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Abstract A number of clustering algorithms are

available to depict population genetic structure (PGS)

with genomic data; however, there is no consensus on

which methods are the best performing ones. We

conducted a simulation study of three PGS scenarios

with subpopulations k = 2, 5 and 10, recreating

several maize genomes as a model to: (1) compare

three well-known clustering methods: UPGMA,

k-means and, Bayesian method (BM); (2) asses four

internal validation indices: CH, Connectivity, Dunn

and Silhouette, to determine the reliable number of

groups defining a PGS; and (3) estimate the misclas-

sification rate for each validation index. Moreover, a

publicly available maize dataset was used to illustrate

the outcomes of our simulation. BM was the best

method to classify individuals in all tested scenarios,

without assignment errors. Conversely, UPGMA was

the method with the highest misclassification rate. In

scenarios with 5 and 10 subpopulations, CH and

Connectivity indices had the maximum underestima-

tion of group number for all cluster algorithms. Dunn

and Silhouette indices showed the best performance

with BM. Nevertheless, since Silhouette measures the

degree of confidence in cluster assignment, and BM

measures the probability of cluster membership, these

results should be considered with caution. In this study

we found that BM showed to be efficient to depict the

PGS in both simulated and real maize datasets. This

study offers a robust alternative to unveil the existing

PGS, thereby facilitating population studies and

breeding strategies in maize programs. Moreover,

the present findings may have implications for other

crop species.
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Introduction

The genetic diversity of a group of individuals can be

exhaustively characterized in different species (Be-

cerra and Paredes 2000) using new technologies that

allow us to evaluate thousands of genomic variants

simultaneously (González-recio et al. 2014; Baloch

et al. 2017). In a group of individuals that have been

molecularly characterized, those more similar in their

genetic profile are expected to have some degree of

relatedness and, therefore, to be able to group, defining

populations or genetic groups (Peña-Malavera et al.

2014; Vittorazzi et al. 2018). Single Nucleotide

Polymorphism (SNP) markers have gained impor-

tance to explain a great proportion of the variance

among individuals, and are the markers most widely

used to identify genetic similarity patterns because

they are very abundant in the genome (Baloch et al.

2017). This variability among individuals of a single

population, generating internal groups or subgroups,

may be due to very diverse causes, including gene

flow, dispersion, introgression or mutations (Dutheil

2020). Thus, genotypes with the same genetic simi-

larity are expected to form groups representing

patterns or a population genetic structure (PGS).

From a more general perspective, the existence of a

PGS implies the occurrence of different relatedness

levels or genetic similarity among some subgroups

within a single sample or population. Regardless of the

drivers of its formation, it is necessary to identify the

PGS and quantify its magnitude because the obtained

information can be incorporated in subsequent statis-

tical data analyses. Specifically in the context of

phenotype-genotype association studies, knowing the

PGS is important so it can be included in Genome

Wide Association Studies (GWAS) models, since it

has been proven that its presence reduces false positive

rates (Malosetti et al. 2007). False positives occur

when a molecular marker is mistakenly associated

with the variation of a phenotype. For instance, in the

genome selection context, PGS is a key factor

affecting predictions of genetic values. For this reason,

neglecting it might lead to unrealistic assessments of

precision (Windhausen et al. 2012; Riedelsheimer

et al. 2013) and to preferential selection of individuals

within a single subpopulation (Isidro et al. 2015).

Exploring the number of genetic groups within a set of

individual genotypes and assigning individuals to

groups has become an essential task in population

genetics studies (Beugin et al. 2018) as well as in other

areas, such as plant breeding, in which the phenotypic

information is complemented with genotypic data

(Thorwarth et al. 2017; Haile et al. 2018; Yuan et al.

2020).

In order to exploit the genetic relationship among

individuals, a large number of multivariate methods

have been proposed for the automatic identification of

subgroups within populations. However, providing

tools that can accurately identify those patterns is a

methodological-statistical challenge in the context of

massive genomic data with thousands of individuals.

Multivariate analyses have been used for decades to

obtain diverse types of information from genetic data

(Bruno and Balzarini 2010; Jombart et al. 2010). In

particular, geometric clustering algorithms, which

group genotypes based on the pairwise genetic

distances, have been used without assuming a specific

population model (Bruno and Balzarini 2010; Beugin

et al. 2018). These methods are usually fast and

produce comparably accurate results in a variety of

simulation scenarios (Peña-Malavera et al. 2014). On

the other hand, there are other proposals to find PGS

based on genetic models. Jombart et al. (2010)

evaluated the discriminant analysis of principal com-

ponent (DAPC) using four simulated genetic popula-

tion models: an island model, a hierarchical islands

model, a one-dimension hierarchical stepping stone,

and a standard one-dimension stepping stone. This

geometric approach method that considers population

genetic models was found to be as accurate as

Bayesian models, and computationally faster and

more suitable to disentangle the underlying structure

in complex population genetic models. However, it

was difficult to interpret from the biological perspec-

tive, since it did not provide probabilities of group

membership (Legendre and Legendre 2012), i.e., it did

not allow the differentiation between a well-defined

population structure and one with weak separation

between groups (Jombart et al. 2010).

On the other hand, clustering is a multivariate

technique used to classify objects or cases into relative

groups named clusters. This technique is also known

as unsupervised learning or exploratory data analysis.

Cluster analysis aims to group similar observations

into a number of clusters based on the observation

values obtained from several variables for each

individual. Clustering goal is ubiquitous in pattern

recognition and similar in concept to discriminant
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analysis; however, in the discriminant analysis, the

group to which an individual belongs is known a

priori,whereas in a cluster analysis, that information is

unknown. Thus, the discriminant analysis is called

supervised learning cluster analysis, unsupervised

learning. Cluster analyses can be divided into hierar-

chical and non-hierarchal. Hierarchical methods are

frequently used because they are available in many

software tools and can be applied directly to molecular

data by selecting a suitable distance metric with no

need to know the existence of groups of individuals a

priori (Bruno and Balzarini 2010; Odong et al. 2011).

Unweighted Pair Group Method with Arithmetic

Mean (UPGMA) (Sokal 1958) and Ward’s method

(Ward 1963) are the hierarchical clustering methods

most widely used with molecular marker data

(Balzarini et al. 2011), whereas the k-means and

k-medoids methods are regularly used non-hierarchi-

cal algorithms, which are frequently applied to detect

PGS (Lee and Tracy 2009). Besides hierarchical and

non-hierarchical algorithms, there are ‘‘model-based’’

approaches that estimate the probability that a set of

genotypes are related by descent from a common

ancestor. These approaches consider a population

genetic model to calculate the probabilities that an

individual belongs to a group. These methods are

usually more computing-demanding but of easier

biological interpretation than the geometric approach

method, since they estimate the probabilities that an

individual belongs to different groups simultaneously

on the basis of its genotypes. Then, the highest value of

probability of an individual to belong to a particular

group genuinely reflects the probability that the

individual belongs to that group (Beugin et al. 2018).

However, for some individuals, the probability of

belonging to a group can be ambiguous. An individual

may have similar values of probability of belonging to

different groups, and the researcher has to make the

decision of assigning it to one or another group.

Pritchard et al. (2000) proposed a clustering method

based on Bayesian models and Markov chains, which

is implemented in the software STRUCTURE (Pritch-

ard et al. 2000) and in the Landscape and Ecological

Association studies (LEA) package in R software

(Frichot and François 2015). Later, Raj et al. (2014)

proposed an upgrading of the software STRUCTURE,

which they named fastSTRUCTURE, with the aim of

providing efficient algorithms for proximal inference

of the underlying model, using a faster variational

Bayesian frame than STRUCTURE. These variational

algorithms are almost two orders of magnitude faster

than STRUCTURE and achieve accuracies compara-

ble to the method proposed by Alexander et al. (2009),

included in the software ADMIXTURE. In ADMIX-

TURE, genetic structure is obtained using a Bayesian

approach, based on a Markov Chain Monte Carlo

(MCMC) approach for a posteriori sampling distribu-

tion. It uses the same probability model as STRUC-

TURE, but is focused on obtaining a maximum

likelihood rather than on sampling the distribution a

posteriori. Since high dimensional optimization is

much faster than MCMC, this maximum likelihood

approach can be more efficient in a context of high

density of molecular markers such as SNP (Alexander

et al. 2009).

In summary, while in the unsupervised algorithms

(i.e. hierarchical method) the number of groups is not a

prerequisite, many other clustering algorithms (non-

hierarchical, model-based methods) do require that the

number of clusters be known beforehand. To over-

come this problem, various cluster validation indices

have been proposed from several disciplines to select

the optimum number of groups (Peng et al. 2012).

Some examples include the Dunn index (Dunn 1974),

CH (Caliński and Harabasz 1974), the H statistic

(k) (Hartigan 1975), the Silhouette statistic (Kaufman

and Rousseeuw 1990), the gap statistic (Tibshirani

et al. 2001), the Clest resampling method (Dudoit and

Fridlyand 2002), the L method (Salvador and Chan

2004), and the Connectivity index (Handl and

Knowles 2005). These internal validation indices

allow us to measure the quality of a clustering. Hence,

a clustering algorithm can be run several times, with a

different number of clusters in each run, and the

clustering that optimizes the considered index is

selected as the final result (Günter and Bunke 2003).

The aim of our work was to evaluate the relative

behavior of three clustering methods that work under

different computational algorithms to identify a PGS

and four internal validation indices that determine the

optimum number of clusters in high-dimensional

genomic data. Thus, the following clustering methods

were tested: Unweighted Pair Group Method with

Arithmetic Mean (UPGMA) hierarchical method,

k-means non-hierarchical method, and the Bayesian

Method (BM) approach. In addition, to evaluate the

goodness of a clustering structure based on intrinsic

information of the dataset rather than on external
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information, the following internal validation indices

were selected: CH, Connectivity, Dunn and Silhou-

ette. All of these indices can also be used on binary

data from SNPs. In order to assess the impact of the

number of subpopulations on the performance of the

different proposed methods and indices, a large

number of simulations were performed using X-breed

software on R. Then, we provided an illustration based

on a publicly available maize dataset from Mazaheri

et al. (2019a, b) to depict the outcome obtained by our

simulation study in a real dataset.

Materials and methods

Simulation dataset design

The simulated datasets used for clustering were

obtained using the package ‘‘Xbreed’’ in R, which

was developed for performing genomic and pheno-

typic simulation (Esfandyari and Sørensen 2019). We

simulated an SNP database for diploid individuals

using a historical population.With the aim to achieve a

desired level of linkage disequilibrium (LD), the

following genetic parameters introduced in the simu-

lation code were set to recreate a maize population as

an example: number of individuals of the initial

population, number of molecular markers, number of

generations, mutation rate, and narrow-sense heri-

tability. Based on these parameters, Xbreed allowed us

to simulate the PGS of the historical population

according to the phenotypic performance of

individuals. The Xbreed simulation routine performs

random crossings between individuals from a histor-

ical population to create new generations. Different

phenotypic variances were set up with the aim of

distinguishing subpopulations in a recent population.

Then, individuals were randomly selected from the

different simulated subpopulations, and different

datasets (scenarios) with different numbers of sub-

populations were generated. We obtained 300 datasets

of 80 K SNPs, each containing 1000 individuals,

arranged in three PGS scenarios defined by different

numbers of population groups: Scenario 1, with two

subpopulations or k = 2 (S1); Scenario 2, with k = 5

(S2), and Scenario 3, with k = 10 (S3). Each scenario

consisted of 100 replicates. The level of genetic

differentiation (Fst) obtained between subpopulations

of each scenario was 0.03, which is regarded as a low

(Latch et al. 2006). The Principal Coordinate Analysis

was run to order the individuals in the optimal space

defined by the first two principal coordinates and

shows the level of differentiation achieved between

populations for each scenario. Figure 1 shows one

replicate per scenario of the result of the Principal

Coordinate Analysis. SNP databases were coded

according to the minor allele as binary data, i.e., the

most frequent homozygous allele was coded as 0, the

heterozygous allele as 1, and the least frequent

homozygous allele as 0.

Fig. 1 Scatter plot of the Principal Coordinate Analysis of a

molecular data simulation of 1000 individuals genotyped with

80 K SNPs for three simulation scenarios differing in the

number of k-groups: k = 2 (left), k = 5 (center), and k = 10

(right). Each individual is represented by a dot. Individuals

belonging to the same group are represented with the same

symbols
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Real maize dataset used to illustrate the simulation

outcome

The compared algorithms, the clustering validation

methods, and a real dataset published by Mazaheri

et al. (2019a, b) were used for illustration purposes.

The aim of that work was to detect candidate genes

associated with the stalk biomass (plant height and

stalk diameter) and the stalk anatomy (rind thickness,

vascular bundle density and area) of maize; for that

purpose, it was necessary to characterize the underly-

ing PGS. We used that PGS information to illustrate

our results obtained by simulation and compare them

with the ones obtained by Mazaheri et al. (2019b).

For that study, the authors used a panel of 942

inbred lines (WiDiv-942), which included a diverse set

of public, expired plant variety protection (exPVP),

and germplasm enhancement of maize (GEM)-derived

inbreds. This panel is representative of the main North

American field corn heterotic groups, including stiff

stalk, non-stiff stalk, and Iodent, as well as sweet corn,

popcorn, and tropical inbreds (Mikel and Dudley

2006). A total of 899,784 SNPs were identified from

whole seedlings of each member of the WiDiv-942

panel. The software programAdmixture 1.23 (Alexan-

der et al. 2009) was used by the authors to classify the

WiDiv-942 panel into subpopulations using a subset of

93,991 SNPs that were pruned based on a pairwise LD

threshold of r2 = 0.1. No additional information on the

choice of this set of SNPs was provided by the authors.

Furthermore, each subpopulation was labeled based

on the pedigree of the majority of the inbreds within

each subpopulation. According to this classification,

the panel was divided into a total of 11 subpopulations

(k = 11), with four subpopulations matching with stiff

stalk (SS) heterotic patterns, two matching with non-

stiff stalk subpopulations (NSS), one subpopulation

having the same pattern as that of broad origin-public

lines, one matching with Iodent subpopulation (IDT),

one subpopulation matching with sweet corn, one

matching with popcorn subpopulation, and one sub-

population matching with tropical inbreds. A total of

201 inbreds with less than 0.5 of probability of

belonging to any of the subpopulations were classified

as a ‘‘mixed’’ group. Thus, we considered the

existence of 11 clusters as gold standard to illustrate

the result of the simulations. The average genetic

diversity among subpopulations that make up this set

of public data was characterized by estimating the Fst

statistic of Wright (1949). On average, the 11

subpopulations were differentiated by an Fst of

0.0239 ± 0.009. The least divergent populations were

Sweet corn and the broad-origin public lines, with an

Fst of 0.007, whereas the most differentiated ones

were SS-B73 and NSS-Mo17, with an Fst of 0.047

(Table 1). In this study, we used the whole panel of

SNPs provided by Mazaheri et al. (2019a, b), i.e., the

899,784 SNPs, to characterize the PGS.

Table 1 Genetic divergence value (FST) among 11 subpopulations of a dataset published by Mazaheri et al. (2019a) for 942 inbred

lines of maize genotyped with 899,784 SNP molecular markers

Broad origin-

public

IDT NSS-

Mo17

NSS-

Oh43

Popcorn SS-

B13

SS-

B37

SS-

B73

SS-

BSSSC0

Sweet

corn

IDT 0.019

NSS-Mo17 0.018 0.037

NSS-Oh43 0.009 0.025 0.019

Popcorn 0.008 0.030 0.024 0.016

SS-B13 0.020 0.040 0.042 0.030 0.032

SS-B37 0.014 0.033 0.032 0.022 0.023 0.025

SS-B73 0.023 0.044 0.047 0.036 0.038 0.035 0.027

SS-

BSSSC0

0.010 0.028 0.029 0.019 0.019 0.021 0.016 0.022

Sweet corn 0.007 0.028 0.026 0.016 0.011 0.029 0.022 0.035 0.018

Tropical 0.007 0.026 0.024 0.015 0.012 0.027 0.020 0.031 0.017 0.013
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Comparison of cluster altgorithms

Three clustering methods belonging to different

families of methods and differing notably in their

computational algorithms were selected: Unweighted

Pair Group Method with Arithmetic Mean (UPGMA)

hierarchical method (Sokal 1958), the non-hierarchi-

cal k-means (MacQueen 1967), and the Bayesian

Method (BM) approach (Frichot and François 2015).

To evaluate the performance of the clustering meth-

ods, each one was implemented to identify, in each

scenario, the number of subpopulations expected

assumed in the simulation. As a criterion for compar-

ing methods, the misclassification rate (MCR) was

calculated for each replicate of each simulation

scenario. Misclassifications occur when the method

classifies an individual in a different subpopulation

from the simulation one. The MCR was obtained from

the confusion matrices between the cluster of origin

(simulated subpopulation) and the classifier vector

obtained as a result of each method. Then, summary

statistics (mean and standard deviation) of MCR were

calculated in each scenario for each dataset.

The hierarchical clustering analysis is one of the

classification techniques most widely used to analyze

sampling data based on various loci. In this analysis,

each object first belongs to an individual cluster; then,

after successive iterations, groups are merged until

stop conditions are reached. These hierarchical algo-

rithms do not require the number of groups as initial

parameter; instead, a distance metric and a clustering

method need to be selected. In this sense, there are

different metrics for the different types of data. In this

work, we used the complement to one function of the

Jaccard similarity index (1� J) to transform the

similarity index into a distance between pairs of

individuals i and j (dJij). Thus, the distances between

individuals i and j can be estimated as dJij ¼ 1� J,

where J is the Jaccard similarity index based on

number of matches of heterozygous alleles (1)

between individuals. Then, the Jaccard similarity

index is expressed as J ¼ a= aþ bþ cð Þ, with a, b

and c representing the cell counts of a crossed

contingency table that collects the information

through the genomic profiles of individuals i and j,

where a is the number of copresences of SNP markers

and b and c are the number of times the marker was

present in one individual and absent in the other,

according to the coding of the SNP marker for this

work. The Jaccard index is appropriate and recom-

mended for estimating similarity/dissimilarity

between two individuals when their characteristics

have been measured with binary data (Bruno et al.

2003). Thus, the UPGMA algorithm is applied to a

distance matrix. Selection starts with two elements

that are at the shortest distance (the nearest ones),

forming a class that will continue together in the

following steps of the algorithm. If we consider an

initial partition in which each individual is a class, then

we can express that partition as P1 ¼ x1f g; . . .; xnf g,
then, if IJ ¼ xi; xj

� �
such

thatdðxi; xjÞis minimun8i; j ¼ 1; . . .; nji 6¼ j, we have

a new partition P2 ¼ x1f g; . . . xi; xj
� �

; . . .; xnf g. Dis-
tances between the new class and the remaining

observations are calculated as the mean of the

distances between all the pairs of observations of

two different classes before the merge:

d IJ; xkð Þ ¼ d xi; xkð Þ þ dðxj; xkÞ
2

k ¼ 1; . . .; n

The algorithm stops when it achieves the final

partitioning, which has all the observations

Pr ¼ Nf gð Þ. This procedure allows us to classify the

objects under study and their grouping into clusters,

such that the objects within a single group are more

similar to one another than the objects belonging to

different groups (Bruno et al. 2003). The clusters are

visualized using a dendrogram that allows us to

identify the clustering structure. However, when a

high number of individuals are to be grouped,

interpreting this diagram may be difficult. For this

work, we used the function hclust of the package stats

with the method average implemented in the algo-

rithm UPGMA and the Jaccard distance in R (R Core

Team 2019).

On the other hand, the partitioning approaches,

such as the k-means algorithm, have been widely used

(Rendón and Abundez 2016). Unlike UPGMA, K-

means does require the number of groups (k) and the

distance metric as initial parameters. First, each one of

the p measurements taken from the sample of n

observations: xij i ¼ 1; . . .; n; j ¼ 1; . . .pð Þ is associ-

ated with one of the k groups k� nð Þ according to the

distance of each point to the centroid of each cluster.

That is, let x11;x12; � � � ; xnp be a random sequence of

points (vector) in the sample (XN), each point was

123

195 Page 6 of 19 Euphytica (2021) 217:195



selected independently of the preceding one using a

fixed probability measure pr. Thus, Pr x11 2 Að Þ ¼
pr Að Þ and Pr xnþ1 2 Ajx11;x12; . . .; xnp;

� �
¼ pr Að Þ,

np ¼ 1; 2; � � �, for any measurable A value set in XN .

Relative to a given k-group z ¼ z1; z2; � � � ; zkð Þ,
zi 2 XN ; i ¼ 1; 2; � � � ; k, we define a minimum dis-

tance partition S zð Þ ¼ S1 zð Þ; S2 zð Þ; . . .; Sk zð Þf g of XN ,

by S
tð Þ
k zð Þ ¼ zizi � l̂tzi\zi � l̂tzj81� j� k

n o
; where

each zi that belongs only to one S
tð Þ
k zð Þ, even if it

could go in two of them. The set S
tð Þ
k zð Þ contains the

points in XN nearest zi, with tied points being assigned

arbitrarily to the set of lower index. Then, in the

successive iterations of the algorithm, new points are

randomly selected and added to the group with nearest

mean distance between the centroid and the new point.

In each iteration, new centroids are calculated in order

to take account of the new point or group of points.

Then, the classification of the observations is assigned

to a group as a function of the minimum distance to the

new centroid. Thus, at each step or stage of iteration,

the k-means are, in fact, the means of the groups they

represent. The process is repeated until no significant

changes in the position of the centroid are observed in

the successive steps, minimizing SSE ¼
Pn

i¼1

xil̂t2yit . The

variance within the cluster can be estimated as SSE/

np. The a priori assignment of the number of clusters is

the main limitation of the k-means algorithm; the final

classification may strongly depend on the selection of

the centroid (Oliva et al. 2001). To implement this

method in R, we considered the kmeans function of the

stats package implemented by the algorithm proposed

by MacQueen (1967).

Finally, the Bayesian Method (BM) was also

compared; in this method, the genotypes of a collec-

tion or population are assigned probabilistically to

groups. This model-based method assumes that obser-

vations within each cluster were randomly drawn from

some parametric (theoretical statistical) model with

known distribution. In the other words, BM assumes

that each individual is originated from one of k

populations based on the genetic information obtained

from its own characteristic set of allelic frequencies

that determines the probability of distribution. Then,

the inference for the parameters corresponding to each

cluster is made jointly with the inference for the

cluster membership of each individual, using Bayesian

statistical methods (Pritchard et al., 2000). If the

genotypes indicate that individuals are admixed, then

they are assigned jointly to two or more subpopula-

tions. In this method, as in the diffuse clustering

Bayesian methods, the a posteriori probabilities indi-

cate the uncertainty of the assignment of individuals to

clusters. Thus, one of the main challenges when

applying the BM is to specify the appropriate statis-

tical distribution model for the observations (individ-

uals) from each cluster. The BM assumes that there is a

Hardy–Weinberg equilibrium within each population

as well as complete linkage equilibrium between loci

within population, i.e., it assumes that segregation

occurs independently. Thus, let X be a vector of

individuals (genotypes) and assuming that each locus

in each genotype, xil
� �

represents a random and inde-

pendent sample of a population whose independently

sampled alleles represent an appropriate population

frequency distribution, it is possible to estimate the

population frequency distribution as

Pr x
i;að Þ
l ¼ jjZ;P

� �
¼ pz ið Þlj, where xil represents the

genotype of the i-th individual for the l-th locus, with

i = 1,…, N and l = 1,…,L. Let Z be an unknown

vector representing the population of origin of the

individuals whose z(1) elements represent the original

population that gave rise to the i-th individual and P is

an unknown vector of the allele frequencies in the

population whose pi lj element represents the l-th locus

in the k population, where k ¼ 1; 2; . . .;K and

l ¼ 1; 2; . . .; Jl. Note that Jl is the number of distinct

alleles observed at locus l. Given that there is no

information on the population of origin of each

individual and that the probability that individual i

originates from population k is the same for all k, such

probability can be estimated as Pr z ið Þ ¼ k
� �

¼ 1=k.

The Dirichlet distribution is used to specify the

probability of a particular set of allelic frequencies

pkl for the population k in the locus l,

pkl �D k1; . . .; kJlð Þ; independently for each k popula-

tion and each l locus. The expected frequency of the

allele j is proportional to kj, and the variance of this

frequency decreases as the sum of allelic frequencies

increases. The BM uses Markov Chain Monte Carlo

(MCMC) methods to infer the probability that an

individual belongs to a cluster. In the first step, the

algorithm estimates the allelic frequencies for each

population, assuming that the original population of
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each individual is known; in the next step, it estimates

the probability that each individual belongs to that

original population, assuming that the allelic frequen-

cies of that population are known. The Bayesian

algorithm was implemented using the package Land-

scape and Ecological Association studies (LEA) in the

software R (Frichot and François 2015).

To compare methods within each dataset, summary

statistics, i.e. standard deviation, minimum and max-

imum of the MCR, were obtained. These summary

statistics were calculated from a confusion matrix. A

confusion matrix, also called error matrix, is a specific

table layout used to visualize the performance of an

algorithm. We constructed a confusion matrix to

compare the classification of an individual known by

simulation with the classifications achieved with the

clustering method. Thus, we compared the matching

between the simulated classifier vector (group of

origin) and the classifier vector (vector whose ele-

ments are the result of the subpopulation to which an

individual belongs) obtained by each clustering

method applied to the number of simulated subpop-

ulations. Whenever an individual was assigned to a

group other than the one that was simulated, it was

considered a classification error. Finally, we estimated

the mean of this classification error over 100 replicates

and compared the variation of this misclassification

for each algorithm.

Table 2 Summary statistics (mean, standard deviation, min-

imum and maximum) of the misclassification rates (MCR) of

three clustering methods evaluated in three simulation

scenarios (100 replicates of molecular data each) differing in

the number of subpopulations (k) or population genetic

structure (PGS)

MCR [%] UPGMA k-means BM

k = 2 k = 5 k = 10 k = 2 k = 5 k = 10 k = 2 k = 5 k = 10

Mean 0.496 0.558 0.650 0.000 0.066 0.066 0.000 0.000 0.000

SD 0.247 0.229 0.188 0.000 0.125 0.125 0.000 0.000 0.000

Min 0.000 0.000 0.302 0.000 0.000 0.000 0.000 0.000 0.000

Max 0.503 0.803 0.900 0.000 0.553 0.553 0.000 0.000 0.000

Table 3 Overestimation error rate (E III?) of the number of

groups suggested by four selection indices to three clustering

methods and population genetic structure (PGS) simulated

under two groups. Each index was evaluated for k number of

groups (k = 2 to k = 15)

Clustering

methods

Selection

indices

Evaluated group number (k) E

III?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

UPGMA CH 42 41 14 2 1 0 0 0 0 0 0 0 0 0 0.58

Connectivity 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Dunn 98 2 0 0 0 0 0 0 0 0 0 0 0 0 0.02

Silhouette 98 2 0 0 0 0 0 0 0 0 0 0 0 0 0.02

K-means CH 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Connectivity 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Dunn 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Silhouette 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

BM CH 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Connectivity 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Dunn 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

Silhouette 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00

The column 2 depicts the true number of simulated groups or simulated PGS
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Validation of cluster number using validation

indices

Each clustering algorithm was run several times with

different numbers of groups, from k = 2 to k = 15.

Four internal validation indices of the optimal group

number were implemented: CH (Caliński and Har-

abasz 1974), Connectivity (Handl and Knowles 2005),

Dunn (Dunn 1974) and Silhouette (Rousseau 1987).

Each validation index has its own optimization

criteria, from which a given number of clusters is

proposed. CH compares the deviation within the group

with the dispersion among groups, considering the

average compactness. Connectivity is related to the

distance between neighboring observations within a

cluster. Dunn index is the ratio of the minimum

distance between two observations of different groups

to the maximum distance between two observations of

a single group; thus, the index seeks to maximize the

inter-cluster distance while minimizing the intra-

cluster distance. Silhouette measures the degree of

confidence in a clustering assignment of an observa-

tion. For the Connectivity index, the lowest value

indicates the optimal number of groups, whereas for

the remaining indices, the optimal number of groups is

selected according to the highest index value.

The internal validation indices were evaluated

through the clustering algorithms. An accurate algo-

rithm must provide reasonable results, even when it

assumes an incorrect number of clusters. Therefore,

we used different k numbers of groups for each

algorithm. Then, we compared the number of groups

suggested by the validation index with the value that

should have been suggested by the index according to

the simulation. Thus, we counted the number of times

the index suggested a number of incorrect groups as a

classification error rate (type III error (E III)). The

classification error might occur either because the

number of estimated groups is higher or lower than the

simulated one. The correct number of groups is usually

unknown beforehand in a real dataset so that we used a

simulated dataset to calculate the error rate of group

number selection (E III) for each method. We

discriminated between overestimation and underesti-

mation of the number of groups. Thus, overestimation

(E III?) occurred when the index selected a k higher

than the simulated one, and underestimation (E III-)

occurred when the index determined a lower k than the

simulated one.

Results

Evaluation of the performance of the compared

algorithms using simulated datasets

Regarding the clustering methods, BM had a null

MCR in all the simulations of the three evaluated

scenarios. K-means had a lower MCR than UPGMA

for the three scenarios. The MCR of the latter method

increased with increasing number of subpopulations

(Table 2).

We evaluated the performance of the cluster

algorithms for all simulated datasets, as described in

the Simulation dataset design section. For the first

simulation scenario (S1) including two subpopulations

(k = 2), the four validation indices had null type III

error (0%) of overestimation of the number of groups

when k-means and BM were used. Hence, the four

indices indicated two clusters for all replicates. By

contrast, when UPGMA was implemented, CH over-

estimated the number of groups 58% of the times,

Connectivity had null E III ? , whereas Dunn and

Silhouette overestimated only 2% of the times

(Table 3). The number of times that CH index applied

to UPGMA indicated the right simulated k was equal

to the number of times that it failed. Indeed, in 42 of

the 100 replicates, CH indicated k = 2 and in 41

replicates, it indicated k = 3 (instead of k = 2). In

order to understand this result, each cluster from each

dataset was analyzed in depth. The analysis consisted

of varying the number of k groups, counting the

number of individuals within each cluster and esti-

mating the deviation within (B(k)) and among groups

(W(k)). To verify the statistical significance among

groups, an AMOVA test (Excoffier 1992) and t-dis-

tributed stochastic neighbor embedding (t-SNE) (Hin-

ton and Roweis 2002) were run. The results of the

AMOVA indicated that the mean values and the

variability among the k = 3 groups were statistically

significant. However, the scatter plot of the ordination

data with t-SNE showed two major groups (Fig. 1). In

agreement with the result obtained through the sim-

ulation dataset, the smallest group was completely

nested inside one of the major groups (Fig. 2).

In the second simulation scenario (S2), including

five subpopulations (k = 5), the indices for the vali-

dation of the selected number of groups also had low

EIII- and E III? when BM was used for classification.

CH index matched the true number of groups 86% of
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the times. Dunn and Silhouette indices indicated the

correct number of subpopulations (k = 5) in the 100

replicates. By contrast, Connectivity index wrongly

indicated two groups in all replicates. In UPGMA, CH

overestimated that number, Connectivity index failed

in all replicates (100% –of times) and Dunn and

Silhouette underestimated the number of groups.

K-means also indicated the correct number of groups,

i.e. k = 5 in most cases, with the following percent-

ages for each of the indices: CH 71%, Dunn 78% and

Silhouette 76%. Again, Connectivity index misclassi-

fied the numbers of groups in all replicates. (Table 4).

In the third simulation scenario (S3), with k = 10,

CH underestimated the number of groups by 17% and

connectivity did so by 100%. Dunn and Silhouette

indices had null overestimation and underestimation

type III errors when clustering was performed via BM.

All the indices underestimated the number of groups

obtained via UPGMA and k-means, with a type III

error of 100%, except for CH, which overestimated the

number of clusters in all the simulations using

UPGMA, EIIIþ ¼ 1(Table 5).

Results of clustering algorithm behavior in real

maize data

Another step of this experiment to validate the

outcome obtained with the simulation dataset was to

compare algorithms and indices with a real dataset

published by Mazaheri et al. (2019a, b). In that work,

the authors determined the PGS using ADMIXTURE

procedure, and found k = 11 subpopulations. To

Fig. 2 Scatter plot of the t-SNE (t-distributed stochastic

neighbor embedding) for a dataset of simulation scenario 1

(S1) with k = 2 clusters. The represented number of groups

(k = 3) was suggested by the CH index with UPGMA algorithm;

groups are identified with different symbols (dots, squares and

triangles). Individuals belonging to the same group are

represented with the same symbol

Table 4 Overestimation error rate (E III ?) and underestima-

tion error rate (E III-) of the number of groups automatically

determined for four selection indices under three clustering

methods and a population genetic structure (PGS) simulated

with five populations. Each index was evaluated for k number

of groups (k = 2 to k = 15)

Method Indexes Group number (k) E III- E III?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

UPGMA CH 11 0 0 2 11 24 16 17 11 2 5 1 0 0 0.11 0.87

Connectivity 100 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Dunn 95 1 0 4 0 0 0 0 0 0 0 0 0 0 0.96 0.00

Silhouette 97 0 0 3 0 0 0 0 0 0 0 0 0 0 0.97 0.00

K-means CH 3 5 21 71 0 0 0 0 0 0 0 0 0 0 0.29 0.00

Connectivity 98 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0.00

Dunn 0 6 16 78 0 0 0 0 0 0 0 0 0 0 0.22 0.00

Silhouette 0 0 3 76 18 3 0 0 0 0 0 0 0 0 0.03 0.21

BM CH 4 0 10 86 0 0 0 0 0 0 0 0 0 0 0.14 0.00

Connectivity 52 24 20 4 0 0 0 0 0 0 0 0 0 0 0.96 0.00

Dunn 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0.00 0.00

Silhouette 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0.00 0.00

The column 5 depicts the true number of simulated groups or simulated PGS
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compare the results in terms of the number of

populations (groups) suggested by each validation

index, the index values were standardized. Standard-

ization consisted of subtracting the general mean of

each index from each observed value. Then, the

difference between the observed and the expected

value (mean) was divided by the standard deviation.

Standardization was performed for all values of the

validation indices obtained in all the clustering

methods.

In the standardized value, the CH, Dunn and

Silhouette indices are expected to present their highest

(maximum) value when the number of groups is 11,

i.e., the number of reference groups published by

Mazaheri et al. (2019b). By contrast, the Connectivity

index value is expected to be the lowest for k = 11.

Thus, in the standardized scale, the optimization

criterion of each validation index is conserved.

Figure 3 shows the behavior of each validation index

for each the clustering methods used. The CH,

Connectivity and Dunn indices indicated k = 2

groups, independently of the clustering method used.

Silhouette index proposed 5 subpopulations with

UPGMA, 13 with k-means and 15 with BM. Thus,

k-means and BM were closer to the number of groups

published by Mazaheri et al. (2019b) than UPGMA.

None of the indices reached its optimum value for

k = 11 with UPGMA and k-means. Nevertheless, the

Dunn index yielded the second highest value for the

expected number of groups (k = 11) in BM (Fig. 3).

We also compared the performance of the cluster-

ing method by estimating the percentage of mismatch

between the expected classification value of a geno-

type and the classification made by the clustering

algorithm evaluated in this work. Regarding the

genotype classification made by the methods, accord-

ing to the published number of subpopulations

(k = 11), UPGMA had the highest number of mis-

matches in the classification (58%), i.e., less than half

(42%) of the genotypes were assigned to the expected

group. The highest percentage of mismatch between

the expected classification and the one reported in the

published work was obtained with BM (18%). The

mismatch rate of BM was approximately three times

lower than that of UPGMA, whereas k-means had half

of the mismatch of UPGMA and twice as high as that

of BM, which was 31%.

Regarding the classification of genotypes to each

subpopulation set by Mazaheri et al. (2019b), Fig. 4

shows a heatmap illustrating the matching (diagonal)

Table 5 Overestimation error rate (E III ?) and underestima-

tion error rate (E III-) of the number of groups suggested by

four selection indices applied to molecular data whose

population genetic structure (PGS) was simulated with 10

populations and subjected to clustering with three methods.

Each index was evaluated for k number of groups (k = 2 to

k = 15)

Method Indexes Group Number (k) E III- E III?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

UPGMA

CH 0 0 0 0 0 0 0 0 0 0 0 6 17 77 0.00 1.00

Connectivity 100 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Dunn 100 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Silhouette 100 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.00

K-

means

CH 3 5 21 71 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Connectivity 98 2 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Dunn 0 6 16 78 0 0 0 0 0 0 0 0 0 0 1.00 0.00

Silhouette 0 0 3 76 18 3 0 0 0 0 0 0 0 0 1.00 0.00

BM CH 0 0 0 0 0 0 0 17 83 0 0 0 0 0 0.17 0.00

Connectivity 17 17 0 0 16 17 33 0 0 0 0 0 0 0 1.00 0.00

Dunn 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0.00 0.00

Silhouette 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0.00 0.00

The column 10 depicts the true number of simulated groups or simulated PGS
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between the classification published byMazaheri et al.

(2019b) and that obtained by BM in the present work.

The classification mismatch between methods is

observed outside the diagonal. Darker colors indicate

a greater degree of matching. The results show that

BM had a perfect classification of the four stiff stalk

populations (SS-B13, SS-B37, SSB73 and SS-

BSSSC0), of the tropical subpopulation, and of one

of the non-stiff stalk subpopulations (NSS-Mo17). The

other non-stiff stalk subpopulation (NSS-Oh43) was

correctly classified 71.2% of the times by BM,

whereas the remaining genotypes were clustered with

sweet corn. The genotypes within Iodent subpopula-

tion were classified correctly 97.1% of the times,

whereas 2.9% of the times they were assigned to the

sweet corn group. The group composed of broad

origin-public lines was correctly classified 65.3% of

the times. The rest of times (34.5%) they were grouped

with the popcorn and tropical lines. The popcorn

subpopulation was correctly classified 58.3% of the

times, and was confused mostly with tropical lines,

sweet corn and NNS-Mo17. Finally, the sweet corn

population was confused almost entirely with popcorn

(Fig. 4).

Discussion

Modern maize hybrids are the result of crossing an

inbred line from one heterotic pattern with an inbred

line from a different heterotic pattern (Lee and Tracy

2009). The concept of heterotic patterns, or heterotic

groups, was proposed by breeders as a means of

maximizing the amount of hybrid vigor (Reif et al.

2005; Schnable and Springer 2013; Meena et al.

2017). Classifying the elite germplasm from different

heterotic groups is an important task in any breeding

program to enhance crossings (Meena et al. 2017).

Classification of heterotic patterns is generally based

Fig. 3 Scatter plots of the standardized value of four validation

indices, CH ( ), connectivity ( ), Dunn ( ) and Silhouette

( ), as a function of the number of evaluated groups, ranging

from k = 2 to k = 15, for the real dataset published by Mazaheri

et al. (2019a). All the validation indices were evaluated for each

of the three clustering methods: UPGMA (left), k-means

(center) and Bayesian Method (right). For the indices CH,

Dunn and Silhouette, the highest number indicates the optimum

number of groups, whereas for Connectivity, the lowest value is

the one indicating the optimum number of groups

Fig. 4 Heatmap of the confusion matrix of the matching

percentage between reference classification of the real data set

published by Mazaheri et al. (2019a) and that obtained by the

Bayesian Method (BM). A value of 100 indicates exact match

(100%) between the reported classification and that obtained by

BM, whereas a value of zero indicates null matching (0%)
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on several criteria, such as pedigree, molecular

marker-based associations, and performance in hybrid

combinations (Lee and Tracy 2009; Vittorazzi et al.

2018). In this sense, molecular markers have shown to

be very useful to classify inbreds in heterotic groups

(Lu and Bernardo 2001; Li et al. 2002; Schnable and

Springer 2013) and elucidate the underlying PGS.

Finding the number of genetic groups in a set of

individual genotypes and assigning individuals to the

groups have become essential tasks in population

genetics (Beugin et al. 2018) as well as in other areas,

such as plant genetic breeding, where the phenotypic

information is complemented with the genotypic one

(Thorwarth et al. 2017; Haile et al. 2018; Yuan et al.

2020).

The new technologies have improved the genetic

selection process. The PGS search in a high-dimen-

sional data collection, such as those generated by SNP

molecular markers, implies an increased complexity in

the management of massive databases. While the

growth of the dataset size has been accompanied with

enhanced computing capabilities, population geno-

mics is more than a simple ‘‘big data’’ of population

genetics. The targets of study are ‘‘genomes’’ rather

than just ‘‘multiple genes’’. A large number of

multivariate methods have been proposed for the

automatic identification of subgroups within popula-

tions. However, implementing analytical techniques

that take into account genetic structures and accurately

identify patterns in the context of massive genomic

data of thousands of individuals poses a challenge both

at the biological and statistical-methodological levels

(Dutheil 2020). In this sense, cluster analysis is a

widely used tool to classify genotypes when there is no

previous information of a pattern or underlying

structure that generates groups. Several cluster algo-

rithms do not require previous information about the

groups, making the clustering analysis a widely used

tool that has received great attention in several areas of

application (Hedrick 2005).

However, the use of clustering algorithms involves

a number of likely complex decisions, such as metric

selection and, in the case of hierarchical algorithms,

the clustering method. Metric selection depends

strongly on the nature of the variables (Bruno and

Balzarini 2010). For this reason, selecting the number

of groups beforehand may pose a problem to the

researcher dealing with real data. One way of obtain-

ing an automatic response of the number of groups or

PGS is by applying validation indices. In this work,

based on simulated PGS scenarios, we evaluated the

quality of the partitions generated by cluster algo-

rithms. Additionally, we evaluated the goodness of a

clustering structure based on internal validation

indices. When the correct partition is available by

simulation it is possible to estimate its quality by

measuring how closely each simulation situation is

related to the cluster and how well separated a cluster

is from other clusters. Thus, we intend to answer the

question of whether there is one clustering method

and/or validation index that is most robust to elucidate

the underlying PGS in a panel of maize genotypes.

Our results showed that the BM approach was the

best performing one for genotype classification in the

three evaluated scenarios. UPGMA was the worst

performing one, with the highest MCR, and with the

misclassification increasing as the number of simu-

lated groups increased. UPGMA is based on the mean

of the differences between groups for the estimation of

the number of simulated groups. Since the mean is a

measure of central tendency, it tends to ‘‘approxi-

mate’’ or homogenize the differences. Then, by

shortening the distances between individuals,

UPGMA tends to generate unbalanced groups, with

a few groups with a large number of individuals and

several small groups with very few individuals. These

clusters with so few individuals generate an overes-

timation of the true number of groups. For a deeper

understanding of the MCR of UPGMA, we analyzed

the classifier vectors of the genotypes generated by

this algorithm for S1 to calculate the number of

individuals within each group for k = 2 and k = 3, in

each of the replicates where the number of selected

groups was different than the simulated one. For

instance, when we used UPGMA and the CH index,

the latter indicated k = 3 instead of k = 2 in 41/100

replicates (Table 3).

For the first replicate, although the number of

simulated subpopulations in the PGS was k = 2,

UPGMA generated a group with 997 individuals (here

identified as group A) and another group with 3

individuals (here identified as group B). When the

same dataset was set to form k = 3 groups, the number

of individuals of group B also had three individuals

and group A (the major group of individuals) was split

into two new groups of 497 and 500 individuals. This

behavior, consisting of generating a group with very

few individuals and another one with a large number,
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was observed in the 100 replicates of S1. Due to the

great imbalance of these groups, the AMOVA (Ex-

coffier et al. 1992) indicated statistically significant

differences between groups, which is explained by the

great difference between individuals of the small

group and individuals of the other groups. However,

when t-SNE multivariate technique was used to

visualize groups in high-dimensional data, the algo-

rithm indicated two groups, with the group with fewest

individuals being completely nested in the other group

(Group A). This result matched with the simulated

PGS of k = 2 (Fig. 1). UPGMA showed the same

behavior when we analyzed in depth a classifier vector

for k = 4, again forming two major groups, with

nA = 500 individuals and nB = 491 in 40% of the 100

replicates, and two groups with a lower number of

individuals (nC = 6 and nD = 3) (data not shown). In

other words, although UPGMA formed more clusters

than expected, two of them were large and two

had\ 10 % individuals of the total of individuals to

be classified.

Thus, although the number of groups suggested by

UPGMA was not that expected by the simulation

(k = 2), two clusters comprised 99% of the data. The

differences between simulated groups was estimated

through an Fst = 0.03 for the 100 replicates, which is

assumed to be low. Given the characteristics of

UPGMA, individuals with a greater divergence,

achieved only by random, are classified as different

and assigned to separate groups. This behavior rein-

forces the need to describe each cluster; i.e., as a

minimum, the number of individuals that fall within

each cluster should be identified, rather than having a

totally automated procedure to make the decision on

the number of clusters. Finally, the k-means method

had an intermediate behavior between those of

UPGMA and BM. This result may be due to the fact

that k-means minimizes the within-group distances

and assigns an individual to a group when the distance

between that individual and the centroid is minimum.

Therefore, the groups formed by k-means are more

compact, with clearer divisions than those obtained by

UPGMA.

Internal validations indices are based on the

clustering partition as input to assess the quality of

the clustering. Hence, we selected measures that

reflected the compactness, connectedness and separa-

tion of the cluster partition. Connectedness indicates to

what extent genotypes are placed in the same cluster as

their nearest neighbors in the data space, and is here

measured by connectivity (Handl and Knowles 2005).

Compactness assesses cluster homogeneity, usually by

looking at the intra-cluster variance, while separation

quantifies the degree of separation between clusters

(usually by measuring the distance between cluster

centroids). Since compactness and separation demon-

strate opposing trends –with increasing number of

clusters, compactness increases, whereas separation

decreases–, popular methods combine the two mea-

sures into a single score. The Dunn and Silhouette

indices are examples of non-linear combinations of

compactness and separation.

In our results, the CH did not always detect the

same simulated PGS, regardless of the clustering

method used. When the distances between groups are

small, the numerator of the CH index tends to be lower

and, consequently, the index value decreases. Like-

wise, if compactness within a group is low due to high

intra-group variability, the distances between individ-

uals within a group will be similar to distances

between groups. Consequently, the coefficients of

distances between groups can also be similar between

other groups. A smaller denominator of CH yields a

lower number of groups; the latter fact may lead to the

establishment of a number of groups similar, but not

equal, to the simulated one, as it occurred in our

results. Since the optimization criterion of CH is the

maximum index value, the greater the dispersion

between groups, the greater the CH. Thus, CH index

applied to UPGMA tended to overestimate the number

of groups, since this method generates unbalanced

groups. Groups with a few individuals have low

internal dispersion but generate a greater dispersion

among groups. At the same time, this generates a

higher CH coefficient, indicating a higher number of

groups than expected. By contrast, CH applied to the

k-means tended to underestimate the number of

groups in scenarios with k[ 2. This can be explained

by the capacity of the method to form highly

compacted groups, reducing the denominator of CH

and increasing its value. BM and non-hierarchical

k-means method showed a similar behavior, since

each individual was assigned to a group according to

its highest probability of belonging, and highly

compacted groups were formed.

Regarding Connectivity index, in scenarios with a

group number other than k = 2, it had the highest

underestimation error of the number of groups,
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regardless of the clustering method used. This index

estimates the distance between each individual and its

nearest neighbors. If the neighbor belongs to the

individual’s group, then the index assigns a zero value;

by contrast, if the neighbor belongs to another group,

then it adds 1/j, where j indicates the j-th nearest

neighbor. Thus, the lower the number of underlying

groups of PGS, the lower the value of Connectivity

coefficient. As a consequence, our results show the

high rate of underestimation of the number of groups.

For instance, in the S2, when the k-means method was

applied, the connectivity index proposed two groups

(k = 2) in 98% of the replicates, when it had to

indicate k = 5.

Finally, Dunn and Silhouette indices had the best

performance with the BM, showing a MCR of zero in

all cases (Tables 2, 3 and 4). Nevertheless, this result

can be misleading for Silhouette index. When this

index is applied in the BM context, the number

suggested should be carefully examined. Indeed, given

the way Silhouette works in the BM context, it is very

likely that this index is emulating the same confidence

as BM. This possibility may be explained by the fact

that BM estimates the probability that an individual

belongs to a group, whereas the Silhouette index

determines the number of groups based on the degree

of confidence of the membership of an individual to

that group. In this sense, the higher the probability of

an individual to belong to a group, the higher the

confidence. Thus, Silhouette index could be highly

correlated with BM; therefore, despite its zero error

rate, it would not be the most appropriate validation

index combined with BM. Moreover, Silhouette index

applied to UPGMA indicated two groups in all cases,

regardless of the simulated configuration. Indeed, it

recommended two groups instead of five in 97% of the

replicates, and two groups instead of 10 in 100% of the

times. Regarding k-means, notably, the Dunn and

Silhouette indices presented the same behavior when

the simulation was set with more than two groups, i.e.

both indices indicated five groups 78% of the times

when the simulated PGS was of 10 groups. Therefore,

we conclude that Silhouette index is not suitable for

these studies and that Dunn works well with BM.

Finally, when PGS simulation was made considering

k = 10, none of the indices yielded the correct number

of groups for k-means and UPGMA. Thus, it is

necessary to characterize the groups obtained by these

methods and not to rely on automatic mechanisms.

The BM method also showed the best performance

to classify the genotypes with the real dataset used for

illustration, whereas UPGMA suggested groupings

that differed greatly from expected. In this case, none

of the validation indices indicated the established

number of subpopulations, with Dunn being the only

one to show a relative maximum for k = 11 with the

classification obtained by BM. This k value would be

in agreement with the biological information provided

by Mazaheri et al. (2019a) using ADMIXTURE. The

k = 11 subpopulations reported by the authors was

based on a subset of 93,991 SNPs and knowledge of

pedigree, molecular marker-based associations, and

performance in hybrid combinations. We worked with

the whole SNP panel because we did not have

information on the cleaning made by the authors and

therefore, any selection would have resulted in a

different molecular dataset. However, it is known that

the higher the number of SNP markers, the greater the

molecular information (Gao et al. 2012). Thus, we

decided to use all the available markers rather than

selecting a subset of the same size (93,991 SNP), but

of a probably different combination.

The fact the results of BM were closest to those of

ADMIXTURE is not surprising and is very likely

because ADMIXTURE and BM are based on the same

estimation method. Both estimate the probability of

individuals to belong to a group; however, the former

does so based on maximum likelihood estimations and

the latter, through a Bayesian model. However, each

model has unique characteristics that may contribute

to its efficiency in final classification. For example,

BM can incorporate data on linked loci (Falush et al.

2003), whereas ADMIXTURE uses maximum likeli-

hood to assign the probability of an individual to

belong to a group (Lawson et al. 2018). Yet, both

methods are equally capable of differentiating groups

whose allelic frequency distributions are not extre-

mely different. This feature makes them suitable for

searching PGS in several research works aiming at

both species conservation and genetic improvement.

In our simulation study, BM yielded perfect

classifications (with no distance between the expected

and the observed value) at a genetic divergence of

Fst = 0.03. The dataset used for illustration had mean

divergence values between populations close to 0.03.

Latch et al. (2006) evaluated the performance of BM

using the software STRUCTURE in wild populations,

i.e., populations not subjected to genetic breeding; the

123

Euphytica (2021) 217:195 Page 15 of 19 195



method was capable of making good classification

when the genetic divergence values were close to

Fst = 0.1 (Latch et al. 2006). The behavior of BMwith

the software STRUCTURE was evaluated by Evanno

et al. (2005) in a simulation study in several dispersal

scenarios; they found a better performance of BM in

more complex structures than that of an island model

(almost no genetic flow) (Latch et al. 2006). On the

contrary, in our study we did not assume any genetic

model. The dataset used for illustration consisted of a

panel of genotypes representing the main heterotic

groups used in North America. The genetic divergence

values estimated among 11 subpopulations was Fst =

0.029, a value similar to the simulated ones. On the

other hand, we were able to compare the illustrated

dataset and the simulated scenarios because of their

similar genetic divergence among subpopulations.

The aim of the simulation was to represent a broad

spectrum of possible combinations of inbred lines used

to obtain maize hybrids that will originate different

PGS. In our work, the divergence values estimated

between the subpopulations of the real data panel were

30% smaller than the values reported by Latch et al.

(2006). Our results indicate that even at low diver-

gence levels, the compared methods were able to

identify groups with a high degree of matching with

the PGS reported by Mazaheri et al. (2019b). How-

ever, in some cases, the MCR was high, as in the case

of genotypes of the Sweet corn population, which were

clustered with genotypes of the Popcorn population

95% of the times (Fig. 4). The genetic divergence

value estimated between these populations in this

work was 0.011. Latch et al. (2006) reported that for an

Fst = 0.02, the software STRUCTUREwas not able to

identify the true number of subpopulations and

suggested that around Fst = 0.02 the software fails to

detect the number of existing groups or PGS. This

phenomenon would explain the high MCR between

these populations, which are not genetically related

and whose heterotic groups are different, but which do

share characteristics that make them different from

other improved maize varieties, such as early flower-

ing, different plant and tassel architecture, low kernel

row number and low germination rate. Some inbreds

of Sweet corn and Popcorn population may have been

submitted to selection process to improve agricultural

traits that made them more similar to each other and

more different than themaize grown for grain (Lee and

Tracy 2009).

The genotypes present in these subpopulations may

be involved in evolutionary processes of genetic

fixation or in differentiation processes that can still

not be mathematically differentiated by computational

algorithms. Quantifying genetic differentiation

between individuals and establishing different sub-

populations with the obtained values have been the

pursuit of geneticists since the rise of population

genetics (Wright 1949). Latch et al. (2006) compared

the relative performance of three Bayesian methods to

search for genetic structure, including BM, and

concluded that, despite its best performance, this

method assigns correctly individuals to their subpop-

ulation of origin at a minimum Fst of 0.05. Moreover,

the authors suggested that for Fst values below 0.03,

BM does not identify a clear genetic structure and that

at Fst below 0.02, the algorithms fail to identify the

correct number of subpopulations; they suggested that

these software tools provide a classification with low

probability when genetic divergence between groups

(Fst) is low. In this work, while the studied population

was not wild, BM showed a similar behavior to that

reported by Latch et al. (2006), although we worked

with smaller values than those proposed in that work.

Plant genetic breeding programs intend to obtain

promising genotypic lines that have better plant health

traits, adaptation to abiotic stress and high production.

In this sense, unlike wild populations, crossings are

targeted, reducing the genetic base, i.e., commercial

hybrids usually have a common ancestor (Acosta

2009) and, therefore, their levels of divergence are

expected to be lower than those of a wild population.

ADMIXTURE was proposed as an alternative to

BM based on its estimation of the degree of related-

ness due to common ancestry between individuals.

That estimation is performed by maximum likelihood

and makes the process computationally more efficient

than STRUCTURE software (Alexander and Lange

2011). ADMIXTURE uses an algorithm based on

ancestry in unrelated individuals and adopts the

likelihood model embedded in genetic structure. The

approach is similar to that of BM; both programs

model the probability of genotype membership to a

group using ancestry proportions and frequencies of

population alleles. In addition, they estimate allele

frequencies of populations simultaneously with ances-

try proportions. The constant development of pro-

grams that optimize computing time with algorithms

that can process large databases have led us to explore
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possible differences in performance among methods.

The performance of a method depends on the nature of

data structure. Here, we compared algorithms

designed to work with large databases from SNP

markers with other clustering methods, like UPGMA

and k-means, used in diverse contexts. Our results

confirm that BM has a good capacity to infer PGS. The

information provided in this study offers a robust

alternative to unveil PGS, thereby facilitating future

population studies and genetic improvement strategies

in maize breeding programs. Additionally, our results

may help maize breeders to incorporate the identified

genetic variation into hybrid breeding programs. The

present findings might also have broad implications

for other crop species.
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