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Abstract

In addition to its traditional role in reproduction, progesterone (PROG) has demonstrated neuroprotective
and promyelinating effects in lesions of the peripheral and central nervous systems, including the spinal cord.
The latter is a target of PROG, as nuclear receptors, as well as membrane receptors, are expressed by neurons
and/or glial cells. When spinal cord injury (SCI) is produced at the thoracic level, several genes become sensi-
tive to PROG in the region caudal to the lesion site. Although the cellular machinery implicated in PROG neuro-
protectionis only emerging, neurotrophins, their receptors, and signaling cascades might be part of the molecules
involved in this process. In rats with SCI, a 3-d course of PROG treatment increased the mRNA of brain-derived
neurotrophic factor (BDNF) and BDNFimmunoreactivity in perikaryon and processes of motoneurons, whereas
chromatolysis was strongly prevented. The increased expression of BDNF correlated with increased immunore-
activity for the BDNF receptor TrkB and for phosphorylated cAMP-responsive element binding in motoneurons.
In the same SCI model, PROG restored myelination, according to measurements of myelin basic protein (MBP)
and mRNA levels, and further increased the density of NG,*-positive oligodendrocyte progenitors. These cells
might be involved in remyelination of the lesioned spinal cord. Interestingly, similarities in the regulation of
molecular parameters and some cellular events attributed to PROG and BDNF (i.e., choline acetyltransferase,
Na,K-ATPase, MBP, chromatolysis) suggest that BDNF and PROG might share intracellular pathways.
Furthermore, PROG-induced BDNF might regulate, in a paracrine or autocrine fashion, the function of neurons

and glial cells and prevent the generation of damage.
DOI'10.1385/JMN/28:01:3

Index Entries: Progesterone; spinal cord injury; brain-derived neurotrophic factor; progesterone receptor;
myelin basic protein; chromatolysis.

Introduction central nervous systems (PNS and CNS, respec-

Presently, a growing list of publications gives evi- tively). In peripheral nerves, PROG promotes
dence for the neuroprotective and promyelinating remyelination attributable to injury or to the effects
effects of progesterone (PROG) in the peripheraland  of old age (Koenig etal., 1995; Desarnaud et al., 1998;
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Magnaghi et al., 2001; Azcoitia et al., 2003). In the
CNS, PROG stimulates myelination in organotypic
slice cultures of 7-d-old rat and mouse cerebellum
(Ghoumari etal., 2003), and partially reverses toxin-
induced demyelination in old male rats (Ibanez
et al., 2004). PROG also facilitates cognitive recov-
ery and prevents neurodegeneration after cortical
contusion (Roof et al., 1994, Stein and Fulop, 1998,
Stein, 2001). Gender differences in the outcome of
brain injury and cerebral edema also pointed to a
protective role of PROG (Stein and Fulop, 1998; Roof
and Hall, 2000). In the spinal cord, PROG increases
motoneuronal survival following axotomy (Yuetal.,
1989); and after spinal contusion, animals receiving
PROG have a better functional and histological out-
come compared with untreated injured rats (Thomas
et al., 1999). In previous work, we have shown that
PROG regulates some key features of neuronal func-
tion after spinal cord injury (SCI) (Labombarda et
al., 2002) and in a mouse model of neurodegenera-
tion (Gonzalez Deniselle et al., 2002, 2003). In spinal
motoneurons, PROG restores both injury-decreased
choline acetyltransferase immunoreactivity and
mRNA expression forneuronal Na,K-ATPaseand fur-
ther increases GAP-43 mRNA levels (Labombarda et
al., 2002). There is also evidence that PROG promotes
remyelination and increases thenumber of NG,* oligo-
dendrocyte progenitors (De Nicola et al., 2003).

Itis likely that multiple mechanisms operate after
PROG treatmentis given toanimals with diverse types
of CNS injury. Involvement of the classical nuclear
PROG receptor (PR) in neuroprotection is suggested
by the identification of both estrogen-inducible
(Monks et al., 2001) and estrogen-insensitive PRs in
neurons and glial cells of the rat spinal cord
(Labombarda et al., 2000b). However, the presence
of a membrane receptor for PROG in the spinal
cord, called 25-Dx (Labombarda et al., 2003), and
PROG metabolism to reduced derivatives (Guen-
noun et al., 2001), which modulate the activity of
neurotransmitter receptors (Majewska et al., 1986;
Rupprecht et al., 1996), further supports the
assumption that PROG action involves pleiotropic
mechanisms.

It seems important as well to elucidate the possi-
ble intermediates of PROG action. Interestingly,
brain-derived neurotrophic factor (BDNF), a
member of the nerve growth factor family of trophic
factors, mimics some of the PROG effects in the spinal
cord. Forexample, application of BDNF prevents the
axotomy-induced decrease of choline acetyltrans-
ferase in motoneurons (Yan et al., 1994), stimulates
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sprouting of cholinergic fibers and hindlimb step-
ping (Jakeman et al., 1998; Ankeny et al., 2001), and
increases the expression of the regeneration-associ-
ated gene GAP-43 after SCI (Kobayashi et al., 1997).
Additionally, BDNFadministration decreases edema
formation (Winkler et al., 2000) and promotes the
recovery of myelin-basic protein (MBP) after com-
pression-induced SCI (Ikeda et al., 2002). Neuro-
trophicfactors and their receptors are present not only
in developing but also in adult spinal cord neurons
(Dreyfus et al., 1999; Schober et al., 1999, Buck et al.,
2000), indicating that they might play an important
role in neuronal survival (Thoenen et al., 1995) and
axonal regeneration (Thoenen, 1995; Sayer et al.,
2002). Recent data indicate that steroid hormones
interplay with neurotrophins in the CNS (Forger et
al., 1998; Ianovaetal.,2001; Solum and Handa, 2002).
Motoneurons of the spinal cord express PRs (Labom-
barda et al., 2000b) and, as already stated, neuro-
trophins and their cognate receptors (Schober et al.,
1999). Although colocalization studies of these mol-
ecules are still needed, this cellular distribution
suggests that PROG modulation of motoneuron para-
meters might involve modulation of endogenous
trophic factors.

The effects of BDNF are mediated by its cognate
tyrosine-type receptor TrkB. In turn, TrkB activation
activates phosphorylation cascades, the best char-
acterized systems being the mitogen-activated pro-
tein kinase (MAPK) cascade and the PI-3K/Akt
pathway (Mattson et al., 2004). In addition, it has
been demonstrated that neuromodulators and
trophic factors converge on cAMP-responsive ele-
ment binding (CREB) protein phosphorylation
(pCREB), which is a transcription factor regulating
neuronal plasticity (Walton and Dragunow, 2000). It
also stimulates MBP expression and myelin forma-
tionby oligodendrocytes (Afsharietal.,2001). Besides
stimulating myelin formation, BDNF and pCREB
inhibitapoptosis and increase the anti-apoptotic gene
bcl2. Under pathological conditions such as SCI, stim-
ulation of pCREB by PROG-derived BDNF would
allow neuronal survival and promote remyelination
following injury-induced demyelination.

PROG Effects on BDNF and pCREB
in Normal and Lesioned Spinal Cord

To clarify whether endogenous BDNF expression
was regulated by PROG in neurons of normal and

injured spinal cord, we used in situ hybridization
(ISH), as well as immunocytochemistry, to analyze
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Fig. 1. Representative bright-field photomicrographs showing ISH for BDNF mRNA expression in ventral horn moto-
neurons from a control rat (A), a control rat receiving PROG (B), a rat with SCI (C), and a rat with SCI receiving PROG
treatment (D). The number of grains was decreased after SCI (C). In turn, PROG administration to the lesioned group
significantly enhanced grain density (D). This plate was generated, without alterations, from digital images. Scale bar in
D = 15 um (also applies to A=C). (Reprinted, with permission, from Gonzalez et al., 2004.)

changes in BDNF mRNA and protein, respectively.
In this and later studies, male Sprague-Dawley rats
were sham-operated or underwent complete SCI at
T10level. PROG treatment was given as follows: rats
received oil vehicle or four injections of
PROG (4 mg/kg [b.w.]) at 1 h and again at 24, 48,
and 72 h (sc) postlesion. This protocol was chosen
because it prevented neuronal loss after brain injury
in rats (Roof et al., 1994), modulated both glial and
neuronal parameters after SCI (Labombarda
etal.,2000a,2000b, 2002), and improved clinical and
histological outcome after spinal cord contusion
(Thomas et al., 1999). For ISH, we used a 48-mer
oligonucleotide probe containing the complemen-
tary sequence to 562-609 bp of rat BDNF (Maison-
pierre et al., 1991). BDNF mRNA expression was
quantitated by computerized image analysisinlarge
ventral horn neurons (>500 um?) of spinal cord
lamina IX, considered a-motoneurons, based on size
and anatomical localization. The photomicrograph
of Fig. 1 summarizes the outcome of this experiment.
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Quantitative analysis showed that the number of
silver grains/ mm? clustered over the neurons was
similar in the control and control + PROG groups,
whereas SCI reduced BDNF mRNA levels by 50%
compared with control values (control, 53.5 + 7.5
grains/mm?, vs SCI, 27.5 + 1.2, p < 0.05). However,
a 3-d course of PROG treatment of the injured ani-
mals elicited a threefold increase in BDNF mRNA
labeling. In this case, grain density was significantly
higher in the SCI + PROG animals (77.8 + 8.3
grains/mm?) than in the SCI group (p < 0.001).
Tosupport that variationsin BDNFmRNA expres-
sion detected across the experimental groups were
of potential functional significance, protein expres-
sion of BDNF was assessed by immunocytochem-
istry. For this purpose we used a commercial
antibody raised against purified BDNF (N-20, sc:
546, polyclonal rabbit antiserum, Santa Cruz Biotech-
nology, Santa Cruz, CA). BDNF-immunopositive
cells were classified, according to optical density
staining intensity, into light, medium, dark, or very

Volume 28, 2006



6 De Nicola et al.
1 light
1.00- C—Imedium
5 1 dark
& . very dark
2 0.75- L
3 -
@
= -
& 0.50
2
T
2 0254 || |
o |’ .
0.00 j— I_l I = |_| l
CTL CTL+PROG SCI SCI+PROG

Fig. 2. Quartile distribution of BDNF immunoreactive cells in the spinal cord. Optical density scores were used to
classify labeled neurons on a 4-point scale (light, medium, dark, and very dark). The relative frequency distributions of
BDNF immunoreactive densities were analyzed by %2 test for independence, followed by partitioning analysis of con-
tingency tables (x?=812.73, p<0.0001). Group labeling: CTL, control sham-operated rats; CTL + PROG, controls receiv-
ing PROG; SCI, animals with spinal cord injury; SCI + PROG, SCI group receiving PROG treatment. The distribution of
label density (inverse log of grain intensity per area [ILIG/um?]) was shifted to lighter values in SCI animals (p < 0.001
vs all other groups), whereas PROG treatment shifted the distribution to darker values in both the CTL and SCI groups.

(Reprinted, with permission, from Gonzalez et al., 2004.)

dark. Figure 2 shows that a significant difference
existed across treatment groups in the frequency dis-
tribution of BDNF-immunoreactive density of
motoneurons (x2=812.73,p <0.00001). PROG admini
stration to control rats shifted the density distribu-
tion to higher values (i.e., dark- and very dark-
stained cells) than those observed in the control
group (p < 0.05). In this case, 80% of neurons were
classified as dark in the control + PROG group,
whereas only 21% scored in this category in control
rats. After SCI, density scores were shifted to lower
values (i.e., light and medium staining) with respect
to CTL, CTL+PROG, and SCI+PROG groups
(p < 0.001 for each case). Whereas 40% of neurons in
the SCI group scored aslight, they amounted to about
20% in the control animals. In contrast, the SCI +
PROG group showed a significant shift to higher
density values owing to preponderance of medium,
dark, and very dark neurons. In these animals, 70%
of motoneurons scored as dark, whereas only 6% in
the untreated SCI group belonged to this category
(p < 0.001). Consequently, the density profile of SCI
+ PROG was similar to that of intact animals receiv-
ing PROG. BDNF immunoreaction density of cell
processes also presented group differences. After
SCI, there was a dramatic loss of BDNF-positive
fibers, whereas in SCI + PROG animals a plexus of
heavily labeled neurites appeared. In addition,
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numerous granular and intense BDNF-immuno-
positive deposits resembling terminal swellings
(Skup et al., 2002) were detected in apposition to
neuronal perikarya.

Toinvestigateif PROG effects on BDNFalsoinvolve
PCREB, neuronal expression of this transcription
factor was investigated by immunocytochemistry. In
animals with SCI, nuclear immunolabeling for
PCREB was reduced as compared with control
motoneurons (33% reduction, p <0.01). Application
of our standard PROG protocol treatment to SCI rats
produced a threefold increment in nuclear pCREB
(p <0.001 vs untreated SCI). These findings suggest
that PROG stimulation of BDNF gene transcription
might lead to accumulation of pCREB in neuronal
nuclei, although the pathways and kinases involved
in this effecthavenot yetbeen elucidated. Neverthe-
less, it shows that pCREB is probably involved in
the neuroprotective effects of PROG.

PROG Regulation of Chromatolysis

Chromatolysisis a typical incident of injured neu-
rons and represents the loss of cytoplasmic ribo-
nucleoproteins. We studied whether PROG
neuroprotection after SClinhibited this process and
preserved Nissl staining. First, we observed that
motoneurons from control and control + PROG
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Fig. 3. (Bottom) Frequency histograms showing different motoneuron phenotypes in CTL, CTL + PROG, SCl, and SCI
+ PROG groups (group labeling as in the legend to Fig. 1). (Top) Representative cresyl violet—stained motoneurons were
selected to show the 3-point scale classification: normal basophilia (left), mild chromatolysis (center), or severe chro-
matolysis (right). After SCI, only 5% of motoneurons appeared normal and 30% of motoneurons corresponded to the
severe phenotype, showing eccentric nucleus, dissapearance of Nissl bodies, and peripheral accumulation of remain-
ing Nissl bodies. In the SCI group receiving PROG, the Niss| pattern appeared normal in 81% of neurons, and only a
few cells showed mild chromatolytic changes (Reprinted, with permission, from Gonzalez et al., 2004.)

animals showed a normal basophilia and were char-
acterized by clusters of Nissl bodies in multipleloca-
tions throughout the cytoplasm (Fig. 3, left-hand
photograph). Following SCI, most motoneurons
were mildly chromatolytic (Fig. 3, middle photo-
graph) or presented the severe type (Fig. 3, right-
hand photograph), and few remained normal. The
severe degenerating motoneurons contained gran-
ular dispersion of Nissl bodies, displacement of the
nucleus to the cell membrane, rounded shape, and
faintly stained cytoplasm, resulting in a ghostly
appearance. Analysis of frequency histograms (Fig.
3) demonstrated that significant differences existed
among the experimental groups (x> = 210.53, p <
0.0001). After SCI, most motoneurons scored as mild
(65%) or severe (30%) chromatolytic degeneration
(p <0.001 vs CTL). In the SCI + PROG animals, Nissl
staining appeared normal in 81% ventral horn neu-
rons, whereas just a minority showed the mild (14 %)
or severe type (5%) of chromatolysis (p < 0.001 vs
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SCI). Thus, chromatolytic degeneration was pre-
vented by PROG treatment of rats with SCI.

PROG Effects on Expression of MBP
and Density of Oligodendrocyte Precursor
Cells in Normal and Injured Spinal Cord

MBP is a component of central myelin, which pro-
vides a reliable method for assessing the process of
myelination in the brain (Hamano et al., 1996; Muse
et al., 2001). Considering that MBP expression
responded to PROG treatment in several experi-
mental models (Jung-Testas et al., 1996, Ghoumari
et al., 2003; Ibanez et al., 2004), we studied if PROG
prevented SCI-induced demyelination. To this end,
we employed a monoclonal MBP antibody
(Boehringer, Mannheim, Germany) and immuno-
cytochemical techniques to determine the
immunoreaction staining intensity of the cortico-
spinal tract (CST), the dorsal ascending tract (DAT),
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and the ventral funiculus (VF) in controls rats with
and without PROG treatment and in similarly treated
rats with SCI. The areas of white matter were selected
considering that after SCI, CST fibers in the lumbar
region below thelesion site represented axons under-
going axonal degeneration; those in DAT, the reac-
tion of proximal axons; and VF staining was the
response of ventral roots originating in motoneu-
rons. In all cases, MBP staining was diffuse, without
labeling of individual cells. SCI led to a pronounced
depletion of MBP immunostaining in CST and DAT.
When given torats with SCI, PROG maintained MBP
staining near control levels in both CST and DAT. In
contrast to findings in dorsal white matter, staining
intensity in VF remained unchanged after SCI or
PROG treatment, indicating that the steroid response
was region specific. To investigate if changes in MBP
immunostaining were also reflected at the mRNA
level, ISH was carried out using a probe specific for
MBP exonl mRNA (Sim et al., 2000). Films of auto
radiograms of the SCI + PROG group demonstrated
a stronger hybridization signal in areas of the dorsal
funiculus (CST + DAT) compared with the other
groups, confirming that PROG stimulation of MBP
mRNA and protein required a tissue sensitized pre-
viously by SCI, as the hormone was without effect
in control, sham-operated rats.

To explain the enhanced MBP immunostaining of
rats with SCI receiving PROG, we hypothesized that
PROG might stimulate oligodendrocyte development
and differentiation, as oligodendrocyte precursor cells
(OPCs) are able to produce the myelin proteins MBP,
myelin-oligodendrocyte protein, cyclic nucleotide
phosphodiesterase (CNPase), and proteolipid
protein (Ye et al., 2003; Li and Blakemore, 2004).
Oligodendrocyte precursor cells (OPCs) were labeled
with an antibody recognizing the NG, proteoglycan
(giftof W. B. Stallcup, The Burnham Institute, La]Jolla,
California), and the number of NG,* cells per 200
mm? was determined in longitudinal sections of the
gray and white matter below the lesion site. These
cells were practically absent in control rats receiv-
ing vehicle or PROG treatmentbutin agreement with
others (Nishiyama et al., 1999; Levine et al., 2001;
Hubbard, 2003); SCI alone stimulated NG,* cell
number over controls in white matter and gray
matter. PROG treatment of rats with SCI dramati-
cally increased NG,* cell density in both gray and
white matter, as compared with CTL and SCI groups
receiving vehicle, suggesting that the steroid effects
on remyelination could be partly explained by an
action on OPCs.
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PROG Receptor(s) in Control and Injured
Spinal Cord

As pointed out in the Introduction, an estrogen-
insensitive PR recently hasbeen demonstrated in the
rat spinal cord by immunocytochemistry (Labom-
barda et al., 2000b). Neurons from ventral horn
lamina IX, glial cells in gray and white matter, and
ependymal cells were found to be PR positive, using
an antibody recognizing the B-form of PR. Whereas
in cells of the pituitary gland and uterus the PR is
exclusively nuclear, in spinal cord neurons and glial
cells PR staining is also present in the cytoplasm and
cell processes (Labombarda et al., 2000b). We have
investigated the presence and regulation of PR
expression using semiquantitative reverse tran-
scription polymerase chain reaction (RT-PCR) and
immunocytochemistry (Labombarda et al., 2003).
The aim was to describe the response of PR to injury
and hormone treatment. For RT-PCR, forward and
reverse primers derived from nucleotides 1565-1586
and 1928-1907 of therat PR cDN A sequence (Labom-
barda et al., 2003) were used for amplification of a
380-bp fragment. The temporal profile of PR mRNA
expression after SCI showed that PR expression
declined rapidly to 34% at 6 h after SCI when com-
pared with control animals and remained below con-
trol levels at 24 h (66%) and 72 h (55%). Thereafter,
rats treated with PROG or naive animals were killed
72 h after SCI. The reduction attributable to SCI was
notmodified by PROG treatment (Fig. 4). Thus, PROG
was without effect on the reduced levels of PRmRNA
caused by spinal cord trauma. The regulation pattern
of PR gene expression at the protein level paralleled
that observed for mRNA levels. SCI decreased PR
immunostaining intensity of both motoneurons and
glial cells, whereas PROG treatment did not restore
PR protein expression.

Insubsequent experiments we studied the response
to SCI and PROG treatment of the membrane PROG-
bindingsite called 25-Dx. Site 25-Dxis similar toa puta-
tivemembranereceptor for PROG cloned from porcine
vascular smooth muscle cells (Falkenstein et al., 1996,
1999) and humans (Gerdes et al., 1998). The rat
homolog of thismolecule, encoding a 223-amino-acid
peptide (25-Dx) (Selmin et al., 1996) is highly
expressed in hypothalamus (Krebs et al., 2000). The
protein shares sequence homology with the cytokine
receptor superfamily (Selmin et al., 1996), adrenal
inner zone antigen (IZAg) (Raza et al., 2001), and the
ventral midline antigen cloned from the rat CNS
(Runko et al., 1999) of hitherto unrelated functions.
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Fig. 4. Effects of transection (TRX) and PROG treatment on PR expression in the spinal cord. The upper three photo-
micrographs represent PR-immunoreactive motoneurons in a control (CTL), a transected rat (TRX), and a transected rat given
progesterone (TRX + PROG). The middle bands represent PR mRNA in three groups; semiquantitative data for RT-PCR are
presented in the lower graph. It is shown clearly that TRX injury (SCI) decreases both PR mRNA and protein, whereas PROG
does not regulate this receptor in injured animals (Reprinted, with permission, from Labombarda et al., 2003.)

For RT-PCR of 25-Dx, forward and reverse primers
corresponded to nucleotides 370-389 and 711-692 of
rat 25-Dx (accession no. U63315) and PROG recep-
tor membrane component 1 (accession no.
NM_021766) published sequences (Selmin et al.,
1996); they were expected to amplify a cDNA frag-
ment of 341 bp. In the spinal cord of control animals,
abundance of 25-Dx mRNA represented 26% of levels
present in the hypothalamus. In disparity with the
profile expression of PR mRNA, no significant
changes were observed for 25-Dx mRNA levels at
72 h after injury. However, and in contrast to data
for PRmRNA, PROG upregulated 25-Dx expression
in the injured spinal cord. Thus, in the SCI group
receiving PROG, 25-Dx mRNA was 86% higher than
incontrols and 57% higher than in the SCI-only group.

Unlike the cytoplasmic and nuclearlocalization of
PR immunostaining of neurons and glial cells, stain-
ing with the IZAg antibody (recognizing 25-Dx pro-
tein) was exclusively neuronal, showed preferential
staining of the dorsal horn and central canal neurons,
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and was prominent in plasma membranes. Glial cells
of the white or gray matter were negative for [ZAg
immunostaining. Therefore, cellular as well as sub-
cellular distribution of PR and 25-Dx were quite dif-
ferent. Site 25-Dx immunoreaction product was
confined to membranes of neurons found in sensory
regions of the spinal cord, in contrast to a more wide-
spread localization of PR immunoreactivity in neu-
rons, including motoneurons as well as glial cells.
Furthermore, after SCI, thenumber of IZAg-immuno-
labeled cells decreased by 28.5%, but treatment with
PROG increased the number of positive cells. The
opposite effects of PROG treatment on PR and 25-
Dx, including expression levels of their respective
mRNAsand proteins, suggesta dissimilar role played
by these molecules after injury and steroid treatment.

Conclusions

Datasummarized in thisreview indicate that PROG
upregulated the mRNA and protein expression of
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neuronal BDNF in the injured spinal cord and also
BDNF protein in the normal tissue. Concomitantly,
steroid treatment also increased pCREB immunore-
activity in motoneuron cell nuclei and prevented
lesion-induced chromatolysis, supporting the neu-
roprotective actions of PROG at the molecular and
morphologicallevels. Detection of BDNFmRNAand
protein in motoneurons (Dreyfus et al., 1999; Buck
et al., 2000), coupled with the beneficial effects of
this neurotrophin on damaged motoneurons, indi-
cates that locally synthesized BDNF might be an
autocrine/paracrineregulator of neuronal functions
(Miranda et al., 1993; Acheson and Linsday, 1996;
Davies, 1996). Levels of BDNF mRNA and protein
were further enhanced in rats with SCI receiving
PROG, pointing out that local synthesis of BDNF is
under hormonal regulatory control. In the normal
spinal cord, PROG increased BDNF immunolabel-
ing, without changes of the mRNA, suggesting that
part of neuronal BDNF might originate outside the
neuron. Our results raise the possibility that hor-
monal treatment might be increasing BDNF trans-
port from external sources, besides increasing its
local synthesis in motoneurons.

Asecond observation was thatboth BDNFmRNA
and protein expression were downregulated by
75 h after SCI as compared with control animals, a
period coincident with intense chromatolytic
changes and, as shown previously, with depletion
of choline acetyltransferase and mRNA for Na K-
ATPase (Labombarda et al., 2002). Thus, failure to
sustain the expression of BDNF might cause impair-
ment of cell function, induce neuronal degeneration,
and inhibit axonal regeneration (Nakamura and
Bregman, 2001). Evidence demonstrates the central
role of endogenous BDNF in providing trophic sup-
port to CNS neurons. Rescuing axotomized corti-
cospinal neurons by glial-derived neurotrophic
factor requires the presence of endogenous cortical
BDNEF (Giehl et al., 1998), and deprivation of BDNF
impairs myelination of regenerating axons (Zhang
etal., 2000). Recent studies found that upregulation
of BDNF and trkB genes in motoneurons correlates
withimproved axonal regeneration (Al-Majed etal.,
2000) and mediates neuroplasticity (Gomez Pinilla
et al., 2002; Skup et al., 2002). Furthermore, studies
in BDNFknockout mice show that this neurotrophin
is required for the full induction of reflex plasticity,
coordination, and balance (Ernfors et al., 1995)—
events coordinated at the spinal cord level.

Itis alsoimportant to point out that PROG admin-
istration to rats with SCI enhanced 200% mRNA
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BDNF and substantially increased neuronal BDNF
protein expression and immunopositive fiber den-
sity compared with untreated animals. Again, this
time period of PROG effects was coincident with
repletion of choline acetyltransferase, increased
levels of mRNA for Na,K-ATPase and GAP-43
(Labombarda et al., 2002), and preservation of Nissl
bodies. The finding that PROG enhanced the BDNF-
immunopositive fiber network raised the possibil-
ity that the steroid also might be modulating BDNF
availability to the injured spinal cord, in addition to
the enhancement of BDNF mRNA and protein
expression in motoneurons. Whether PROG effects
on BDNF are direct or indirect remains a mystery.
In the case of estrogens, a putative estrogen response
element in the BDNF promoter (Sohrabji et al., 1995)
probably drives BDNF transcription under the con-
trol of the estrogen receptor. In contrast, glucocorti—
coid receptors interact with proteins of the AP-1
complex toregulate BDNF gene transcription (Hans-
son et al., 2000). Whether PROG effects are attribut-
able to PR binding to hormone-response elements
on the BDNF gene or to interactions with proteins
of the AP-1 complex or other transcriptional factors
is presently unknown.

SCI was accompanied by typical signs of chro-
matolysis (Nacimiento etal., 1995; Young, 1966; Tan-
ridag et al., 1999), a feature of incipient motoneuron
degeneration that culminatesin cell dysfunctionand
death (Eidelbergetal., 1989; Wakayama, 1992; Gross-
man et al., 2001). PROG significantly prevented the
lesion-induced chromatolysis of spinal neurons, as
asignificant number of neurons from the SCI+ PROG
group presented normal Nissl staining. In the long
run, enhancement of neuronal BDNF expression,
reversion of severe chromatolysis, and stimulation
of key features of neuronal and glial cell function
(Labombarda et al., 2002; De Nicola et al., 2003) sug-
gest that PROG provides local trophic support and
representsanew approach to prevent neuronal death
after injury.

Another objective of our investigation was to elu-
cidate whether PROG neuroprotection after spinal
cord transection injury involved, in addition to
motoneurons, the regulation of myelin proteins,
myelin precursors, and myelin-producing cells. We
were able to show that spinal cord lesion reduced
MBP mRNA, and protein expression in axons dam-
aged retrogradely (DAT) and anterogradely (CTS).
Others have observed that spinal cord lesion pro-
duces loss of myelin proteins in white matter tracts
(Bresnahan, 1978; Bunge et al., 1993; McTigue et al.,
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1998). In contrast, MBP showed no changes in the
VE, which comprised axons of the ventral roots not
deafferented by the lesion. In DAT and CST, PROG
successfully maintained the levels of expression of
MBP. An additional important finding regarding
remyelination was that PROG effects on MBP were
accompanied by changes in OPCs, determined by the
NG, antibody. In agreement with previous reports,
NG,* cells were very scarce in the control spinal cord
buthighly populated in the lesioned tissue (Nishiyama
et al., 1999; Levine et al., 2001; Hubbard, 2003).
However, the low expression of MBP in rats with SCI
suggests that the newly generated NG,* cells did not
provide enough oligodendrocytes to compensate for
the failure to maintain myelination. Perhaps, the
PROG stimulus was necessary to overload the dam-
aged tissue with precursors. However, in addition to
stimulating NG,* division and reactivity, PROG
might increase precursor differentiation and/or
myelin synthesis by NG,* cells; however, further
experiments are needed to ascertain this issue.

NG,* and OPC cells labeled with other markers
areable tomigrate, proliferate, and differentiate into
mature oligodendrocytes and, as already pointed
out, can express several myelin constituents
(Nishiyama et al., 1999; Ishii et al., 2001; McTigue
et al., 1998; Ye et al., 2003; Li and Blakemore, 2004).
Therefore, PROG action on NG,* cell density might
account for the hormone’s properties in maintenance
of myelin proteins in the damaged spinal cord. After
demyelination, mature oligodendrocytes play a
minor rolein myelinrepairand remyelination derive
in large proportion from endogenous OPCs
(Keirstead and Blackemore, 1997; Carrol et al., 1998;
Levineetal., 2001; Ibanez etal., 2004). Thus, it is pos-
sible that PROG increases the survival of progeni-
tors by preventing their apoptosis, a possibility that
needs further experimentation.

The effect of PROG on BDNF is tightly connected
to remyelination. BDNF is a key regulator of myelin
proteins in the PNS and the CNS (Chan et al., 2001;
Du et al., 2003; Tolwani et al., 2004), and this prop-
erty alsoapplies to the contused spinal cord, in which
MBP expression is highly enhanced by BDNF treat-
ment (McTigue et al., 1998; Ikeda et al., 2002). The
similarities in the regulation of myelin proteins attri-
buted to BDNF and those shown here for PROG
suggest that BDNFand PROG actions share common
intracellular pathwaysregulating myelin-producing
cells. The latter are fundamental players in this
scenario, as they are sensitive to PROG and also take
up and produce BDNF (Jung-Testas et al., 1999;
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Dougherty et al., 2000; McTigue et al., 1998; Schu-
macher et al., 2000). In this view PROG-induced
BDNF might act in a paracrine or autocrine fashion
to positively regulate the function of neurons and
other cell types such as oligodendrocytes. The pos-
sibility fora PROG effect on oligodendroglia receives
support from recent findings in the cerebellum, in
which PROG stimulates the proliferation and
maturation of OPCs (Ghoumari et al., 2005).

PROG treatment of animals with SCI also
increased pCREB immunoreactivity in the nuclei of
motoneurons. Phosphorylation of CREB has been
shown to be a necessary condition for neuronal sur-
vival and synaptic plasticity (Finkbeiner
et al., 1997; Walton and Dragunow, 2000). Accord-
ing to Afshari et al. (2001), CREB also might be a
mediator of growth factor signals that play functions
in the maturation of oligodendrocytes and on the
expression of MBP isoforms. Thus, a dual role for
PCREB can be envisaged during PROG effects in the
injured spinal cord: First, as a stimulator of neuronal
survivaland inductor of downstream survival genes
(Walton and Dragunow, 2000), pCREB might pre-
vent the chromatolytic degeneration of deafferented
neurons. Our observations of increased pCREB
immunoreactivity in motoneurons from rats with
SCI receiving PROG treatment might be related to
this effect. Second, it might also be involved in the
stimulation of MBP and/or in the increased density
of NG,* cells in PROG-treated injured rats. Although
evidence on whether PROG regulates BDNF and
pCREB in oligodendroglial cells is lacking, prelim-
inary experiments suggest that pPCREB is more abun-
dant in nuclei from glial cells of rats with SCI
receiving PROG treatment.

It also seems important to consider the mecha-
nisms by which PROG increased neuronal gene
expressionand positively regulated MBP expression
after injury. The detection of PRs in the spinal cord
(Labombarda et al., 2000, 2003) suggests a role of the
classical receptor in many of the PROG effects in this
tissue. In association with this possibility, a modu-
latory site for steroids, including PROG, was found
in the 5’ -untranslated region of the MBP gene (Verdi
and Campagnoni, 1990). However, PROG mightalso
bind to the membrane-binding protein 25-Dx and
other recently cloned membrane receptors (Labom-
barda et al., 2003, Zhu et al., 2003), suggesting that
alternative mechanisms might operate under normal
and/or pathological conditions. In male rats with
complete SCI, levels of PR mRNA were decreased
significantly, whereas those of 25-Dx mRNA
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remained unchanged with respect to control ani-
mals. When spinal cord-injured animals received
PROG treatment during 72 h, PR mRNA levels were
not affected and remained low, whereas 25-Dx
mRNA levels were significantly increased.
Immunostaining of PR showed its intracellular local-
ization in both neurons and glial cells, whereas
25-Dx immunoreactivity was localized to cell mem-
branes of dorsal horn and central canal neurons.
Because the two binding proteins for PROG differed
with respect to their response to lesion, hormonal
regulation, and cellular and subcellularlocalizations,
their functions might differ under normal and patho-
logical conditions. These observations point to a
novel and potentially important role of the
PROG-binding protein 25-Dx after injury of the
nervous system and suggest that the neuroprotec-
tive effects of PROG might involve classical as well
as distinct membrane-binding sites. In addition,
administered PROG is reduced to the derivatives
5a-dihydroprogesterone and 3a,5a-tetrahy-
droprogesterone, which promote myelination and
neuroprotection in the PNSand CNS (Azcoitia etal.,
2003; Ciriza et al., 2004). These demonstrations sup-
port that PROG effects in the spinal cord are
pleiotropic and can be achieved via different mech-
anisms involving different receptors.
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