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Abstract 27 

Varroa destructor, a parasitic mite of the Western honey bee Apis mellifera L., is a serious 28 

threat to colonies and beekeeping worldwide. Population genetics of the mite has provided 29 

information of two mitochondrial haplotypes infecting honey bee colonies, named K (Korea) 30 

and J (Japan). In the American continent, the K haplotype was most frequently found. The aim 31 

of this research was to study the genetic diversity of V. destructor populations from the major 32 

beekeeping region of Argentina, previously unexplored. Phoretic mites were collected from 33 

managed A. mellifera colonies in ten localities, and four mtDNA regions (cox1, nad4, nad4L, 34 

and nad5) were analyzed. Based on cox1 sequence, the exclusive presence of K haplotype was 35 

detected. Two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in 36 

nad4 sequence. The frequency of these sub-haplotypes significantly correlates with the 37 

geographic latitude. The occurrence of site heteroplasmy was also evidenced for this gene. The 38 

nad4 mtDNA marker appears to be a sensitive marker to detect genetic variability in mite 39 

populations. The site heteroplasmy emerges as a phenomenon that could be relatively frequent 40 

in V. destructor.  41 

 42 
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 45 

Introduction 46 

 47 

Varroa destructor Anderson and Trueman (Acari: Varroidae) is an ectoparasite considered the 48 

main pathogen of the western honey bee (Apis mellifera L) colonies worldwide (Neumann and 49 

Carreck 2010; Rosenkranz et al. 2010; VanEngelsdorp et al. 2011; Le Conte and Mondet 2017). 50 

This species, initially named Varroa jacobsoni, is native to Southeast Asia. During the first part 51 

of the twentieth century, this mite shifted from its natural host, the Asian honey bee Apis cerana 52 

Fabricius, to A. mellifera and thereafter rapidly spread all over Europe, North America, South 53 
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America, Africa, and the Asia-Pacific region (Matheson 1995; Oldroyd 1999; Anderson and 54 

Trueman 2000). 55 

V. destructor was first introduced in South America (Paraguay) when beekeepers acquired A. 56 

mellifera queens from Japan (De Jong et al. 1982), leading to a subsequent invasion of the 57 

Argentinean territory (Montiel and Piola 1976). The mite was first detected in Argentina in 58 

1976, in the northern province of Formosa, next to the Paraguayan border (Maggi et al. 2012). 59 

Since its introduction, the mite has dispersed all over Argentinean colonies, producing a 60 

negative impact on local honey bee populations and currently representing the major threat to 61 

the beekeeping industry (Eguaras and Ruffinengo 2006; Vandame and Palacio 2010; reviewed 62 

by Maggi et al. 2016).  63 

The genetic variability of V. destructor populations has been assessed at a global scale 64 

by using mitochondrial and nuclear markers (Anderson and Trueman 2000; Evans 2000; 65 

Solignac et al. 2005; Navajas et al. 2010; Dynes et al 2016; Dietemann et al. 2019). Based on 66 

mitochondrial DNA markers, multiple haplotypes have been described for V. destructor 67 

populations infesting Apis cerana and/or Apis mellifera (Anderson and Trueman 2000; Zhou et 68 

al. 2004, Navajas et al., 2010). However, only two of them, the Korean (K) and the Japanese (J) 69 

haplotypes, were reported to have successfully reproduced in A. mellifera colonies (Anderson 70 

and Trueman 2000). The J haplotype was detected in Japan, Thailand, and some regions of 71 

Brazil, whereas the K haplotype was found globally distributed (de Guzman et al. 1999; 72 

Anderson 2000; Anderson and Trueman 2000; Garrido et al. 2003; Solignac et al. 2005; Guerra 73 

et al. 2010, Kelomey et al. 2017; Dietemann et al. 2019). Specifically, for South America, 74 

previous studies detected the presence of the K haplotype in Venezuela, Chile, Uruguay, 75 

Colombia, Brazil and Argentina (Garrido et al. 2003; Guerra et al. 2010). Subsequently, Maggi 76 

et al. (2012) analyzed cox1 mt sequences and inferred the exclusive presence of the K haplotype 77 

and a low genetic variability in mite populations of central-eastern and southern regions of 78 

Argentina.  79 

Several studies on the genetic variation of V. destructor populations have used the 80 

aforementioned mtDNA marker (cox1 gene). This marker has demonstrated to be useful to 81 
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identify mites at the species level and to define particular populations (‘haplogroups’) (Koeniger 82 

et al. 2002; Zhou et al. 2004; Solignac et al. 2005; Strapazzon et al. 2009; Muñoz et al. 2008; 83 

Navajas et al. 2010). As variation in this gene region is less than 2% among mites of the same 84 

species (Anderson and Trueman 2000), the use of this marker alone may not be sensitive 85 

enough to detect inter-population variation. Navajas et al. (2010) found that the combined use of 86 

cox1 and other mitochondrial DNA markers (atp6, cox3, and cytb) allows the detection of 87 

genetic variation both within and between different V. destructor populations worldwide (see 88 

also Elbeaino et al. 2016 and Farjamfar et al. 2018). In fact, based on these markers, the 89 

occurrence of new sub-haplotypes within the K haplotype of V. destructor has been described 90 

(Navajas et al. 2010; Gajic et al. 2013). Another mtDNA gene, encoding the NADH 91 

dehydrogenase, has proven to be highly polymorphic in a large number of insect species 92 

(Michel et al. 2006; Meraner et al. 2008; Fernández et al. 2013) and arachnids (e.g. Masta 2000; 93 

Li et al. 2017; Liu et al. 2018). Although this mt marker has been successfully applied to 94 

population genetic studies on acari (e.g. Li et al. 2019), its use has not been previously reported 95 

in genetic studies of V. destructor populations.  96 

Preliminary results obtained through PCR and sequencing suggest that size 97 

heteroplasmy (mtDNA molecules within the same cell or individual differing in nucleotide 98 

sequence size) is present in V. destructor (Navajas et al. 2002). In a recent study on Serbian 99 

populations of the mite, site heteroplasmy (mtDNA molecules within the same cell or individual 100 

differing in the nucleotide composition) was evidenced by the presence of double peaks in 101 

punctual positions of cox1 and cytb gene sequences (Gajic et al. 2016; 2019).   102 

The aims of the present study were to analyze the genetic variability of V. destructor 103 

populations belonging to the main apicultural area of Argentina by using previously unexplored 104 

mtDNA markers (three subunits of the gene encoding the NADH dehydrogenase) and to 105 

evaluate at nucleotide level the presence of heteroplasmy in these populations. This study sheds 106 

light on how genetic variability of V. destructor is distributed within and between 107 

geographically distant populations of Argentina and contributes to developing new markers that 108 

may be applied to future studies on worldwide mite populations.       109 
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       110 

Material and methods 111 

 112 

Sample collection  113 

 114 

Managed colonies of A. mellifera L. from apiaries in ten localities of Argentina were sampled. 115 

These localities, selected due to their importance in apicultural activities, are situated in 116 

different provinces of the country representative of subtropical and temperate climates (Table 1, 117 

Fig. 1). In all cases, mites were collected alive from the bodies of adult worker bees (phoretic 118 

mites) and stored in labeled plastic flasks containing ethanol 70% (v/v). At least 20% of the 119 

total honey bee colonies were randomly sampled from each apiary (one apiary for each 120 

locality). The number of sampled colonies per apiary ranged from three to ten, according to the 121 

size of the apiary. Almost five individual mites were randomly collected from each colony. 122 

When a sampled colony was found to have a low mite load, all available individuals were 123 

analyzed (≥3). A total of 50 honey bee colonies were sampled, and 182 mites were collected. 124 

One worker honey bee from each sampled colony was preserved for genetic characterization 125 

(Table 1).  126 

 127 

DNA extraction and PCR amplification 128 

 129 

Total DNA was extracted from single female mites according to the method proposed by 130 

Baruffi et al. (1995) with the following slight modifications associated with the size of the mite: 131 

(i) all volumes were reduced to half; (ii) centrifugation times were increased; (iii) final elution 132 

was reduced to 10 μL of TE buffer (Tris base 10mM; EDTA 1mM). The DNA samples were 133 

quantified using Nanodrop 1000 (Thermo Scientific) and stored in a freezer at -20 °C.  134 

 Four fragments of the mtDNA, including a segment of the cytochrome oxidase 135 

subunit I (cox1) gene and three regions corresponding to the NADH dehydrogenase enzyme 136 

gene [subunit 4 (nad4), subunit 4L (nad4L), and subunit 5 (nad5)], were amplified by 137 
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polymerase chain reaction (PCR) from each V. destructor DNA sample. In particular, cox1 gene 138 

fragment was amplified using a forward primer (10KbCOIF1, Navajas et al. 2010) and a reverse 139 

primer designed from the reference sequences (GenBank accession number AY163547.1 from 140 

Evans and Lopez 2002; and AJ493124.2 from Navajas et al. 2002). Nad regions were amplified 141 

using newly designed primers (Table S1). These primers were designed considering the 142 

presence of nucleotide changes (potential polymorphic regions) between the available reference 143 

sequences from the V. destructor mtDNA genome. An initial set of 30 randomly selected DNA 144 

samples (3 individuals per population) was analyzed for all the aforementioned mtDNA markers 145 

in order to explore the presence of polymorphisms in V. destructor Argentinean populations. 146 

The DNA set was expanded for mtDNA regions showing nucleotide variation, considering a 147 

representative number of DNA samples for each population. 148 

PCR amplifications were performed in a final volume of 20 µL. The reaction mix was 149 

prepared with 50 mM Tris-HCl pH 8.3, 3 mM MgCl2, 2% Sucrose and 0.25 mg/ml BSA, 200 150 

µM of dNTP, 0.5 µM of each oligonucleotide, 0.04 U/µL Taq polymerase (Inbio HighWay, 151 

Tandil, Argentina), 1 µL of the template DNA, and distilled water (Invitrogen, Ultrapure). PCR 152 

cycling conditions were as follows: initial denaturation at 94 °C for 5 min followed by 40 cycles 153 

of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, and an extension at 72 °C for 80 s. 154 

An extra elongation step at 72 °C for 10 min was also applied. All PCRs were performed on an 155 

Applied Biosystems Veriti ™ Thermal Cycler. PCR products were electrophoresed in 1.5% w/v 156 

agarose gels in 0.5X TBE, stained with 1 µg/mL of ethidium bromide, and visualized under UV 157 

light (Syngene).  158 

Mitochondrial haplotypes of worker honey bees for each analyzed colony were assessed 159 

following Pinto et al. (2003). 160 

 161 

Sequence analyses 162 

 163 

PCR products were purified using the QIAquick PCR Purification Kit (Qiagen) following the 164 

manufacturer’s protocol. The quality and quantity of the purified samples were evaluated using 165 
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Nanodrop 1000 (Thermo Scientific). The purified PCR samples were sequenced using the 166 

forward and reverse primers in an automatic capillary sequencer (Hitachi ABI 3130, Applied 167 

Biosystem) at the DNA Sequencing and Genotyping Service, SIGYSA – CICVyA (INTA, 168 

Castelar, Buenos Aires, Argentina). All obtained sequences were compared to the GenBank 169 

(NCBI) nucleotide database using BLASTN (Altschul et al. 1990). Sequences were analyzed 170 

using BioEdit (Hall1999). Alignments were performed using the reference sequences from the 171 

complete mitochondrial DNA of V. destructor (Evans and Lopez 2002; Navajas et al. 2002), 172 

and the individual sequences of the K haplotype obtained in previous studies (e.g. Anderson and 173 

Trueman 2000; Navajas et al. 2010). 174 

 175 

Heteroplasmy verification 176 

 177 

Nad4-nad4L PCR products showing double peaks in the chromatograms were cloned using the 178 

pGEM-T Easy kit (Promega) according to the manufacturer’s instructions. We selected and 179 

analyzed at least two samples from nad4-nad4L PCR fragments (Table S1). Ten clones of each 180 

sample were sequenced using SP6-T7 primers. The obtained sequences were analyzed as 181 

mentioned above. Only sequences from individuals exhibiting a double peak at 8694 nucleotide 182 

position (the most frequently detected change) were obtained. Other identified double peaks 183 

were considered potentially heteroplasmic sites because it was not possible to obtain good 184 

quality sequences from the cloned fragments. See details in Table 2.  185 

 186 

Statistical analysis 187 

 188 

To evaluate possible differences in the percentage of each detected sub-haplotype (KArg-N1 189 

and KArg-N2) among populations, Generalized Linear Mixed Models (GLMM) were 190 

performed including the locality (V. destructor population) as a fixed factor and the colony 191 

where mites were sampled as a random factor. The same analysis was performed for the 192 

variable percentage of heteroplasmy. Normal distributions of means and residues were tested 193 
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using the Shapiro-Wilks and Levene tests. To obtain the most appropriate structure of variance, 194 

the Akaike information criterion was used. To evaluate differences in both haplotypic and 195 

heteroplasmy frequencies among localities, multiple comparisons were performed using Fisher 196 

LSD (α = 0.05).  197 

Differences in haplotypic and heteroplasmy frequencies between regions (subtropical vs 198 

temperate) were evaluated using X
2
 test. To explore possible associations between the 199 

haplotypic frequencies or heteroplasmy frequency of V. destructor with honey bee genetics (% 200 

of African (A) lineage) and climatic and geographical variables (maximum and minimum 201 

temperatures in January; longitude and latitude), Spearman correlations were calculated. The 202 

climate information was obtained from the agro-meteorological stations closest to the sampled 203 

localities using the SIGA system version 1.0.5 (SIGA, 2018) developed by INTA. Possible 204 

differences in the percentage of colonies showing mites with different haplotypes (% of colonies 205 

with co-infestation) among populations were evaluated using X
2
 test. Statistical analyses were 206 

performed with Statistica V 6.0 (Statsoft 2001) and InfoStat 2014 (Di Rienzo et al. 2014).  207 

 208 

Results 209 

 210 

Sequence analysis and haplotype identification 211 

 212 

The sequence analysis of cox1 (1166 nucleotides) confirmed the presence of the K haplotype for 213 

all samples and evidenced 100% identity among them and with the sequences reported as K1-1 214 

(GQ379056) and K1-2 (GQ379057) by Navajas et al. (2010) (Fig. S1).  215 

A total of 2171 nucleotides were obtained from the amplicon sequencing corresponding 216 

to nad4, nad4-nad4L, and nad5 (Table S1). The comparison between the Argentinean and the 217 

reference sequences revealed two and five punctual changes for nad regions compared to the 218 

complete mitochondrial genome of V. destructor (AY163547.1, Evans and Lopez 2002, and 219 

AJ493124.2, Navajas et al. 2002, respectively) (Table 2). These changes are synonymous 220 

mutations.  221 
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Sequence analysis of nad4 and nad5 PCR fragments revealed 100% identity among the 222 

Argentinean samples, without the presence of polymorphisms in the 1332 nucleotides analyzed 223 

(Fig. S2, S3). Conversely, the sequence analysis of nad4-nad4L PCR fragments evidenced a 224 

polymorphic site at 8694 nucleotide position (coordinate from AJ493124.1; Table 2). To 225 

evaluate the distribution of this polymorphism, we increased the number of DNA samples. After 226 

the analysis of 182 individuals, we detected that 73.6% of the samples (134 mites) were 227 

identical to both reference sequences (AY163547.1 and AJ493124.2), hereafter named KArg-228 

N1 (Table 2). The remaining samples (26.4%, 48 mites) showed a different nucleotide at the 229 

mentioned position or were heteroplasmic (see below, Table 2 and 3). The detected change 230 

involves the change of G to A and represents a new variant of the K haplotype, hereafter named 231 

KArg-N2 (Table 2, Fig. S4). While KArg-N1 sub-haplotype is present in all the analyzed mite 232 

populations, KArg-N2 sub-haplotype is present in seven out of ten populations and at lower 233 

frequencies (Fig. 1, Table 3). Although the percentage of the KArg-N2 sub-haplotype appears to 234 

differ among localities, particularly between subtropical and temperate populations, these 235 

differences were not statistically significant in the GLMM analysis (Table 3). However, a 236 

significant association between the percentage of KArg-N2 sub-haplotype and population 237 

latitude was found (Spearman correlation, coef: 0.63, P=0.05). The percentage of KArg-N1 sub-238 

haplotype differs among mite populations (F9,30 = 154.27, P<0.0001, GLMM results). In 239 

particular, Castelli and Leales populations showed the lowest percentages of KArg-N1, in 240 

comparison with Formosa, which exhibited the highest frequency of this sub-haplotype 241 

(multiple comparisons Fisher LSD; Fig. 1, Table 3). The other populations showed intermediate 242 

values (Fig. 1, Table 3). In agreement with the results of KArg-N2, a border association 243 

between the percentage of KArg-N1 sub-haplotype and population latitude was found 244 

(Spearman correlation, coef: -0.58, P=0.08). No associations between the frequency of the mite 245 

sub-haplotypes (KArg-N1 and KArg-N2) and the mitochondrial honey bee lineage of the colony 246 

or other parameters (altitude, temperature) were found (data not shown).  247 

Regarding the variability within colonies, the results indicated that mites with different 248 

haplotypes coexist in the same colony for all the analyzed populations. The frequency of 249 
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colonies showing co-infestation varied between 33 and 75% (except for Formosa, where only 250 

14% of the colonies had mites with different mt haplotypes), but showed no statistical 251 

differences among populations (Chi-Square(2) = 5.7, P=0.22).  252 

 253 

Heteroplasmy analysis 254 

 255 

The chromatogram analysis of the obtained nucleotide sequences allowed us to identify double 256 

peaks of similar height at position 8694 (corresponding to nad4 gene, specifically to the sub-257 

haplotype defining site). The sequence analysis of cloned nad4-nad4L PCR fragments of the 258 

samples showing double peaks confirmed the presence of site heteroplasmy. In all sampled 259 

populations, 18.7% of mites containing two different nad4-nad4L sequences were detected 260 

(those corresponding to KArg-N1 and KArg-N2), with percentages of heteroplasmy varying 261 

among localities (F9,30 = 9.29, P=0.0048, GLMM results, Fig. 1 and Table 3). Castelli and 262 

Leales V. destructor populations showed the highest percentages of heteroplasmic individuals 263 

(43.7% and 27.3%, respectively; Fig. 1 and Table 3) and were statistically different from the 264 

other populations (P<0.001, Fisher LSD, GLMM results). In general, for temperate localities, 265 

the frequency of heteroplasmic mites (7.7%) was lower than that for subtropical populations 266 

(23.1%) (Chi-Square (2) = 5.79, P <0.05). Note that Formosa population exhibited a different 267 

pattern from the other subtropical populations and did not present heteroplasmic individuals 268 

(Fig. 1 and Table 3).   269 

Additionally, other suggestive punctual changes, such as the presence of one 270 

homoplasmic variant and the heteroplasmic configuration, were evident (Table S2). We 271 

consider these positions “potentially heteroplasmic sites” due to the absence of the other 272 

homoplasmic variant and the lack of confirmation by cloning. These changes were visualized in 273 

the chromatograms and corresponded to 8390, 8529-8530, and 8645 coordinates from the 274 

reference sequence of the V. destructor mitochondrial genome (AJ493124.1) (Table S2). These 275 

potentially heteroplasmic sites (double peaks) are located within the nad4 gene. Specifically, the 276 

double peak at the 8390 position (C/A) was present in 12.2% of the samples in five out of ten 277 
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analyzed populations (Table 2, Table S2). We observed the presence of the remaining 87.8% of 278 

individuals possessing C nucleotide, while individuals with A nucleotide at this coordinate were 279 

not detected in the 182 analyzed sequences. This change is a non-synonymous mutation 280 

producing a modification in the encoded amino acid glutamic acid (187:A) and generating a 281 

stop codon (Fig. S5). The double peaks identified at 8529 and 8530 positions (AT/TA; Table 2) 282 

were simultaneously detected in 8.8% of the samples and were evidenced for only two out of 283 

ten mite populations (Table S2). This is a non-synonymous mutation that leads to the 284 

substitution of asparagine (140:N) (an uncharged polar amino acid) for methionine (M) (a non-285 

polar aliphatic amino acid; Fig. S5). Finally, the double peak at 8645 nucleotide positions (A/T) 286 

was present only in one of the samples, belonging to a colony from Reconquista (Santa Fe 287 

province) (Table 2; Table S2). This is a non-synonymous mutation that leads to the substitution 288 

of phenylalanine (102:F) (an amino acid from the group of aromatics) for isoleucine (I) (a non-289 

polar aliphatic amino acid; Fig. S5).  290 

 291 

Discussion 292 

 293 

This study provides valuable genetic information about V. destructor populations present in 294 

managed honey bee colonies from the most important apicultural regions of Argentina. By 295 

using PCR and sequencing of four regions of the mtDNA, we analyzed the genetic diversity in 296 

ten mite populations from A. mellifera apiaries located in both temperate and subtropical 297 

regions of the territory, previously unexplored. Our data are in line with the low genetic 298 

variability described for this species (e.g. Solignac et al. 2005: Navajas et al. 2010) but reveal 299 

novel genetic variation for the new mtDNA marker studied here (ND4 gene) and disclose the 300 

presence of site heteroplasmy, which varies in frequency across mite populations. 301 

The genetic variability of V. destructor worldwide populations has been extensively 302 

studied using mitochondrial haplotypes based on the analysis of a region (458 bp) of 303 

cytochrome oxidase 1 gene (Solignac et al. 2005; Warrit et al. 2006; Muñoz et al. 2008; 304 

Strapazzon et al. 2009; Navajas et al. 2010). Based on this marker, two mitochondrial 305 
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haplotypes (K1 and J1) have been reported infesting A. mellifera colonies (Navajas et al. 2010). 306 

Here, based on the sequence analysis of cox1 (1116 bp), the exclusive presence of the K1 and 307 

100% of sequence identity were detected among the analyzed populations of V. destructor from 308 

Argentina. Consistently with Maggi et al. (2012), we found  no presence of J haplotype in these 309 

Argentinean populations of the mite, reinforcing the evidence of the limited occurrence of  this 310 

haplotype on restricted areas of Brazil (Fernando de Noronha Island) (Guerra et al. 2010). The 311 

negligible variability identified for cox1 region among our populations is consistent with 312 

previous results in other populations of the mite infecting A. mellifera (Solignac et al. 2005; 313 

Muñoz et al. 2008; Navajas et al. 2010; Gajic et al. 2013, 2016; 2019; Salvaé et al. 2016; 314 

Kelomey et al. 2017) and supports the hypothesis of a bottleneck that occurred at the beginning 315 

of the invasion to the western honey bee as previously suggested by Solignac et al. (2005). 316 

Moreover, additional genetic bottlenecks could have occurred as V. destructor spread around the 317 

world (see Roberts et al. 2015).  318 

Although the low genetic variability seems to be a general trend in V. destructor, the 319 

analysis of new mitochondrial markers can be useful for detecting novel genetic variation (e.g. 320 

Navajas et al. 2010; Gagic et al. 2013) and monitoring relevant traits in mite populations, such 321 

as acaricide resistance (see Beaurepaire et al. 2017). Our results, based on the sequence analysis 322 

of nad4 gene, allowed us to identify two K1 sub-haplotypes (KArg-N1 and KArg-N2) in our 323 

populations. KArg-N2 corresponds to a new variant reported for the K1 haplogroup, and it is 324 

present in most of the Argentinian populations of the mite analyzed here. Compared to the 325 

previously described sequences from mt genome of mites with K haplotype (Evans and Lopez 326 

2001; Navajas et al. 2002) and to KArg-N1, the KArg-N2 sub-haplotype exhibits a single-point 327 

synonymous mutation in the nad4 sequence at the 8694 nucleotide position (AJ493124.1). This 328 

new variant appears to be well-established in honey bee colonies, since it is widely distributed 329 

across populations and present in relatively high frequencies. This can be explained by the 330 

inbred and haplodiploid reproductive system of the mite that tends to fix novel mutations 331 

(Solignac et al. 2005; Rosenkranz et al. 2010; Nazzi & Le Conte 2016) and by the posterior 332 
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within-colony mite genetic exchange and between-colony mite transmission driven by natural 333 

bee movement or human-induced activities (Dynes et al. 2017, discussed below).   334 

Transhumance is a habitual human activity in which colonies are moved for crop 335 

pollination purposes or in search of earlier flowering areas for colony multiplication. Every 336 

year, beekeepers from temperate regions (mainly from Buenos Aires province) move colonies 337 

from the south (temperate climate) to the north (subtropical climate) of the territory to find 338 

better conditions for colony multiplication and gain advantages at initial stages of the honey 339 

production season (Agra et al. 2018). This practice, together with the commerce of nuclei and 340 

package bees between different regions, contributes to the gene flow among honey bee 341 

populations and consequently leads to interactions between mites of different colonies 342 

parasitizing them. We found that the frequency of the new sub-haplotype differs among the 343 

analyzed populations and showed a positive association with latitude. In this scenario, we 344 

localize the putative origin of KArg-N2 sub-haplotype in northern Argentina. It either originated 345 

in this area or was introduced from a neighboring country and then spread to the southern 346 

populations, possibly mediated by honey bee colony movements. However, the present results 347 

do not indicate whether the detected sub-haplotype originated in Argentinian populations or is 348 

“ancestral” to the American populations of the mite. The analysis of this marker in other 349 

populations of Brazil, Uruguay, or the region will generate information about the origin and 350 

subsequent dispersion of this new variant.       351 

In addition to human influence through transhumance and commercial activities, the 352 

honey bee genetic lineage could contribute to explaining the pattern of sub-haplotype 353 

frequencies. Although we did not find a significant association between the honey bee 354 

mitochondrial lineage and the mite sub-haplotype frequency, we did find an association between 355 

the mite sub-haplotype and latitude of the mite population. In a related work on genetic 356 

variability of honey bees from Argentina, Agra et al. (2018) detected a latitudinal cline from 357 

north to south for the level of hybridization between Africanized and European honeybees based 358 

on the use of highly polymorphic markers (microsatellites). Further genetic analysis of honey 359 

bee colonies from our study using microsatellites or other kind of highly polymorphic markers 360 



14 
 

could potentially show any association between mite haplotype and honey bee lineage 361 

considering the latitudinal cline and other factors involved in seasonal cycle and mite 362 

dispersion. 363 

We found within-colony genetic diversity for all the analyzed populations. In fact, this 364 

situation, in which mites with different haplotypes coexist in the same colony, appears to be 365 

common  in our V. destructor populations. These results are in line with Dynes et al. (2017), 366 

who found a population structure for the mite with genetically distinct individuals coexisting in 367 

the same colony and probably more sexual outcrossing than previously expected (see 368 

Dietemann et al. 2019). As proposed by these authors, one potential explanation of this diversity 369 

is the within-colony genetic exchange between mites (Dynes et al. 2017). Although most 370 

matings in V. destructor occur between siblings, outcrossing can occur when more than one 371 

foundress mite enters the same brood cell to lay eggs. This scenario occurs more frequently at 372 

specific points in the annual cycle when the ratio of mites to bee brood is high, as in late 373 

summer (Dynes et al. 2017; Beaurepaire et al. 2017). In fact, in temperate climates of Argentina, 374 

multiple mite infestations are frequently detected in worker brood cells during early autumn and 375 

in drone brood cells during the spring (Muntaabski, personal communication), possibly 376 

contributing to within-cell outcrossing.  377 

Heteroplasmic mites were unambiguously identified in several of the analyzed samples 378 

from the Argentinian populations of V. destructor. These findings are in line with preliminary 379 

results by Navajas et al. (2002), who suggested the existence of heteroplasmy in V. destructor 380 

and with a more recent study performed in Serbian populations of the mite (Gagic et al. 2016). 381 

Using ARMS and RFLP methods, these authors detected site heteroplasmy within cox1 and cytb 382 

sequences at haplotype defining sites, particularly for the S1 and P1 haplotypes described for 383 

the region (Gajic et al. 2013; 2016; 2019). In this sense, the present study reports the first 384 

occurrence of site heteroplasmy within nad4 sequence in this species (and for K1 haplotype) 385 

and suggests that this phenomenon would be relatively frequent in mites. Although the 386 

penetrance of heteroplasmy varied among our populations, the results seem to support the 387 
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stability of this phenomenon in the analyzed mite populations, but this finding must be further 388 

evaluated.   389 

Heteroplasmy has been explained by different mechanisms in different species (Wolf et 390 

al. 2013; Xiong et al. 2013; Robinson et al. 2015) and is linked to the inherently high mutation 391 

rate of mtDNA, the error-prone nature of DNA polymerase, and the lack of DNA repair 392 

mechanisms within the mitochondria (Avise 2000; Chinnery et al. 2000; Wolf et al. 2013). 393 

Mutations may arise during gametogenesis and embryonic development, generating unique 394 

haplotypes. If mutations are generated within female germ cells, these new mitochondrial 395 

haplotypes can be transmitted to the offspring if they persist through the germ-line bottleneck 396 

associated with oocyte formation and escape selection against deleterious mutations (Chinnery 397 

et al. 2000; White et al. 2008). The mutation phenomenon in the mitochondria with a 398 

subsequent passage through the generations appears to be a plausible mechanism that generates 399 

heteroplasmy in V. destructor, since it is common in other arthropod ectoparasites of the 400 

Subclass Acari (Van Leeuwen et al. 2008; 2010).       401 

 402 

Conclusion  403 

 404 

In the present study, we identified a new polymorphic mtDNA marker (ND4) to analyze the 405 

genetic variability in V. destructor populations. The presence of site heteroplasmy and the 406 

identification of a new sub-haplotype in Argentinean V. destructor populations using this new 407 

molecular tool provide useful information for further analysis. The study of behavioral and 408 

population parameters of the identified mite sub-haplotypes, such as reproduction and virulence 409 

to local honey bee colonies, will represent a future challenge and will contribute to 410 

understanding the dynamic interaction between the mite and honey bee populations. In addition, 411 

for exhaustive monitoring of sub-haplotypes distribution, its temporal stability in honey bee 412 

colonies and its potential influence on apiculture will require further attention. Our findings and 413 

perspectives would be useful to apply in other V. destructor populations and to implement more 414 

specific and efficient control strategies against varroosis. 415 
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