diagram of the 
composite multilayer and the wave propagation problem; b) dispersion curves of the first two modes; c) effective compliance; 

d) S1 component of the effective constitutive matrix; e) S2 component of the effective constitutive matrix

a) b) c)

d) e)

c) d)

a) b)
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6.3. Composite with square scatterers

We analyze a  wave propagation problem in a  com-
posite medium with a homogeneous host material and 
a regular distribution of square scatterers. The scatterer 
material (Phase 2) is chosen to be stiff and heavy, and 
the host material (Phase 1) is compliant and light with 
a Young modulus ratio between both phases: E2/E1 = 5 
and density ratio: ρ2/ρ1 = 2. The microcell is displayed 
in Figure 5a. This case is similar to the one reported in 
Sigmund and Søndergaard Jensen (2003).

A structured finite element mesh of 30 × 30 bilin-
ear quadrilateral finite elements is used.

6.3.1. Discussion of results

The evaluated dispersion diagram is plotted in Fig-
ure  5b. The six bands with lower frequencies are 
shown. They have been obtained using 100 wavenum-

ber points along the path Γ – X of the IFBZ perimeter, 
in the k-space. The band structure for these wavenum-
bers compares very well with the ones reported in Sig-
mund and Søndergaard Jensen (2003).

Pictures in Figure 5c–k display, as vector fields, 
the shape of the modes associated with the points A1, 
A2, ..., D1, C2, C3, in the band diagrams. The first band 
is a transversal mode, the second one is a longitudinal 
mode, and the third band corresponds to wave propaga-
tion involving scatterer rotations. The second band in-
tersects the third band. This characteristic can be noted 
in the behaviour of the effective properties at intersec-
tion point I in Figure 6.

Figure 6 plots the effective elastodynamic proper-
ties of the composites vs. angular frequency for the three 
bands with lower frequencies. The plots correspond to 
the effective elasticity tensor components ℂ*

11, ℂ*
22 and 

ℂ*
12, respectively, defined in Equation (42) and the effec-

tive density component ρ*
11, defined in Equation (45).

Fig. 5. Composite with square scatterers: a) microcell geometry; b) band structure for the six lower frequencies in the region 
Γ – X of the IFBZ; d–k) vector fields of the modes for the points A1, A2, ..., D1, C2, C3, displayed in the band structure

a) b)

c) d) e)

f) g) h)

i) j) k)
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The computational cost demanded in a  laptop 
to perform the present evaluation (mesh 30 × 30 and 
100 points in the path Γ – X) is 22.sec for computing the 
band structure and 1169.sec for evaluating the effective 
properties. The high computational cost to determine the 
effective properties, relative to the band structure calcu-
lation, is due to the evaluation of the inverse matrix 𝔻 
in equations (37)–(40). We note that computational cost 
efficiency has not been pursued in the present work.

7. Conclusions

In this paper, we have presented a homogenization mod-
el which evaluates the effective elastodynamic proper-
ties of acoustic metamaterials. The model predicts the 
effective properties of the constitutive equation de-
scribed in terms of averaged quantities. In this sense, the 
approach follows very closely the original ideas intro-
duced by Willis and posteriorly reported in the works of 
Nemat-Nasser and co-authors, Nassar et al., etc.

The distinctive characteristic of our approach is 
that we have written the microscale equations in the 
spatial domain with a  pointwise determination of the 
eigenfields. A  consequence of this feature is that the 
numerical technique for solving the equations can be 
directly formulated with the finite element method, if 
compared with the ones based on specifying the equa-
tions in the Fourier space or using integral equations 
to find the eigenfields. The results that we attain with 
this model have been contrasted with those published 
in the literature (Nemmat-Nasser & Srivastava, 2011). 
The agreement between both solutions is almost exact. 
Therefore, we consider that these outcomes validate 
the present model. Furthermore, a 2D analysis is also 
discussed.

The model reported in this work could be used for 
the topology design of acoustic metamaterials (see for 
example Dong et al., 2017). The evaluation of effective 
parameters, in addition to the dispersion curves, would 
be an additional ingredient that could help to determine 
some specific design criteria.
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