SAN2021 EBOOK

EXECUTIVE BOARD

DR. LILIANA CANCELA, PRESIDENT IFEC (UNC-CONICET) / DF (FCQ-UNC)

DR. MARTA ANTONELLI, VICE-PRESIDENT IBCN-CONICET, FMED UBA

DR. MARIO GUIDO, PAST-PRESIDENT CIQUIBIC (FCQ, UNC-CONICET)

DR. MARÍA ANA CONTÍN, SECRETARY CIQUIBIC (FCQ, UNC-CONICET)

DR. JUAN E. FERRARIO, TREASURER IB3 (UBA), CONICET / DFBMC (FCEN-UBA)

DR. MARCELA BROCCO, VOCAL INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS (IIB-UNSAM)

DR. PATRICIA SETTON, VOCAL IQUIFIB (UBA-CONICET) / FFYB UNIVERSIDAD DE BUENOS AIRES.

DR. NICOLÁS UNSAÍN, VOCAL INIMEC (UNC-CONICET)

ORGANIZING COMMITTEE

JORGE MARIO ANDREAU IBYME - FAC DE PSICOLOGIA, UNSAL - INVESTIGADOR

MARTA ANTONELLI FAC DE MEDICINA - UBA VICEPRESIDENTA SAN

LILIANA CANCELA IFEC, UNC. PRESIDENTA SAN - COORDINADORA

CAMILA COLL IFIBIO. DOCTORANDA

MACARENA FERNANDEZ IIPSI-CONICET-UN. POST-DOC

GRACIELA LUJAN MAZZONE UNIVERSIDAD AUSTRAL. INVESTIGADORA

DIEGO RAYES INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS DE BAHÍA BLANCA (INIBIBB). INVESTIGADOR

PATRICIA SETTON FFYB, UBA. VOCAL SAN

ALEJANDRO SODERO BIOMED, UCA. INVESTIGADOR

AGOSTINA STAHL IFIBIO. DOCTORANDA

Neural modulation of feeding behaviors in C. elegans

María Gabriela Blanco¹, Agustina Zabala², Mark Alkema³, María José De Rosa¹, Diego Rayes¹

1. Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), 2. Departamento de Biología, Bioquímica y Farmacia - Universidad Nacional del Sur, 3. University of Massachusetts Medical School (UMass)

Presenting Author: María Gabriela Blanco, mgblanco@inibibb-conicet.gob.ar

Feeding is a complex behavior controlled by environmental and internal physiological factors. The nervous system modulates motor activity depending on the availability of food and the nutritional state. When animals find food after a fasting period, they stay in a small area to exploit the new source of nutrients. Biogenic amines, serotonin (5-HT) and norepinephrine (NE) are involved in the modulation of food-related behaviors in mammals. However, the molecular mechanisms underlying this regulation are not entirely clear. Given its simplicity and highly conserved neurological pathways, C. elegans is a powerful organism that can be used to provide insights into the neural circuits modulating feeding behaviors.

When starved worms find food, 5-HT is released to decrease locomotion and promote food intake. We found that mutants lacking tyramine (TA), NE analog in invertebrates, are hypersensitive to the slowing-down response upon food encounter, resembling starved worms. This suggests that 5-HT and TA exert antagonistic effects. Moreover, the activity of tyraminergic neurons decreases in absence of food. In addition, serotonergic activity is enhanced in TA-deficient mutants. These results allow us to hypothesize that the inhibition of the tyraminergic activity during fasting favors the exacerbation of 5-HT-dependent effects on refeeding. Given the conservation in neuronal components, it is likely that our studies are significant to understand feeding behaviors in other animals.