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a b s t r a c t 

The dynamic of infectious disease is the result of the interplay between the spread of pathogens and individuals’ 

behaviour. This interaction can be modelled through a network of interdependent dynamical blocks with multiple 

feedback connections. Epidemic outbreaks trigger behavioural responses, at the group and individual levels, which 

in turn influence the development of the epidemic. The interactions can be modelled through adaptive temporal 

networks whose nodes represent the individuals interconnected. Here we introduce an individual-based model 

where the behaviour of each agent is governed by its appreciation of the environment and external stimulus 

and its appreciation of its environment. It is built as a combination of three interacting blocks: (i) individual 

behaviour, (ii) social behaviour and (iii) health state. 

• Here, we introduce an individual-based model. 
• Individual’s behaviour is modelled through the interplay of information of its health state as well as its 

neighbourhood (infected and recovered neighbours) and global epidemic situation; 
• Social behaviour is modelled through contact network that aggregates the behaviour and health state of the 

individuals; 
• The proposed model allows to use a wide range of alternatives for modelling each of these blocks, that provides 

flexibility to select the most adequate tool to model each component of the framework. 
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Specifications table 

Subject Area Computer Science 

More specific subject area Computational Modelling 

Name and reference of original method Addressing population heterogeneity and distribution in epidemics models 

using a cellular automata approach. DOI: 10.1186/1756-0500-7-234 

Individual Decision Making Can Drive Epidemics: A Fuzzy Cognitive Map 

Study. DOI: 10.1109/TFUZZ.2013.2251638 

Resource availability https://github.com/LeonardoL87/IBM- Model- for- Influenza. 

-Adaptive-network-using-Celular-Automata.git 

Method details 

Following the idea proposed by Gross [1] , we propose a modelling framework based on adaptive

coevolutionary networks where the interplay between the dynamic of the epidemic process and the 

temporal evolution of the structure of the network, that model the social interactions, is explicitly

considered. The proposed framework is implemented through an individual-based model built on 

agents whose behaviour emerges from the interactions of three intertwined components: i) Individual 

behaviour, ii) social behaviour and iii) health state; whose diagram is shown in Fig. 1 . The idea

behind this decomposition of the agent’s behaviour is to simplify the description of the system and

to elucidate the interrelationship between individual behaviour and disease spreading. The modular 

structure employed to implement it allows to use different mathematical and computational tools for 

each component, such that the most adequate ones to the problem considered can be chosen. 

Individual behaviour determines how an individual reacts to the factors that influence their 

behaviour like communication, cultural norms, personal circumstances and alternatives, among others. 

Human behaviour can be influenced by countless factors ranging from media and person-to-person 

communication to emotions and perceptions [2] . The behaviour towards an infectious disease is

determined by a combination of all these factors. 

Social behaviour establishes how an individual relates to others. It is given by intraspecific

relationships like communication and social practices. It is determined by the individual behaviour 

but it is also modified by the environment where the individual lies in. This block determines how an

individual relates with other individuals. It is related to individual behaviour establishing a feedback 

relationship. In this context, social behaviour can be modelled through a social network model. This

approach gives us a framework where the contacts of the individuals are more relevant than the

environment topology. 

Health state determines the health evolution of each individual along time. It can be modelled

using an automaton that describes the disease evolution through a finite set of epidemiological

stages, whose transition can be deterministic or stochastic, or more realistic approaches integrating 
Fig. 1. Different levels of behaviour and their relationship are shown at left and the individual’s environment within the 

individuals is shown at right. 

https://github.com/LeonardoL87/IBM-Model-for-Influenza.-Adaptive-network-using-Celular-Automata.git
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Fig. 2. Evolution of the network structure as a consequence of the interaction between different model’s blocks. 
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odels of immune response into agents’ dynamic. In this paper we use a finite state automaton

hat combines both stochastic and deterministic transitions between states, depending on the nature

f the disease, improving its modelling capabilities. Furthermore, it allows describing different

pidemiological scenarios (quarantine, vaccination, multiple strains, among others), by modifying the

utomaton (changing the states and transitions), and including individual heterogeneity (modifying

he parameters of each cell of the automaton), while it retains modelling simplicity and accuracy. 

There is a feedbacked connection between social and individual behaviour since each individual

nteracts with other members of the group. Thus, it modifies its perceptions and experiences making

im react in ways that modify the group dynamic. The presence of a disease modifies the behaviour

f each individual, which in turn modifies the structures of the group and society, as shown in Fig. 2 .

The evolution of the social group (network topology) depends on the individual’s dynamic (nodes).

 feedback loop is established between the group (the topology of the network close to each

ndividual) and society (the topology of the entire network) as well as the dynamic between groups. 

mplementation 

The individual behaviour is modelled through a fuzzy cognitive map (FCM) based on the model

roposed by Mei et al. [3] . In this model the concepts C i with i = 1,2,…,10, are divided into three

roups: 

Input concepts , where C 1 is the density of near infected individuals, C 2 is the density of near

recovered individuals and C 5 is knowledge of the global epidemic situation, representing the

perceptions that the agent receives from the environment (primary emotions); 

Internal concepts , representing emotions and feelings of the individual, ie, secondary emotions,

where C 3 is the health state of individual (given by the health state block), C 4 is knowledge of

local epidemiological situation, C 6 is the assessment of local and global epidemiological situation,

C 7 is optimism level, C 8 is the memory of similar situations and C 9 instant reactions; 

Output concept , corresponding to the senior emotions, C 10 , representing the actions taken by the

agent as a result of a decision process. 

Inputs u i , where: u 1 , is the density of infected individuals that have contact with a given individual;

u 2 is the density of recovered individuals that have contact with a given individual; u 3 is the agent

current health state and u 4 is the knowledge of the local epidemiological situation. 

The value of C 10 limits the number of contacts made by each individual within the contact

pace, which affects the effective contact rate. The values of the weights w ij of the matrix W in

mplementation. The values of the input concepts C 1 and C 2 are estimated at each iteration as the

ensity of infected individuals neighbourhood size ( ν) and density of recovered over neighbourhood

ize respectively. The value of the concept C 3 is given by entry u 3 and is determined by the exit of

he Moore machine that models the health state of the individual. In Fig. 3 the graph diagram can be

hown 

Social behaviour is modelled through a network-based model. A N ×N grid defines the contact

pace where each cell v ij ∈ V represents a subspace that may be occupied by an individual in any

f the possible health states or it is empty. Each cell within the grid corresponds to a node in the
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Fig. 3. Fuzzy Cognitive Map used to model individual behaviour for flu epidemics. Nodes correspond to the concepts and 

arrows represent causal relations between concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network, or an element of the set V. It is possible to simulate the movement of individuals through

the reciprocal change of states between adjacent elements in the contact space, ie a cell in the state

E 1 passes to E 2 while the adjacent cell passes from state E 2 to E 1 . These movements seek to model

the pattern of contacts of individuals and they accomplish a homogeneous distribution of contacts 

when the contacts of individuals are limited to their neighbourhood. Changing the neighbourhood 

where an agent can interact with other agent’s, the distribution of contacts can be modified, obtaining

more realistic contact network topologies. The movement patterns of individuals in the space of the

contacts have also a direct effect on the topology, playing an important role in the structure of the

contact network. 

The function L t :V t → V t x X 

’ ∗ established the rules that assign to each element of V t , the nodes in

the contact space, a list of elements (links) of set X 

’ ∗. The rules assign the topology T to the network

at each time t . For a square grid and a Moore like the neighbourhood, the number of links assigned

to each element of the network is X t = (2 r + 1) 2 - 1, where r is the radius of the neighbourhood.

This means that the radius used determines the degree of each node in the network of contacts. In

this way, if you want to model local contacts, the radius not only determines the degree of the node

but also limits the area where the node can connect. If you want to model a homogeneous contacts

network, like in population-based models, the radio limits the number of contacts of a node but not

its space within the network of contacts. Connections to other nodes at each step t are assigned

randomly, in order to mimic the random contact hypothesis of compartimental models. 

Connections C are bidirectional, isotropic and equal at any point of the neighbourhood, providing

inputs to each node in state, S. These inputs consist of a value of λ that has the node in state I or

A, used to make the probabilistic transition from state E. S nodes are included in several connections

with infectious individuals in time t will have as many opportunities to change state as the number

of contacts. Then, the network is defined as N = (T, C) . 

It is important to note that the neighbourhood radius in the social behaviour model should not be

interpreted as the area of influence of the node. It rather refers to the degree of connectivity of the

node in the network. In this way, if we want to simulate local contacts, the radius determines both the

area and degree. On the other hand, if we wanted to simulate wide-grid contacts while maintaining

the degree of the node, ie number of contacts but not the influence area. 
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Fig. 4. Time evolution of the social network. The radius defines the influence area and the node degree is shown at the top 

shows the grid of cellular automata in different time t , at the bottom you can see how the corresponding network evolves for 

a particular section of the grid. 

Fig. 5. State graph of the health states model. Each node corresponds to an epidemic state and the arrow to the transition 

between them. 
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For simplicity, the grid used for the construction of the automaton is rectangular, and the

eighbourhood is Moore kind with size ν that can change. However, it is possible to use other types

f grids and neighbourhoods. These changes in the degree of connectivity between nodes can be seen

n Fig. 4 . The boundary condition is fixed, with a contour composed of empty non-interacting cells.

owever, any other boundary condition can be used to model a particular situation. 

The health state is defined as a Moore Machine given by A = (X,U, E, R , �, P 0 ) , where the finite

tates set is defined X = {S, E, I, A, R, D}, comprising six epidemic states: S (susceptible), E (exposed),

 (infectious symptomatic), A (infectious asymptomatic), R (recovered) and D (dead or empty). U ∈ R

s the input set ( Fig. 5 ). 

An individual only receives one active input when it is in state S, emitted by another individual

n-state I or A when they are connected in the network. The state transition function is defined as

: X → X , applied to the active state at time t to probabilistically decides the active state at time

 + 1 . The function is applied in two steps, one corresponding to the change of states by infection

nd recovery and another corresponding to the movement. If movement is not simulated, then the

econd step is not performed. In order to decide the state changes two probability matrices are

efined, one for the transition on to empty input, where μ is the probability of natural death, γ
s the probability of recovery, and another for the transition by contact with infectious ( Table 1 )

n which taking into account the neighbourhood size ν and the input value as λ ∈ U. E is the

utput set, the output is non-zero when the state of the node is I or A. Potentially infectious

ontact occurs between infectious individuals (symptomatic and asymptomatic) and susceptible

ndividuals. 

The output function �: X → R generates the infection rate of the automata if it is in I ( β) or A

 q β , being q the probability of infection by contact with an asymptomatic individual). This value is
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Table 1 

Transition matrix by contact. 

S E 

S 1- λ/ ν λ/ ν

E 0 1 

Table 2 

Parameters of the model. 

β ρ γ α q N e N i r 

8.3 0.087 0.246 0.465 0 207 136 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

related to the β ’ of the classic model but it is not exactly the same, it is the probability of transmission

by contact. The potential number of infectious contacts c is related to the size of the neighbourhood

that determines the connectivity with other nodes in the network. In order to obtain the equivalence

between the two methodologies, the number of contacts in the network is multiplied by the density

of cells occupied in the grid (which may vary according to the grid size used and the number of

individuals to be simulated). The combination of the β ’ probability with the potential number of

contacts c is what will result in the infection rate of each infectious individual. As the value obtained

from the parameter setting, the β value is obtained from the choice of the neighbourhood size and

the β ’ parameter used in the classical model, using the β = β ’ c. 

The initial state vector P 0 <S i /G T ,E i /G T ,I i /G T ,A i /G T ,R i /G T > indicates the probabilities of each state

being the initial state of the automaton. Defining as G T the total number of cells in the grid and

S i , E i , I i , A i , R i , D i as the initial number of individuals in each state in the grid (Its sum being

equal to G T and not to the total population, since D i includes the empty cells). In our case, we only

consider probabilities for the states S, E, I and D, derived from the initial values of individuals in

the classical model, and the cells that are left empty accordingly. All other states do not have initial

individuals. 

Application 

We analyse as a study case the Spanish flu in the Swiss canton of Geneva in 1918 [4] . We estimate

the model parameters following a two-step procedure: i) using a global stochastic optimization 

method more precisely simulated annealing [5] and then ii) gradient-based local optimization 

algorithms [6] . The procedure allows us to explore the entire parameter space looking for good

candidates (global search), which are used to find the best parameters for the model through a local

search. Stochastic optimization methods provide good starting points for gradient-based optimization 

methods. The objective function used was the normalized squared error (NMSE) 

NMSE = 

∑ ‖ m I ( k ) − d I ( k ) ‖ 2 2 

‖ m I ( k ) ‖ 2 2 

(1) 

where m I (k) are the predicted value of infected individuals, obtained by the model, and d I (k) are the

data from the flu epidemic. The resulting parameters are shown in Table 2 

The FCM was trained using Algorithm 1 . The value of each concept is calculated taking into account

the influence of other concepts over the specific concept taking into account the value of causal

relationships between them. As we are modelling a local outbreak (city-level) the value of C 5 = 0.5 ,

which is equivalent to a phase 4 alert according to the World Health Organization. It is characterized

by verified human-to-human transmission at community-level. 
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Algorithm 1 FCM training. 

1) W 0 = w ji ∈ [ −1 , 1 ] , Set initial weight matrix. 

2) C 0 
i 

= x 0 
i 

∈ [ 0 , 1 ] , Set initial concepts setting. 

3) x t 
i 
= f ( n 

j=1 , ji 
x j ( t − 1 ) w ji ) , Calculate the value of the concepts. 

4) w 

t 
ji 

= 0 if w 

t−1 
ji 

= 0 

ξw 

t−1 
ji 

+ ηx t−1 
i 

(x t−1 
j 

− | w 

t−1 
ji 

| x t−1 
i 

) , if w 

t−1 
ji 

� = 0 , 

5) if w 

t 
ji 

> 1 , then w 

t 
ji 

= 1 . 

endif 

6) if w 

t 
ji 

< −1 , then w 

t 
ji 

= −1 , in order to keep w 

t 
ji 

∈ [ −1 , 1 ] 

endif 

7) if F 1 = [2] C t 10 − C expected 
10 

= TRUE, 

else if F 2 = | C t+1 
10 

− C t 10 | < ε ≈ 0= TRUE, then exit 

else back to step 2. 

endif 

Fig. 6. Mean model fitting (solid red line) with variance (dashed red lines) and classic population-based mode (dashed blue 

line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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The resulting matrix W is 

W = 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 . 34 0 0 0 0 0 0 

0 0 0 −0 . 14 0 0 0 0 0 −0 . 34 

0 0 0 0 . 44 0 0 0 0 0 0 

0 0 0 0 0 0 . 52 0 0 0 0 

0 0 0 0 0 −0 . 05 0 0 0 0 

0 0 0 0 0 0 0 0 0 . 85 0 . 37 

0 0 0 −0 . 13 −0 . 27 0 0 −0 . 03 −0 . 25 0 

0 0 0 0 0 0 −0 . 21 0 −0 . 07 0 

0 0 0 0 0 −0 . 14 0 0 . 09 0 0 

0 0 0 0 0 0 0 0 0 0 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Fig. 6 shows the responses of the proposed and a SEIR models, compared with the real data. The

EIR model is able to capture the initial and final behaviour of the epidemic, however fails to predict

he value and time of occurrence of the epidemic peak. On the other hand, the proposed model is

ble of capturing the epidemic behaviour along the entire process, including the time and magnitude
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Algorithm 2 Model implementation. 

G = M MxN MxN square grid where automate evolve 

N T Total individuals. 

N = Total days. 

G = I Initial configuration of the network. (Algorithm 3). 

for t = 1 → N : 

for j = 1 → N T : 

Individual behaviour actualization j 

Health state actualization and Reconfiguration of the contact network of j 

endfor 

endfor 

Algorithm 3 Initialization algorithm. 

G = M MxN (R), Contact network is defined 

N S = Number of susceptible individuals. 

N I = Number of infectious individuals. 

N E = Number of exposed individuals. 

N R = Number of recovered individuals. 

for i → N S : 

G ( x, y ) = S, 1 ≤ x ≤ M, 1 ≤ x ≤ NSusceptible individual is distributed in the network 

endfor 

for i → N I : 

G ( x, y ) = I, 1 ≤ x ≤ M, 1 ≤ x ≤ NInfectious individual is distributed in the network 

endfor 

for i → N E : 

G ( x, y ) = E, 1 ≤ x ≤ M, 1 ≤ x ≤ NExposed individuals are distributed in the network 

endfor 

for i → N R : 

G ( x, y ) = R, 1 ≤ x ≤ M, 1 ≤ x ≤ N Recovered individual is distributed in the network 

endfor 

 

 

 

 

 

 

 

 

 

 

 

of the infected peak. The normalised mean-square error (NMSE) calculated for the classic SEIR model

is 3.3, while the proposed model is 1.6. 

Algorithms 

In Algorithm 2 can be seen how given the initial configuration of the contact network, the

evolution of the system depends on the interaction of each of the blocks that model the behaviour.

At first, the number of contacts of each individual is determined by the FCM , then a re-mapping of

his contact network through the extraction and replacement algorithms is made and then the health

state is updated. 

It can be seen that for each individual in the network each one of the behavioural blocks is

performed. First of all the initialization of the whole system is made as shown in Algorithm 3 . 

In the individual behaviour actualization step the FCM concepts are updated giving the input 

concepts C 1 , C 2 , C 3 and C 5 . The new concept values are computed according to Eq. 3 

C i (t) = f (k 1 

n ∑ 

j =1 ;, j � = i 
C j (t − 1) w ji + k 2 C i (t − 1)) , 

where k 2 is the contribution of the previous value of the concept in the calculation of the new concept

and k 1 is the influence of the interconnected concepts in the configuration of the new value of the

concept x i . The parameters k 1 and k 2 satisfy 0 < k 1 , k 2 < 1 and the threshold is f ( C i (t) ) = 

1 

1+ e −0 . 3 C i (t) .

The health state actualization is performed in the sub-network extraction step ( Algorithm 4 ),

for each individual in the network, Algorithms 6 –7 are performed. Thus, it’s important to see

that the health state configuration is performed before the reconfiguration of the contact network 
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Algorithm 4 Extraction algorithm. 

Ge = M mxn (R) ∈ G = M MxN (R) define the extraction sub-net 

for g i ∈ G e 
Algorithm 6 

Algorithm 7 

Algorithm 8 

Algorithm 9 (if the individual movement is simulated) 

endfor 

Algorithm 5 Replacement algorithm. 

Gr = M mxn (R) ∈ G = M MxN (R) defines the segment of the network to replace 

Gr = Ge 

Algorithm 6 Infectious state. 

if State = I 

if Neighbor = S then Z ~ U [0, 1] 

if Z < β/ νthen State = E 

endif 

endif 

Endif 

if State = A 

if State = S then Z ~ U [0, 1] 

if Z < q β/ ν then State = E 

endif 

endif 

endif 

Algorithm 7 Exposed state. 

if State = E then Z ~ U [0, 1] 

if Z < ɛ ρ then State = I 

if Z < ε( 1 − ρ) then State = A 

endif 

endif 

endif 

Algorithm 8 Recovery phase. 

if State = I or State = A then Z ~ U [0, 1] 

if Z < γ then State = R 

endif 

endif 

i  

i

 

t  

m

M

 

m  

i

s performed. An Individual’s health state is calculated in each reconfiguration stage during the

ndividual’s contact actualization. 

In the reconfiguration of the contact network step, Algorithms 4 and 5 are performed in each

ime step t . The initial configuration of the network ( Algorithm 3 ) is fixed at t = 0 . The individual’s

ovement is performed by Algorithm 9 . 

ethod validation 

In this section, we carry out an exhaustive numerical analysis in order to validate the proposed

odel and compare it with the classic model proposed by Chowell [4] and the model without

ndividual behaviour, which makes it a cellular automaton [7] . 
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Algorithm 9 Individuals movement. 

Z 1 , Z 2 ∼ U[ −r, r ] 

Aux = State(i,j) 

State(i,j) = State(i + Z 1 ,j + Z 2 ) 

State(i + Z 1 ,j + Z 2 ) = Aux 

Table 3 

Statistical measures of raw residuals for the different models, where X is the mean, M the mode, σ

is the standard deviation, Kurt is the kurtosis and AIC is the AIC index. 

Method X M σ Kurt AIC 

Classic approach [4] −19.57 −9.15 54.75 1.78 7.5 

Individual behaviour 4.5 −2.08 45.87 1.75 6.1 

No Individual behaviour −5.8 −3.13 45.5 1.76 6.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The models were numerically validated using the Akaike Information Criterion ( AIC ), which provides

a measure of model quality considering both accuracy and complexity simultaneously. This approach 

is widely used to measure the quality of models and validate them [8] . This criterion is equivalent to

a cross-leave-one-out in longitudinal data model validation [9] . Models that have an AIC within the

range 1–2 consistently support structural variation in the data. Those models that have their value in

the range 3–7 withstand significantly structural variation in the data. Finally, those models that have

AIC > 10 do not explain structural changes in the data. The AIC index is computed as is shown 

AIC = log 

( 

det 

( 

1 

m 

m ∑ 

1 

ε ( t, ) ε ( t, ) T 

) ) 

2 n 

m 

(2) 

where  is the set of n estimated parameters m is the number of samples and ɛ ( t , ) is the measured

error. The error measure used for this analysis was the raw residuals calculated as r = y i − ̂ y i , where

y i is the model output (infected population) and 

̂ y i is the real data. The AIC was used instead of

Bayesian Information Criterion BIC because the first one is an estimate of the relative distance between

the true dynamic function and the model dynamic, plus a constant, while the second is an estimate

of the posterior probability of a model considered true under some Bayesian configuration. For both

the model with and without individual behaviour, the same value of n ( n = 8) is considered since

the parameters that govern the FCM are fitted in an independent process that is detailed later in

this section. For the classic model the number of fitted parameters is 11. The number of samples

considered for the fitting process was 70 (daily). 

The statistical significance of these results were assessed by computing the probability of error 

of both models. The results show that the proposed model is better than the SEIR and the model

without individual behaviour (see Table 3 ). For this test, statistical independence of errors adjustment

for different data sets is assumed and the errors of a binomial distribution are approximated with

a Gaussian distribution. One of the fundamental aspects of the model evaluation is to estimate the

probability of error, because on one hand it allows us to evaluate the usefulness of the model for

the intended purposes and on the other hand allows us to compare their performance against other

models. 

Three new data sets were generated with gaps randomly chosen with uniform probability: i) a

data set with n = 10 data points removed (14% of the original data set), ii) a data set with n = 20

(28% of the original data set) data points removed and iii) a data set with n = 30 data points (43%

of the original data set). All the methods were fitted with each data set to get seven generations

of parameters for each one. Then, we perform 10 0 0 simulations for each generation of parameters

obtained in the previous step in order to obtain a good approximation of the average response. Finally,

the average error for each is calculated taking into account the average response model using data that

was extracted from the original data set. Thus for each set of fitted parameters with different gaps in

the data set that the proposal we hypothesize that P ( Error method < Error alternative ) > p . 
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Table 4 

Significance of the error for the model for different data-set training size. MSE is the error measure 

used for the test . 

10 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

Proposed method 7.65 0.24 0.0043 99.5 

Classic approach [4] 10.4 0.896 0.0050 

20 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

Proposed method 4.5 0.955 0.0034 99.7 

Classic approach [4] 5.75 0.943 0.0038 

30 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

Proposed method 4.3 0.957 0.0033 99.9 

Classic approach [4] 5.88 0.941 0.0038 

Table 5 

Significance of the error for the model for different data-set training size. MSE is the error measure 

used for the test . 

10 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

No individual behaviour 8.09 0.919 0.0044 80.6 

Individual behaviour 7.56 0.924 0.0043 

20 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

No individual behaviour 5.01 0.950 0.0035 80.78 

Individual behaviour 4.66 0.953 0.0034 

30 gaps data set 

Model MSE μ σ P ( p 1 < p 2 ) 

No individual behaviour 4.9 0.951 0.0035 88.84 

Individual behaviour 4.3 0.957 0.0033 
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Table 4 shows the results for statistical significance for the different validation sets. It can be

een that the proposed model is better than the classic SEIR [4] , having confidence intervals error

bove 99%. Table 5 , on the other hand, shows the results for statistical significance for the different

alidation sets between the proposed method (with individual behaviour) and without individual

ehaviour, having confidence intervals error above or near to the 90% . 

As a visual validation of the method, Fig. 7 shows the mean fitting of the model with individual

ehaviour (solid red curve) and its respective variance (dashed red lines), the mean fitting of the

odel without individual behaviour, that is without FCM, (solid black curve) with its variance (dashed

lack curve) and the mean fitting of the classical model (dashed blue line). The inclusion of individual

erception (with FCM) tends to reproduce the real dynamics in a very accurate way. This can be seen

n the exponential phase of the epidemic and also at the peak of the outbreak where the model

aptures the average behaviour very well despite the dispersion of the data. 

Fig. 8 shows the distribution of the residuals for each of the models. Fig. 8 a the distribution of

he residuals for the model with individual behaviour, which follows a quasi-normal distribution and

he autocorrelation suggests that there is no dependency for lags above 2 . Similar behaviour can

e observed for the individual-based model behaviour (without FCM) although the distribution of

he residuals deviates a little from the normal form and the dependence for lags less than 4 in the
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Fig. 7. Model fitting with individual behaviour (solid red), without individual behaviour (solid black) and classic SEIR (dashed 

blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

autocorrelation coefficients suggests some structural dependence ( Fig. 8 b). In the case of the classical

model, the behaviour described above is not observed ( Fig. 8 c). 

Individual behaviour 

For the individual’s behaviour actualization step the FCM concepts are updated giving the input 

concepts C 1 , C 2 , C 3 and C 5 . The new concepts are computed according to Eq. (3) . 

C i ( t ) = f 

( 

k 1 

n ∑ 

j =1 ;, j � = i 
C j ( t − 1 ) w ji + k 2 C i ( t − 1 ) 

) 

(3) 

where k 2 is the contribution of the previous value and k 1 is the influence of the related concepts. The

two parameters k 1 and k 2 satisfy 0 < k 1 , k 2 < 1 and f is the threshold. 

Algorithm 1 was used for the FCM training. For the four step rule, η ≈ 0 is the learning coefficient,

ξ is the loss of the learning coefficient. F1 y F2 are the termination criteria. F1 is the minimization for

the Euclidean distance between the current value of the concept of output and the expected value.

Taking into account that C 10 ∈ [ C min 
10 

, C max 
10 

] , the value C 
expected 
10 

must be C 
expected 
10 

= ( C min 
10 

+ C max 
10 

) / 2 . The

second rule is used to ensure the convergence of the method after a number of iterations, being ε ≈ 0 .

The threshold function is shown in Eq. (4) . This kind of function is particularly useful if when you

know the range where x can take values during the inference process [10] thus, the output is not

limited to a specific range as with other kinds of threshold functions such as a sigmode [3 , 11] . 

f ( x ) = 

1 

2 
( αx + 1 ) , (4) 

where α = 

0 . 5 
ρ1 + ρ2 || W || n 1 / 2 , and 

ρ1 ∧ ρ2 ∈ [0, 1] and W is the weight matrix. 

To validate the weight matrix W a set of 10,0 0 0 vectors X 0 was generated, where each x i ∈
[ 0 , 1 ] , i = 1 , ... 10 using an uniform distribution, then the computation of C 10 was performed using

Eq. (3) . The results re inside the interval [0.2,0.8] ( Fig. 9 ). 
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Fig. 8. Raw residuals distribution (upper panel) and autocorrelation for the proposed method with individual behaviour (a), 

without individual behaviour (b) and a classic SEIR approach (c). 
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Fig. 9. Output concept ( C 10 ) distribution during the training process. 
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