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Abstract: The U-Pb and Lu-Hf isotopic analyses of the different sedimentary sequences of the Ventania 
System, an old Paleozoic orogenic belt exposed in the southern region of the Río de la Plata Craton in 
the province of Buenos Aires, Argentina, provide new evidence for the understanding of the tectonic 
evolution of the western sector of the Gondwanides mountain belt. These ranges formed as result of 
the late Paleozoic collision of the Patagonia terrane against the continental margin of Gondwana. The 
provenance analysis together with the sedimentary paleocurrents confirm a dominant source from the 
Tandilia System, a Paleoproterozoic mountain belt formed during the amalgamation of the Río de la 
Plata Craton at about 1,800-2,200 Ma, and incorporated to Western Gondwana during the Brasiliano 
Orogeny at 550-530 Ma. The local dominant source at the base of the early Paleozoic changed to more 
distant supplies toward the top of the sequences, when is recorded an increasing participation of 
detritus from first, Cambrian (560-520 Ma) zircons from the Pampean Orogen, and later on Ordovician 
(480-460 Ma) zircons from the Famatinian Orogen. The detrital zircon patterns and the maximum age 
of the units shed light on some previous discrepancies in the early Paleozoic stratigraphy. The Balcarce 
Formation, an early Paleozoic sedimentary cover of the Tandilia metamorphic and igneous basement, 
shows striking differences when compared with the new data from the Ventania System. The two data-
sets reveal different sources for the two regions. The late Paleozoic foreland basin deposits mark an 
abrupt change of 180º in the paleocurrent directions, in the petrographic composition of the 
sediments, and in the provenance of detrital zircons. These data indicate a southern provenance with 
the first evidence of Carboniferous and Permian magmatic zircons. The oldest Archean zircons 
together with the finding of clasts with archeocyathids support the provenance from Patagonia, which 
was derived from Eastern Gondwana. The U-Pb ages of the ash-fall tuffs in the Tunas Formation 
confirm the Early Permian age of the Eurydesma Fauna in the Ventania System. The U-Pb data together 
with the Lu-Hf isotopic data enhance the comprehension of the tectonic evolution of the Ventania 
System as part of the larger Gondwanides Belt that amalgamated to Western Gondwana during Late 
Permian times with some independent pieces derived from Eastern Gondwana. 
 
Response to Reviewers: In the attach "answer to the reviewers" we give a detail report of the changes 
made. We have no major differences with the recommended corrections. 
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Ms. Ref. No.:  GR-D-13-00117 

Title: A PROVENANCE STUDY OF THE PALEOZOIC VENTANIA SYSTEM 

(ARGENTINA): TRANSIENT COMPLEX SOURCES FROM WESTERN AND 

EASTERN GONDWANA 

Gondwana Research 

 

Dear Dr Collins, 

 

 We are submitting the comments to the reviewers, new figures and the revised 

version of the manuscript. We have had very constructive and positive reviews and we 

acknowledge the reviewers for their excellent reviews. It is a pity that one of the 

reviewers is anonymous, because he has done positive comments that improved the 

manuscript. 

 Best regards, 

 

Victor A. Ramos 

Cover Letter



*Graphical Abstract (for review)



HIGHLIGHTS  

• Comprehensive detrital zircon U-Pb age database of the Paleozoic Ventania Fold Belt. 

• Changing sources through time shed light in the paleogeography of this sector of 

Gondwana. 

• An abrupt change in provenance associated with the collision of Patagonia. 

• Different Precambrian sources and Paleozoic similarities when compared with the 

Cape Fold Belt. 

 

*Highlights (for review)



Ms. Ref. No.:  GR-D-13-00117 

Title: A PROVENANCE STUDY OF THE PALEOZOIC VENTANIA SYSTEM 

(ARGENTINA): TRANSIENT COMPLEX SOURCES FROM WESTERN AND 

EASTERN GONDWANA 

Gondwana Research 

Answers to the reviewers’ comments 

Reviewer #1:  

The article in question presents a complete set of U-Pb detrital zircon ages from rocks 

of the Ventania System located at the southern portion of the Buenos Aires Province. At 

the same time makes comparisons with Table Mountain Belt of South Africa. This is an 

article where the data, predominantly LAICPMS zircon ages, are interpreted based on 

local and regional geological contexts, providing robustness to the paleogeographic 

reconstructions presented. 

1) The cited articles are relevant and updated with minor problems reported in the text. 

Most of these problems concerns articles of the U-Pb and Lu-Hf methodologies not 

mentioned in the text but presented in the list of references.  

The following cites that were missing are now included: 

Deleted cites: 

Blichert-Toft and Albarede, 1997.  

Bodet and Scharer, 2000 

Eggins et al., 1998 

Patchett and Ruiz, 1987 

Scherer et al., 2001 

Woodhead et al., 2004 

Woodhead and Hergt, 2005 

Add cites: 

Goodge, J.W., Vervoort, J.D., 2006. Origin of Mesoproterozoic A-type granites in 

Laurentia: Hf isotope evidence. Earth and Planetary Science Letters 243, 711–

731. 

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by 

a two-stage model. Earth and Planetary Science Letters 26, 207–221. 

Harrington, H.J., 1955. The Permian Eurydesma fauna of Eastern Argentina. Journal 

of Paleontology 29, 112-128.  

Ramos, V. A., 1988. Tectonic of the Late Proterozoic-Early Paleozoic: a collisional 

history of the southern South American. Episodes, 12: 168-174. 

*Detailed Response to Reviewers



 

2) Comments and discussions of the internal structures of the zircon crystals that can 

help to interpret the ages obtained are missing. Ideally the tables showing the analytical 

data have an additional column next to the spot number with the indications concerning 

the place of the grain effectively analyzed. For example, a detailed examination of the 

images of back-scatter, could clarify some of the authors doubts concerning the Pan de 

Azucar sample. If the analyzed domains correspond to igneous portions (oscillatory 

zoning) would most likely consider this rock a quartzite belonging to low-grade 

metamorphic units of La Lola Fm, and probably derived from a source other than the 

underlying metamorphic basement. On the other hand if the analyzed portion 

corresponds to metamorphic rims (overgrowths), the age of 545Ma likely indicate the 

time of the main metamorphic event of the underlying paragneiss basement. 

The suggestion of the reviewer was correct. We are showing the BSE images of zircon 

crystals from sample VE-02 (Pan de Azúcar sample) to support interpretation. The 

internal textures and Th/U ratio in each dated zircon indicate an igneous origin; 

apparently deformational and metamorphic process has not reached the detrital 

zircons. The images have been incorporated in the new Figure 6, where is indicated the 

spot places in each grain. 

3) The plots presented in Figures 6b, 8, 9, 10, 11, 13, 14, 15, and 18 represent the 

frequency diagrams constructed with U-Pb detrital zircon ages for the different samples. 

This manner of representation is interesting but, the absence of the histograms in the 

same figure, prevents the reader easily see how many points were used in each sample.  

The recommendation was followed and now we have drawn all the histograms in the 

frequency diagrams in all these figures. 

4) Furthermore, it is important to inform which age (206Pb/238U or 207Pb/206Pb) was 

used in the preparation of the diagram. A question arises - to build the plot was used 

only the value presented in the column "best age" of Table 2? 

For zircons older than Early Paleozoic we use 
207

Pb/
206

Pb ages and for Late Paleozoic 

zircons we use 
206

Pb/
238

U ages. We build the plot diagrams with the value presented in 

the column "best age" of Table 2.  

5) As consequences of this, two cases stand out: 1) the sample SLV VE 07 has only 4 

points and the curve corresponding to this sample in Figure 12 does not allow the reader 

to recognize the discrepancy in data quality of this sample compared with the other 

samples presented in this figure, 2) the plot of Piedra Azul Formation (sample VE 17) in 

Figure 13 was also made with only 3 points. We suggest suppressing the curve of 

sample VE 07 of Figure 12 and the plot of the sample VE-17 of Figure 13. 

The plot of the sample SLV-VE-07 was deleted of Figure 12 as the reviewer 

recommended but we did not suppress the plot of the sample SLV-17 of Figure 13 



because is the only sample of this formation. We put the number of dated grained into 

the plot diagram and preserve the sample.  

6) The reviewer was unable to locate the plot of the sandstone of Tunas Fm. (sample 

SLV-VE-24) whose data are in Table 2 (guess it is the Gonzalez Chaves sample). If I´m 

right, please write SLV-VE-24 in the figure 15.  

The reviewer is right. We wrote SLV-VE 24 in the legend of figure 15 to indicate that it 

is the González Chaves sandstone as indicated in the Figure 2.  

7) On the other hand the data of the formations Sierra Grande and El Jaguelito (Figure 

14) are not listed in table 2. Also absent from table 2 are the data of Punta Mogotes Fm. 

 If these data have been presented in other articles, make that very clear in the text and 

in the figure. If they are new results, the analytical data need to be included in Table 2 

otherwise the plots must be deleted. 

These data are from previous works such as Pankhurst et al., 2006; Uriz et al., 2011; 

Rapela et al., 2007, 2011; Naipauer et al., 2010, 2011. Therefore we indicated the 

source not only in the text, but into the plot diagrams to facilitate the comprehension 

(see Figures 11, 14, and 18). 

7) In the comparison of Curamalal and Ventana groups performed in section 5.4 the 

authors indicate the large difference observed in the detrital zircon pattern of these units. 

However, when compared in detail, the Mascota and Bravard Fms. are quite similar, 

with both showing the same peaks of Cambrian age (predominant), and 

Paleoproterozoic-Grenviliano.  

We do not entirely agree with the reviewer. Although Bravard Formation has a 

frequency that is transitional to the top of the Curamalal Group, the detail examination 

indicates conspicuous differences. Those differences are even higher when the top of 

both groups are compared. 

8) In Chapter 5.6 the authors consider the rhyolites of the Somún Cura Massif as the 

only source area for the volcanic ash levels interlayered in the Tunas Fm. It is plausible 

to consider that Massif has been important source area of these rocks, but another 

possible source is the Choiyoi Group (NW Argentina) since it represents a Permian 

explosive volcanism with large volume of pyroclastic rocks, which was responsible for 

numerous ash-falls levels intercalated in the Upper Paleozoic units of Paraná Basin.  

This is the classic interpretation to explain the pyroclastic levels in the Paraná Basin in 

southern Brazil. Based on the U-Pb dates of Rocha Campos et al. (2011) with ages 

around 281.4±2.5 Ma Los Reyunos Fm, and the northeast paleocurrent directions 

measured in the aeolian sandstones of the Reyunos Fm by Pazos (2011), it looks quite 

probable that Choiyoi is the source of the tuffs in the Paraná Basin. However, if we 

want to use the same Choiyoi source to the pyroclstic deposits of Las Tunas the 

dominant winds should be southeast (different from what it was measured in the 

Choiyoi intercalated aeolian sandstones). The distance is much shorter from Somún 



Cura, ages are similar to the one measured, and the required paleowind direction is 

also northeast). Therefore we prefer as a potential source the Early Permian calderas 

and volcanic rocks of the same age found in the Somún Cura Massif. This interpretation 

also explains the source of the igneous Carboniferous detrital zircons found in Las 

Tunas Formation.  

Nevertheless, we modified the text to briefly explain the potential source for the 

Permian zircons. 

 

Added: 

Rocha Campos, A.C., Basei, M.A., Nutman, A.P., Kleiman, L.E., Varela, R., Llambias, 

E., Canile, F.M., da Rosa, O. de C.R., 2011. 30 million years of Permian volcanism 

recorded in the Choiyoi igneous province (W Argentina) and their source for younger 

ash fall deposits in the Paraná Basin: SHRIMP U–Pb zircon geochronology evidence. 

Gondwana Research 19, 509-523. 

Pazos, P.J.,  Rey, F., Marsicano C., Ottone G., de la Fuente M. 2011. Permian 

unroofing, palaeoenvironmental and palaoeclimate evolution in the San Rafael foreland 

basin, Mendoza, Argentina. In: da Silva, R., Schmitt, R.Trow, R.A, de Souza Carvalho 

I., and Collins A.,(eds.), Gonwana 14, Reuniting Gondwana:  East meets West,  

Abstracts , p. 149. Buzios.  

9) The Chapter 7 is very well grounded in the data available, having been built in order 

to lead the reader, even those unfamiliar with the local geology, follow the 

paleogeographic evolution proposed by the authors. In this context, in the opinion of the 

reviewer, the interpretation of the meaning of the angular unconformity between the 

Balcarce Fm. and lower units as a result of the Pampia Block collision against the Rio 

de la Plata Craton deserves a more detailed explanation. What is the regional expression 

of this unconformity? Is there other evidence to support this interpretation?  

The reviewer is right. The unconformity could be either Pampean (early Cambrian) or 

Famatinian (middle Ordovician). The sedimentary record of Balcarce Fm indicate a 

post Hirnantian glaciation age. The Pampean unconformity is seen in different places 

and dated in 530 Ma by Escayola et al. (2007) and Ianizzotto et al. (2013), but as the 

main source is coming from eastern Sierras Pampeanas which is closer to Tandilia is 

more probable that deformation is related to the Pampean orogen (see for further 

details Pazos and Rapalini,2011). 

10) In Figure 20, the orogenic front of the Permian belt truncates the Pampian belt but 

appears to be truncated by Pampia Block. This termination deserves a refinement in the 

design presented. 

The reviewer is absolutely right! With Dr Pangaro (coauthor of that figure) we have 

discussed the western extreme of this orogenic front, and we learnt that we may have 

another syntaxis. But unfortunately the excellent geophysical data base we have used to 

build the map ends at this boundary and we do not have enough information to define 

the trace of the syntaxis. 



11) The structural profile that summarizes the Gondwanides northern portion of 

Patagonia (Figure 5) is very interesting and is based on a large number of information 

obtained by several previous works. However, the discussion of this figure is contained 

in a few lines discussing the relationship between Patagonia and Gondwana tectonics. 

This discussion is far from the importance of this figure. In addition, to facilitate the 

reader, it is necessary to clarify some of the details contained in it, such as: 

The reviewer is right and the following paragraph has been added to the text: 

 Based on the new offshore seismic data presented by Pángaro and Ramos (2012) a 

series of interesting observations can be summarized (Fig. 5). One of the main objections that 

have been put forwards to interpret the Ventania System as a collisional orogen was the lack of 

some lower to middle crustal metamorphic rocks related to the main Permian deformation 

(Trow and De Witt, 2008). However, the seismic line shows the inner part of the orogen where 

lower to middle crust is overriding the Paleozoic sedimentary sequences. The correlation with 

Cerro Los Viejos exposures supports the age of these units, as well as the magmatic arc 

developed in the Somún Cura Massif as result of the closure of the Colorado Ocean (Ramos, 

2008, Rapalini, 2005). The low-grade dynamic metamorphism exposed in the southern part of 

Sierra de la Ventana is just a second order upper crust middle-to-high pressure deformation, 

which is related to the intense folding of the Paleozoic quartzites (Von Gosen et al., 1991; 

Ramos, 2008). The structural triangle zone with opposite vergence is known since the early 

work of Keidel (1916), and is supported by the detail structural study of Tomezzoli and 

Cristallini (2004). The seismic lines through the Claromecó foreland basin depict and confirm 

these structures (Ramos and Kostadinoff, 2005). Regarding the Tandilia System, the pioneer 

work of Teruggi et al. (1988) interpreted the granitoids of Tandilia as a Paleoproterozoic 

magmatic arc, which collided with the island arc terrane of Cortijo (Cingolani, 2011). Recently, 

the geophysical work of Chernicoff (2012b) has identified the precise location of the suture 

between the Tandilia and Cortijo blocks, as well as other complexities in the basement. The 

structural cross-section depicts the deformation at the end of the Late Paleozoic. The opening of 

the South Atlantic Ocean during Late Jurassic – Early Cretaceous had an aborted branch that 

developed an aulacogenic basin between the Somún Cura Massif and the Ventania System, 

which is the present Colorado Basin (Ramos, 1996). 

11.1) The expression in the area of Somún Cura Massif is compatible with a magmatic 

arc resulting from the closure of Ocean Colorado?  

The reviewer is right. The Somún Cura is the magmatic arc developed by subduction of 

the Colorado Ocean and the following phrase and the corresponding cites were added 

to the revised text: 

The correlation with Cerro Los Viejos exposures supports the age of these units, as well as the 

magmatic arc developed in the Somún Cura Massif as result of the closure of the Colorado 

Ocean (Rapalini, 2005, Ramos, 2008).  

11.2) The reason as the Claromeco foreland basin is represented as an allochthonous 

fragment with transport contrary to the thrusts of Ventania System?  

The sedimentary rocks of the Claromecó Basin developed a structural triangle zone. 

The following text was added: 



The structural triangle zone with opposite vergence is known since the early work of Keidel 

(1916), and is supported by the detail structural study of Tomezzoli and Cristallini (2004). The 

seismic lines through the Claromecó foreland basin depict and confirm these structures (Ramos 

and Kostadinoff, 2005). 

11.3) What is the difference between the basements of Tandilla and Cortijo? 4) The 

Suture between Tandilla and Cortijo is Paleoproterozoic? 

The Tandilia is a continental block that collided with the Cortijo Island arc in the 

Paleoproterozoic. The following text and the corresponding new cite was added: 

Regarding the Tandilia System, the pioneer work of Teruggi et al. (1988) interpreted the 

granitoids of Tandilia as a Paleoproterozoic magmatic arc, which collided with the island arc 

terrane of Cortijo (Cingolani, 2011). Recently, the geophysical work of Chernicoff (2012b) has 

identified the precise location of the suture between the Tandilia and Cortijo blocks, as well as 

other complexities in the basement. 

12) In summary, it is an article with a large number of new data and presenting a 

tectonic interpretation quite suitable for most of the available information. The specific 

comments are indicated in the revised text, the figures and tables attached.  

 

We have modified the tables following the comments of the reviewer and the specific 

comments in the text. We are sorry that we cannot acknowledge the excellent review of 

this anonymous reviewer. 

 

Reviewer #2: 

Eric Tohver 

University of Western Australia 

 

I have completed my review of the manuscript "A provenance study of the Paleozoic 

Ventania system (Argentina): transient complex sources from western and eastern 

Gondwana" by V. Ramos et al., submitted for publication in Gondwana Research. The 

manuscript is well-written, and reports a large body of data that will prove of great 

interest to the GR reader. Most of the assertions made by the authors are borne out by 

data, and I will concentrate the majority of my more critical comments to those more 

tangential conclusions of the authors. These comments can be accommodated by minor 

revisions. 

1) There are two major issues that the authors are trying to address; first, the provenance 

of the different Paleozoic supergroups of the Ventania region, and second, less credibly, 

the East Antarctica origin of the Patagonian massif.  

We agree with this statement. The second, less credibly East Antarctica origin of 

Patagonia is developed in a parallel paper specifically devoted to this subject that is in 

press. Therefore we added this text and cited that paper for those seeking more data in 

the origin of Patagonia. 



This match indicates that Patagonia should have originated in Eastern Gondwana, and that it 

was transferred to Western Gondwana during the Gondwanan orogeny (for further details see 

Ramos and Naipauer, 2013). 

Ramos, V.A. and Naipauer, M. 2013. Patagonia: Where does it come from? Iberian 

Geology (in press). 

2) A third theme pertains to the non-rotation of the Falklands/Malvinas block. The first 

issue, the detrital provenance of the Ventania stratigraphy, is expertly treated.  There are 

some minor questions about some awkwardly inconsistent ages for the tuffs in the 

Tunas Formation between the LA-ICP-MS ages and the previously determined 

SHRIMP ages. 

See answers to previous reviewer. 

3) The second issue regarding the putative allochthonous origin of Patagonia is really 

immaterial to the article (especially lines 684-690). None of the data presented, with the 

exception of the occurrence of Archeocyathids in clasts of the Sauce Grande Fm., really 

say much about the original whereabouts of Patagonia in Paleozoic times. I confess to 

some self-aggrandizing interest here in drawing Dr. Ramos' attention to a recent paper 

by Augusto Rapalini in press at Terra Nova that suggests Patagonia was always part of 

South America (Augusto Rapalini, Monica Lopez de Luchi, Eric Tohver, Peter Cawood, 

2013. The South American ancestry of the North Patagonian Massif: geochronological 

evidence for an autochthonous origin? Terra Nova, Feb. 8, 2013. doi: 

10.1111/ter.12043). 

This paragraph was added: 

Although some recent paper proposed a continuation of the magmatic activity for the 

early Paleozoic from the Sierras Pampeanas to the Somún Cura area (Rapalini et al., 

2013), classic proposal advanced by Bracaccini (1960), is not able to elucidate the 

presence of archeocyathids (see discussion in Ramos and Naipauer, 2013). Rapalini et 

al. (2013) follows the arguments of Dalziel et al. (2013) who propose a continuous 

archeocyathid reef along the margin of Antarctica. However, this argument needs a 

magmatic arc located in the Somún Cura arc more than thousand kilometers away from 

the Pacific margin (see discussion in Ramos, 2008). 

 

4) With regards to the position of the Falklands/Malvinas block (Lines 428-434 and 

elsewhere), I think that this issue is so far removed from the subject matter of the text 

that it does not bear mention. I regard this is as an important, highly interesting subject 

matter, but it distracts the reader from the topic at hand, that is, the data from 

stratigraphic units in the Ventania region. This should be removed entirely. 

All the statement of Lines 428-434 has been modified and the mention to the rotation of 

the Malvinas Island has been deleted. 

 



5) Line 13 - replace "show" with "provide" 

Done. 

6) Lines 14-16 - See 2nd point from above discussion. 

The two alternatives have been discussed in the text. 

7) Lines 18-23 - The record of reversals in paleocurrent should be mentioned more 

prominently here. 

Done. 

8) Line 27 - The two datasets reveal different sources for the two regions. 

Done. 

9) Line 31 - Replace "confirm" with "support" 

Done. 

10) Lines 35-37 - Again, see 2nd point from above. 

The two alternatives have been discussed in the text. 

11) Line 60 - Replace "has consensus" with "agree" 

Done. 

 

12) Line 114 - "4500 m thick, with the two lowermost sequence measuring 2400 m 

thick" 

Done. 

 

13) Line 126 - "monomict" and "situated at"  

Done. 

 

14) Line 131 - "crossbeds up to 4 m in amplitude are common…"  

Done. 

 

15) Line 137 - Replace "bipolar crossbedding" with "herringbone crossbeds"  

Done. 

16) Line 138 - Remove "which", insert "and" after "Ventana Group"  

Done. 

17) Line 149 - Replace "irregularly" with "unconformably"  

Done. 

 

 

18) Lines 161 - Paleomagnetism, not paleomag. The explanation of the 180 degree 

rotation misleads the reader into supposing that there is some mismatch between the SE 



position of the Falklands and the paleomagnetic data. A clearer explanation would be 

helpful. 

The paragraph has been simplified. 

19) Line 166 and elsewhere - Replace "overlaid" with "overlain"  

Done. 

 

19’) Materials and Methods section and throughout text - Isotope masses are in 

superscript.  

Done. 

 

20) Line 312 - 317 - The precision of the LA-ICP-MS data does not really preclude the 

intrusive relation for the Cerro Colorado Granite reported by Tohver et al. (2012). As 

written, there is no mention given of this interpretation (One that I am not particularly 

confident about, I must say, not having seen the contact myself) and its implications for 

a possible pre-Mascota Fm. Quartzite unit. 

Text has been modified. 

 

21) Lines 430-434 - Remove, separate subject. 

Paragraph has been modified and rotation eliminated. 

22) Line 453-454 - Awkward phrasing.  

Done. 

 

23) Line 464 - Awkward phrasing. What are "lepidofites"  

Done. 

 

24) Line 472 - There is some controversy over the APWP for South America, so some 

of R. Tomezzoli's age assignments could be incorrect. See M. Domeier, R. Van der 

Voo, E. Tohver, R.N. Tomezzoli, H. Vizan, T.H. Torsvik, Jordan Kirshner,, 2011, New 

Late Permian Constraints on the Apparent Polar Wander Path and Paleo-Marginal 

Deformation of Gondwana, Geochem. Geophys. Geosyst., 12, Q07002.  

Done and new cite included. 

 

25) Lines 485 - 492 - The imprecision of the LA-ICP-MS data is highlighted here, since 

the difference between 304 Ma (laser) and 282 Ma (SHRIMP) is outside of the probable 

analytical error. The "mixed" age explanation provided does not seem correct, since the 

laser analyses were probably individual grains. Since these are magmatic, the likelihood 

of metamorphic rims is low. Something is wrong with the explanation, the data, or both. 



The reviewer is right, since only the juvenile Laser ablation ages are closed to the 

SHRIMP ages. 

 

26) Line 508 - 510 - See recent papers by Rocha-Campos (Gondwana Research, 2011) 

and Domeier et al. 2011 (above) and M. Domeier, R. Van der Voo, R.N. Tomezzoli, E. 

Tohver, B.W.H. Hendriks, T. Torsvik, H. Vizan, A. Dominguez, 2011, Support for an 

"A-type" Pangea reconstruction from high-fidelity paleomagnetic records. Journal of 

Geophysical Research, 116, B12, art. no. B12114. 

Paragraph has been modified as requested by reviewer 1 and the Rocha Campos et al 

2011 paper cited. 

 

27) Line 595 - Here, and elsewhere in the text, replace "inexistent" with "non-existent". 

Done. 

28) Line 629 - What is "immature" relief? High? "High relief of the Somún Cura Massif 

in Permian times…" 

Juvenile poorly dissected relief in geomorphic grounds, which produce immature 

sandstones. 

28) Lines 684-690 - Remove? 

The text was modified and for further details the paper of Ramos and Naipauer  (2013) 

was recommended. That paper analyzes and discusses the origin of Patagonia in the 

Transantarctic Mountains. 

 

Both reviewers are strongly acknowledged, and we are sorry that first reviewer was 

anonymous because his excellent revision should be recognized.  
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  9 

ABSTRACT 10 

The U-Pb and Lu-Hf isotopic analyses of the different sedimentary sequences of the Ventania 11 

System, an old Paleozoic orogenic belt exposed in the southern region of the Río de la Plata 12 

Craton in the province of Buenos Aires, Argentina, provide new evidence for the 13 

understanding of the tectonic evolution of the western sector of the Gondwanides mountain 14 

belt. These ranges formed as result of the late Paleozoic collision of the Patagonia terrane 15 

against the continental margin of Gondwana. The provenance analysis together with the 16 

sedimentary paleocurrents confirm a dominant source from the Tandilia System, a 17 

Paleoproterozoic mountain belt formed during the amalgamation of the Río de la Plata Craton 18 

at about 1,800-2,200 Ma, and incorporated to Western Gondwana during the Brasiliano 19 

Orogeny at 550-530 Ma. The local dominant source at the base of the early Paleozoic changed 20 

to more distant supplies toward the top of the sequences, when is recorded an increasing 21 

participation of detritus from first, Cambrian (560-520 Ma) zircons from the Pampean 22 

Orogen, and later on Ordovician (480-460 Ma) zircons from the Famatinian Orogen. The 23 

detrital zircon patterns and the maximum age of the units shed light on some previous 24 

discrepancies in the early Paleozoic stratigraphy. The Balcarce Formation, an early Paleozoic 25 

sedimentary cover of the Tandilia metamorphic and igneous basement, shows striking 26 

differences when compared with the new data from the Ventania System. The two data-sets 27 

reveal different sources for the two regions. The late Paleozoic foreland basin deposits mark 28 

an abrupt change of 180º in the paleocurrent directions, in the petrographic composition of the 29 

sediments, and in the provenance of detrital zircons. These data indicate a southern 30 

provenance with the first evidence of Carboniferous and Permian magmatic zircons. The 31 

oldest Archean zircons together with the finding of clasts with archeocyathids support the 32 

provenance from Patagonia, which was derived from Eastern Gondwana. The U-Pb ages of 33 

the ash-fall tuffs in the Tunas Formation confirm the Early Permian age of the Eurydesma 34 
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Fauna in the Ventania System. The U-Pb data together with the Lu-Hf isotopic data enhance 35 

the comprehension of the tectonic evolution of the Ventania System as part of the larger 36 

Gondwanides Belt that amalgamated to Western Gondwana during Late Permian times with 37 

some independent pieces derived from Eastern Gondwana. 38 

 39 

Keywords: Gondwanides, Eurydesma Fauna, Patagonia, collision, Famatinian and Pampean 40 

belts, zircon geochronology, tectonics. 41 

 42 

1. Introduction 43 

 The Ventania System is a complex fold and thrust belt developed in the southwestern 44 

margin of Gondwana during late Paleozoic times (Keidel, 1916; Harrington, 1942,1947; 45 

Suero, 1972; Killmurray, 1975; Ramos 1986; Von Gosen et al., 1990). Since the early work of 46 

Du Toit (1927) it is assumed that Ventania was part of a larger system, which encompasses 47 

the Cape Fold Belt of South Africa. Du Toit (1937) named this orogen as the Gondwanides 48 

following pioneer work of Keidel (1921), and confirmed later by several works (see Veevers 49 

2003, 2004; Milani and De Witt, 2008). In recent years many studies have analyzed the 50 

evolution of the Ventania System (Fig. 1) and the adjacent Claromecó foreland basin (Varela 51 

et al., 1987; Tomezzoli and Vilas, 1999; Tomezzoli and Cristallini, 1998; Dimieri et al., 2005; 52 

Cingolani 2005; Ramos and Kostadinoff, 2005). Current studies were able to track the extent 53 

of the Ventania Fold Belt in the offshore based on new seismic and geophysical data, 54 

depicting the Colorado Syntaxis (Pángaro and Ramos, 2012). This feature is the mirror image 55 

of the Cape Syntaxis and has similar characteristics (De Beer, 1995; Johnston, 2000). 56 

FIGURE 1 NEAR HERE 57 

 There are two main problems in the tectonic interpretation of Ventania. The first 58 

problem is the stratigraphy of the early Paleozoic units as for some authors the Curamalal and 59 

Ventana Groups are the same unit tectonically repeated (Kilmurray, 1975; Tomezzoli and 60 

Cristallini, 2004), although most of the stratigraphers agree about the original sequences 61 

proposed by Harrington (1947) where Ventana is younger than Curamalal. The second 62 

problem, and perhaps the most important, is if the Ventania fold and thrust belt was originated 63 

by collision with an allochthonous Patagonia terrane in the late Paleozoic (Ramos, 1984, 64 

2008; Kay et al., 1989; Sellés Martínez, 1989; Von Gosen, 2003; Chernicoff and Zappettini, 65 

2004; among others), or was an intracratonic basin inverted by contraction and strike-slip 66 

tectonics related to oblique subduction further to the south along the present continental 67 

margin (Cobbold et al., 1991; López Gamundí et al., 1994, 1995; Rossello et al., 1997; 68 
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Dalziel et al., 2000; Gregori et al., 2008, among others). Some authors refute the allochthony 69 

of Patagonia based on paleogeographic and paleoclimatic reconstructions (López Gamundí 70 

and Rossello, 1998). The provenance analyses here presented shed light to both problems and 71 

provide a robust answer to previous uncertainties. 72 

 73 

1.1 Location 74 

 The Ventania System is a 30 km wide mountain chain located in the southern part of 75 

the province of Buenos Aires in central eastern Argentina. It is surrounded by plains locally 76 

known as pampas, and has a length of 180 km with a W-NW trend (Fig. 2).  77 

FIGURE 2 NEAR HERE 78 

 These mountains have a maximum height in the Cerro Tres Picos of 1,250 meters. 79 

There are several ranges as the Sierras de Curamalal, Ventana and Pillahuincó (Fig. 2), which 80 

expose the early and late Paleozoic sequences, tightly folded, with a constant northeast 81 

vergence (Harrington, 1947; Suero, 1972).   82 

 83 

2. Stratigraphy 84 

2.1 Metamorphic and igneous basement 85 

 There are very scarce exposures of the basement in the southwestern slope of the 86 

Sierra de Curamalal. Most of the authors recognized the igneous origin of these rocks, which 87 

are highly deformed, with typical cataclastic and mylonitic textures (Kilmurray, 1968; 88 

Gregori et al., 2005). There are also rhyolites exposed in different sectors further north (Figs. 89 

2 and 3) and some isolated outcrops of granites exposed in Cerro Colorado and López Lecube 90 

quarries further to the west.  91 

FIGURE 3 NEAR HERE 92 

 The available geochronological data indicate an age of 607 ± 5.2 Ma for the deformed 93 

granites of Cerro Corral (U-Pb SHRIMP ages in zircons, Rapela et al., 2003), that confirm old 94 

Rb-Sr ages of ~ 603-612 Ma of Varela and Cingolani (1976). New data of the Pan de Azúcar 95 

Granite yielded an age of 581 ± 8 Ma (U-Pb SHRIMP ages in zircons, Tohver et al., 2012). 96 

The postectonic granites in Cerro Colorado (531.1 ± 4.1 Ma and 523.8 ± 4 Ma), San Mario 97 

(524.3 ± 5.3 Ma), and Los Chilenos (533 ± 12 Ma), as well as the La Ermita Rhyolite (509 ± 98 

5.3 Ma and 505 ± 18 Ma), were assigned to the Cambrian (Rapela et al., 2003; Tohver et al., 99 

2012). The Agua Blanca Granite has an inheritance age of 2182 ± 18 Ma that indicates a 100 

Paleoproterozoic basement in the area as part of the Río de la Plata Craton (Tohver et al., 101 

2012). The westernmost outcrops of López Lecube quarry yielded an age of 258.5 ± 1.9 Ma 102 
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by U-Pb SHRIMP in zircons that corresponds to postectonic granites of the Gondwanide 103 

Orogeny and it is not part of the Ventania basement (Rapela and Kostadinoff, 2005). 104 

 The igneous rocks have been divided in two suites based on their composition and 105 

tectonic setting: a calcalkaline orogenic and collisional Neoproterozoic suite and a 106 

postorogenic extensional Cambrian suite (Gregori et al., 2005). The last episode was 107 

associated with a Cambrian rift by Rapela et al. (2003). 108 

 109 

2.2 The Paleozoic sedimentary successions 110 

 The early Paleozoic sedimentary succession includes two sequences, the Curamalal 111 

and Ventania Groups (Fig. 4) deposited during Ordovician and Devonian times (Harrington, 112 

1947; Sellés Martínez, 2001). The late Paleozoic is represented by the Pillahuincó Group (Fig. 113 

4), which is mainly Cisuralian (Early Permian). The whole Paleozoic succession is around 114 

4,500 m thick, with the two lowermost sequences measuring 2,400 m thick. The upper part of 115 

the succession documents a higher subsidence rate compared with the underlying part, but 116 

also a contrasting paleocurrent pattern, which varies from SW to SE, with strong NE 117 

prograding deltaic lobes in the uppermost part of the sedimentary section. The succession 118 

contains mainly sandstones, claystones and conglomerates in the lower part. However, glacial 119 

diamictites and glaciomarine deposits constitute a special type of coarse-grained deposits that 120 

document the late Paleozoic glaciation (Andreis et al., 1989). 121 

 The Curamalal Group, which represents the beginning of the sedimentary record in the 122 

basin, contains conglomerates with coarse-grained clasts in clast-supported to patchy sandy 123 

matrix-supported types, with beds up to 1.5 m in thickness and erosive to sharp bases in the 124 

lower part of La Lola Formation. Internally they contain well rounded quartzite clasts 125 

showing normal or rarely reverse gradation. The outcrops of the source area remain unknown 126 

but the almost monomict composition suggests a quartzite unit situated at a certain distance 127 

that allowed the well roundness of clasts by hyperconcentrated flows or diluted debris flows. 128 

Sandy deposits include different types of cross-bedding; some of them were interpreted as 129 

hummocky cross stratification by Zavala et al. (2000). However, they exhibit a unidirectional 130 

pattern and in all cases resemble more bidimensional subaqueous dunes. Giant cross-beds up 131 

to 4 m in amplitude are common in medium grained sandstones containing clay chips, and 132 

mud drapes. Thin beds show the same sedimentary structures and in cases depict clear 133 

bidirectional paleocurrents that document tidal control during the sedimentation. In the 134 

Ventana Group, the lower unit (Bravard Formation) has some fine conglomerates with a 135 

quartzitic composition of the clasts. The overlying Napostá Formation is well known for its 136 
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ichnological content that includes Skolithos, Arenicolites and Daedalus. Abundant tidal 137 

features have been observed, including herringbone crossbeds and mud drapes. The Lolén 138 

Formation is the uppermost unit of the Ventana Group and exhibits more variability in clast 139 

composition and contains brachiopods and lycophytid plant remains as Haplostigma that have 140 

been used to date the top part in the Middle Devonian (Cingolani et al., 2002).  141 

  A paraconformity separates the Ventana from the overlying Pillahuincó Group, 142 

deposited between the latest Carboniferous and the Cisuralian (Early Permian) indicating a 143 

prolonged hiatus spanning the Upper Devonian to the middle Pennsylvanian. This group is 144 

crucial to understand the evolution of the Ventana System because a thick succession was 145 

deposited in a relatively short time. This fact documents a high subsidence rate related to a 146 

foreland basin which contrasts with the stable depositional settings for the underlying groups 147 

(Fig. 4).  148 

FIGURE 4 NEAR HERE 149 

 The Sauce Grande Formation rests unconformably over the Ventana Group and is a 150 

glaciomarine succession that documents the late Paleozoic glaciation in the Atlantic basins of 151 

Argentina. The Sauce Grande Formation represents Late Carboniferous-earliest Permian 152 

(Cisuralian) glacial deposits 400 m thick that are also recognized in the Claromecó Basin, 153 

which correlates with the Dwyka Formation in the Karoo Basin. This correlation of glacial 154 

deposits is known since the pioneer studies of Keidel (1916) and Du Toit (1927). The 155 

Malvinas /Falkland Islands also record equivalent glacial deposits in the Lafonia Formation 156 

(Frakes and Crowell, 1969; Bellosi and Jalfín, 1984, 1989). The pre-breakup position of the 157 

Malvinas (Falkland) Islands based on the early reconstruction of Martin et al. (1981) is south 158 

of the Karoo Basin and off the coast of South Africa. Recent studies of the Sauce Grande 159 

tillites have found reworked limestone clasts with archeocyathids that indicate a Patagonian 160 

derivation from an Antarctic source (González et al., 2011, 2013). Some paleomagnetic 161 

studies support a position further to the east, but need a 180º rotation to match the data 162 

(Mitchell et al., 1986). Based on these data, López Gamundí and Rossello (1998) conclude 163 

that the paleoice flow directions of the Dwyka and the Lafonia glacial sequences were similar, 164 

but different from the south-north direction of the Sauce Grande tillites.  165 

 The Piedra Azul Formation represents early postglacial transgressive deposits, which 166 

are overlain by the marine Bonete Formation. These deposits represent the maximum flooding 167 

of the basin in the Early Permian and bear the typical Gondwana fauna of Eurydesma 168 

(Harrington, 1955). This thick-shelled bivalve Eurydesma was a cold-resistant and immobile, 169 

epifaunal suspension feeder that dominated marine environment of Gondwana in the Early 170 
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Permian (Jones et al., 2006). Above these levels, intertidal plains deposits bear an abundant 171 

Glossopteris flora, a widespread typical Gondwana flora also known in the Early Permian of 172 

Africa, India, Antarctica and Australia (Benedetto, 2010). The upper unit of the group is the 173 

Tunas Formation, represented by prodeltaic to subaerial delta plain deposits with 174 

paleocurrents that indicate a source area situated to the south-southwest. Very well preserved 175 

ichnofossils as Cochlichnus and Gordia have been observed in the Las Mostazas quarry and 176 

cross-bedding exposures that confirm the paleocurrent pattern suggested by Andreis and 177 

Cladera (1992) for the unit.  178 

 Recent studies on the microflora of several wells of the offshore Claromecó Basin 179 

have identified on palynological bases almost the entire Permian sequence, including for the 180 

first time Lopingian assemblages (Balarino, 2012). 181 

 182 

3. Structure 183 

 The structure of the Ventania fold and thrust belt was a matter of discussion since the 184 

early work of Harrington (1947). Based on the extraordinary ductile folding of the early 185 

Paleozoic quartzites described by Keidel (1916) and Du Toit (1927), most of the authors 186 

interpreted the structure as a dominant fold-type (Harrington, 1970). Detailed surveys done by 187 

Varela et al. (1987), Von Gosen et al. (1990, 1991) and Tomezzoli and Cristallini (1998) 188 

recognized the main thrusts and confirmed the old thrust hypothesis of Schiller (1930). 189 

Seismic studies performed in the offshore depict those thrusts and their relationship with 190 

lower to middle crustal deformed rocks exposed further south in the Somún Curá Massif in 191 

the hinterland region (Pángaro and Ramos, 2012). These authors have shown that the 192 

Ventania foreland fold and thrust belt is separated from the hinterland by an area of minimum 193 

deformation interpreted as a late Paleozoic piggy-back basin. This basin is now beneath the 194 

Colorado Basin, a Jurassic to Early Cretaceous aulacogenic basin developed above the suture 195 

between Patagonia and Western Gondwana. This suture previously proposed by different 196 

authors in land, has been depicted in the offshore by a magnetic anomaly interpreted as 197 

evidence of mafic and ultramafic rocks by Max et al. (1999) and Ghidella et al. (1995). 198 

FIGURE 5 NEAR HERE 199 

 The age of deformation of the Ventania fold and thrust belt is constrained in the Early 200 

Permian based on the growth strata of Tunas Formation described by López Gamundí et al. 201 

(1995), the paleomagnetic evidence of syndeformational  magnetization of Tomezzoli and 202 

Vilas (1999), and the illite recrystallization age of Buggish (1987). 203 

 204 
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4. Material and methods 205 

 A systematic field reconnaissance was made of the different Paleozoic units and the 206 

metamorphic basement, analyzing their main sedimentological and structural characteristics. 207 

A large volume of 24 samples from Curamalal, Ventana and Pillahuincó Groups with detailed 208 

sampling in the uppermost tuff layers were collected. The location of the samples is indicated 209 

in Figs. 2 and 4 and the sample list and the U-Pb and Lu-Hf analytical data are presented in 210 

the electronic supplementary material. Petrographic and geochemistry information of 211 

sedimentary and tuff samples can be found in Alessandretti et al. (2013). 212 

 Samples were crushed and milled using jaw crusher. Then, the zircons were separated 213 

by conventional procedures using heavy liquids and an isodynamic magnetic separator after 214 

concentration by hand panning. The most clear and inclusion-free zircons from the least 215 

magnetic fractions were handpicked.  All zircons were mounted in epoxy in 2.5-cm-diameter 216 

circular grain mounts and polished until the zircons were just revealed. Images of zircons 217 

were obtained using the optical microscope (Leica MZ 125) and back-scatter electron 218 

microscope (Jeol JSM 5800) at the Eletron Microscope Center of the Federal University of 219 

Río Grande do Sul, but are only illustrated when necessary to support the interpretation.  220 

Zircon grains were dated with laser ablation microprobe (New Wave UP213) coupled to a 221 

MC-ICP-MS (Neptune) at the Geochronology Laboratory of the University of Brasilia.  222 

 U-Pb isotope data were acquired using static mode with spot size of 30 um in 223 

diameter. Laser-induced elemental fractional and instrumental mass discrimination were 224 

corrected by the reference zircon (GJ-1) (Jackson et al., 2004), following the measurement of 225 

two GJ-1 analyses to every four sample zircon spots. The collector configuration used for 226 

simultaneous measurements of Th, U, Pb and Hg isotopes was 
238

U, 
232

Th and 
208

Pb in 227 

faraday cups (H4, H2 and L4, respectively) and 
207

Pb, 
206

Pb, 
204

Pb
+
Hg and 

202
Hg in Multiplier 228 

Ion Counting (MIC)  channels attached to the L4 (MICs IC5, IC4, IC3 and IC2, respectively). 229 

The external error is calculated after propagation error of the GJ-1 mean and the individual 230 

sample zircon (or spot). A detailed description of analytical conditions and data reduction can 231 

be found in Chemale et al. (2012). Isoplot 3 software (Ludwig, 2003) was used to generate the 232 

concordia diagrams and histograms. For the concordia age calculations and frequency 233 

histograms, only the analyses with 100 ± 10% of concordance were used. All of the calculated 234 

ages are reported at the 95% confidence level.  235 

 Lu, Yb and Hf isotopes in single zircon crystals were acquired using static mode with 236 

spot size of 50 um in diameter. The laser spot was driven to the same site or zircon phase 237 

dated by the U-Pb method. To minimize aerosol deposition around the ablation pit and to 238 
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improve transport efficiency, He was flushed along with Ar into the ablation cell. The 239 

Faraday collectors were arranged the following way: 
171

Yb (low 4), 
173

Yb (low 3), 
174

Hf (low 240 

2), 
175

Lu (low 1), 
176

(Hf+Yb+Lu) (Center), 
177

Hf (high 1), 
178

Hf (high 2) and 
179

Hf (high 3). 241 

Detail of operation analytical conditions can be found in Chemale et al. (2011a). To correct 242 

for isobaric interferences of Lu and Yb isotopes on mass 176, the isotopes 
171

Yb, 
173

Yb and 243 

175
Lu were simultaneously monitored during the analyses. The 

176
Lu and 

176
Yb concentrations 244 

were calculated using a 
176

Lu/
175

Lu ratio of 0.026549 and a 
173

Yb/
171

Yb ratio of 1.123456 245 

(Chu et al., 2002; Thirwall and Walder, 1995). Correction of Hf isotopic ratios for 246 

instrumental mass bias was based on an exponential law and used the reference 
179

Hf/
177

Hf 247 

value of 0.7325 (Patchett et al., 1981). Each analytical session included determinations of the 248 

βHf and βYb factors for each individual spot. The mass bias behavior of Lu was assumed to 249 

follow that of Yb.  250 

 Lu-Hf model ages (TDM) of zircon grains were calculated based on a depleted mantle 251 

source with 
176

Hf/
177

Hf = 0.28325 and 
176

Lu/
177

Hf = 0.0388 (Andersen et al., 2009). We also 252 

calculated model ages of individual zircons for felsic and mafic sources assuming the 253 

following parental magma compositions: mafic, Lu/Hf = 0.022; felsic, Lu/Hf = 0.010 254 

(Pietranik et al., 2008). The values of Hf(t) were calculated assuming the CHUR 
176

Hf/
177

Hf 255 

ratio of 0.282785 (Bouvier et al., 2008) and the decay constant of  λ
176

Lu = 1.867 × 10−11/a 256 

(Söderlund et al., 2004). 257 

 258 

5. Results 259 

5.1 Pan de Azúcar mylonitic belt 260 

 This belt of highly deformed metamorphic rock was identified as the Pan de Azúcar 261 

Formation by Cuerda et al. (1975) in the eastern slope of the Cerro Pan de Azúcar beneath the 262 

contact with the La Lola Formation. Previous authors interpreted rocks similar to sample 263 

SLV-VE 02 (Fig. 6a), as derived from igneous protolith, whereas others as Von Gosen et al. 264 

(1990) described paragneisses from these exposures. We interpreted this sample based on the 265 

internal textures seen in the back-scattering image and the Th/U ratio in each dated zircon 266 

(Fig. 6) as gneiss of igneous origin; apparently deformational and metamorphic process has 267 

not affected the detrital zircons. One of the main frequency peaks (Fig. 6b) coincides with the 268 

ages of the Cambrian suite proposed by Gregori et al. (2005), although the major frequency 269 

peak clearly indicates a Paleoproterozoic component in this rock (Fig. 6 a-b), similar to the 270 

age interpreted by Tohver et al. (2012) as a basement inheritance in the granites of Agua 271 

Blanca. These ages are between the main magmatic activity (2250–2120 Ma) and the 272 
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collisional overprint (2100–2080 Ma) recorded in the basement of Tandilia by Cingolani 273 

(2011). There are also some few older and younger zircons.  274 

FIGURE 6 NEAR HERE 275 

 It is possible that the orthogneiss affected by a post-540 Ma contractional deformation 276 

may correlate with the main orogeny of the Saldania Belt recognized by Chemale et al. 277 

(2011b) in southernmost Africa. In a Gondwana plate tectonic context, a subduction zone has 278 

been proposed at the southern margin of the Kalahari plate, close to the Precambrian-279 

Cambrian boundary, as suggested by Rozendaal et al. (1999), and its extension in the Sierra 280 

de la Ventana Orogen (Chemale et al., 2011b). Following Gregori et al. (2005) deformation in 281 

Sierra de la Ventana should be older than 533 Ma, which is the age of the postectonic 282 

granites. The age pattern of this orthogneiss shows different inherited zircons. 283 

 However, another possible alternative would be to consider that sample a highly 284 

deformed quartzite of La Lola Formation, due to the similar pattern of zircon ages in 285 

comparison with other samples of this unit (see SLV-VE 05 in Fig. 8). This interpretation 286 

would indicate that the main deformation of this sample could be Gondwanian in age, instead 287 

of Brasiliano. 288 

 289 

5.2 Curamalal Group 290 

 The base of this group is represented by La Lola Formation, which is nicely exposed 291 

in the eastern slope of Cerro Pan de Azúcar (Andreis and López Gamundí, 1989). There is a 292 

30 m thick orthoconglomerate dominantly formed by clasts of quartzite (SLV-VE-03). These 293 

conglomerates are covered by quartzitic sandstones (SLV-VE-05). It is interesting to remark 294 

that tectonically interposed with these quartzites, east of the Abra Mayer, there are some 295 

lenses of mylonitic granite. One of these lenses with calcalkaline composition has a unique 296 

frequency peak at 541.0 ± 8.4 Ma within the range of basement granites (Figs. 7 a,b).  297 

FIGURE 7 NEAR HERE 298 

  The sedimentary facies and provenance of these conglomerates have been studied by 299 

Zavala et al. (2000), who recognized a proximal shelfal environment in a flood- dominated 300 

fan delta system developed from the Tandilia area. However, the good mineralogical maturity 301 

almost dominated by quartzite clasts up to 25 cm in size and good roundness suggest that the 302 

source area was closer, indicating that the present day quartzite outcrops of Tandilia extended 303 

well into the south. The pattern of detrital zircons of both samples (see samples SLV-03 and 304 

SLV-05 in Fig. 8) confirms the proposal of Zavala et al. (2000), and shows that the main peak 305 

around 2050-2170 Ma corresponds with the maximum magmatic activity of the Tandilia arc 306 
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according with Cingolani (2011). The lower levels of La Lola Formation have minor 307 

Cambrian peaks at 545 and 520 Ma, which indicate exhumation of the post-tectonic rocks in 308 

the surrounding area. 309 

  The sample SLV-VE-09 is from the lower part of Mascota Formation from Sierra de 310 

Chasicó, which is unconformably overlying the Cerro Colorado Granite (Harrington, 311 

1968).The maximum age of sedimentation is 534 Ma as indicated by the highest frequency 312 

peak (Fig. 8). This quartzite has been interpreted as being older than the Los Chilenos Granite 313 

(533 Ma, Thover et al, 2012), but the present data may favor that the Mascota Formation is 314 

younger than the granite based on field observations that coincide with criteria used in the 315 

Harrington (1947) map. The sample SLV-VE-10 was collected east of Tornquist (see Fig. 2) 316 

from the Mascota Formation, and presents similar age distribution pattern as sample SLV-317 

VE-09. In these samples the Paleoproterozoic sources start decreasing and some minor 318 

Mesoproterozoic peaks are visible. 319 

 The analysis of the older units of the Curamalal Group shows an interesting trend in 320 

their sources (Fig. 8) with a continuous decrease in the Paleoproterozoic provenance from the 321 

La Lola Formation at the base of the Curamalal Group upwards, parallels the increase of the 322 

Cambrian zircons towards the top of the Mascota Formation. This increase of Cambrian peaks 323 

of 545 and 534 Ma may indicate a potential derivation from Eastern Sierras Pampeanas (see 324 

Fig. 1) which has been exhumed at that time. The input of Grenville-age zircons around 1200 325 

Ma in the Mascota Formation is somewhat older to be derived from the Namaqua belt of 326 

western Kalahari craton, but similar ages recorded in the detrital zircons of the Punta Mogotes 327 

basement from a borehole core, were interpreted as derived from the western Kaapval Craton 328 

by Rapela et al. (2011). Similar age zircons were also recognized in the Cerro Largo 329 

Formation from Tandilia by Gaucher et al. (2008). However, the most potential Grenville-age 330 

source based on the rank of ages observed could be the Eastern Sierras Pampeanas where ages 331 

from 1000 to 1200 Ma are common (Escayola et al., 2007). 332 

FIGURE 8 NEAR HERE 333 

 5.3 Ventana Group 334 

 The different units of the Ventana Group are conformably deposited on the Curamalal 335 

Group. The provenance analysis based on the detrital zircons shows as the most important 336 

frequency peak Brasiliano ages around (564-540 Ma) (Fig. 9). The Paleoproterozoic ages of 337 

Tandilia are less significant and tend to disappear. Some minor evidence of Ordovician 338 

zircons (482 Ma) is seen in the Napostá Formation, as well as in the Bravard Formation, 339 

which will be dominant in the upper part of the sequence. Uriz et al. (2012) analyzed a sample 340 
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from the Napostá Formation and detected an important frequency peak of 473 Ma, partially 341 

equivalent to the Ordovician peak found by us. 342 

FIGURE 9 NEAR HERE 343 

 The zircons of Providencia Formation follow the same trend of the lower section of 344 

the Ventana Group (compare with Fig. 10), but an important change is recorded in the Lolén 345 

Formation, already recognized by Uriz et al. (2011). There, an important peak of Early 346 

Ordovician zircons is seen for the first time (490 Ma), as well as increasingly old Brasiliano 347 

ages (641-612 Ma). The first occurrence of an Ordovician frequency peak in the Lolén 348 

Formation is very similar to the one recognized by Rapela et al. (2007) further to the 349 

northeast, in somewhat equivalent nearshore quartzitic sandstones of the Balcarce Formation. 350 

This unit is exposed nearby the town of Balcarce (see location in Fig.1), and is 351 

unconformably deposited on the metamorphic basement of the Tandilia System and pinch out 352 

over the glacial diamictites of the Volcán Formation (Pazos et al., 2008).  353 

 There are not precise biostratigraphic constraints for its age, but it was assumed to be 354 

broadly between Ordovician and Early Silurian based on its trace fossils (Borrello, 1966). 355 

According to Rapela et al. (2007) who reported detrital zircon ages as young as 475–480 Ma, 356 

the Balcarce Formation is not older than Early Ordovician, suggesting a Late Ordovician to 357 

Early Silurian sedimentation age. Moreover, the trace fossils described by Seilacher et al. 358 

(2002) from several localities, differ significantly from the familiar Arenigian suite. Rather, 359 

they resemble the Lower Silurian ichnofaunas of  Libya, Chad and Benin, with trilobite 360 

tunnels (Cruziana ancora), palmate Arthrophycus alleghaniensis and Gyrochorte zigzag as 361 

shared elements (Seilacher et al., 2002), but also Diplocraterion conforming monospecific 362 

suites has been observed. These authors therefore assigned an Early Silurian age to the 363 

Balcarce Formation and they mentioned that the ichnofauna possibly signals an even further 364 

southward extension of the Malvinocaffric Province. It is interesting to remark that the matrix 365 

of the Cerro Volcán diamictites, a four meters thick level underlying typical quartzites of the 366 

Balcarce Formation, has detrital zircons 485-490 Ma old and a maximum peak of 530 Ma 367 

(Zimmermann and Spalletti, 2009; Van Staden et al., 2010). These data reinforce the 368 

assignation to the Silurian of this unit since these glacial deposits could be interpreted as 369 

representing the Hirnantian glaciation of the end of the Ordovician. 370 

FIGURE 10 NEAR HERE 371 

 The siliciclastic deposits of the Balcarce Formation were developed in a nearshore and 372 

inner shelf environment on a tide dominated platform, affected by storm events in a marine 373 

system that was open to the south based on the pattern of progradational clinoforms (Poiré et 374 
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al., 2003). Paleocurrents indicate a north dominant sediment supply for the western and 375 

central areas of the Balcarce Formation, while in the eastern part of the basin the main 376 

transport directions are east-west oriented (Teruggi, 1964). 377 

 The Lolén Formation is the only unit bearing marine invertebrate fossils in the lower 378 

Paleozoic sequences of the Ventania System and the occurrence of brachiopods is known 379 

since the early work of Harrington (1947). Benedetto (2010) analyzed these brachiopods and 380 

assigned them to Cryptonella, an Early Devonian genus. Based on the age of these 381 

brachiopods, Newton and Cingolani (1990) correlated the Lolén Formation with the 382 

Bokkeveld Group of the Cape Fold Belt, confirming the correlation of Du Toit (1937). 383 

 Therefore,  a partial correlation between Lolén and Balcarce Formations is proposed 384 

based on the detrital zircon pattern (Fig. 11), not only the Early Ordovician sources, but also 385 

the range of Brasiliano ages (640-610  Ma), which are older than previous ages recorded in 386 

the early Paleozoic of Ventania. The Ordovician provenance of both units should come from 387 

the northwest, derived from the Western Sierras Pampeanas Orogen, the only sector that 388 

records plutonic and volcanic rocks of Famatinian age at these latitudes (Ramos et al., 2010). 389 

FIGURE 11 NEAR HERE 390 

5.4 Comparison between the Curamalal and the Ventana Groups 391 

 Kilmurray (1975) proposed that both groups were result of a tectonic repetition based 392 

on an apparent similarity between the quartzitic sandstones. Tomezzoli and Cristallini (2004) 393 

formalized Kilmurray’ hypothesis in their study of the structure of Sierras de la Ventana and 394 

Curamalal through a viable structural section of these ranges, which shows both groups as a 395 

single sequence tectonically repeated. However, our present results indicate a striking 396 

difference between the detrital zircon patterns of both groups. When the pattern of La Lola 397 

Formation (Fig. 8) is compared with the lower part of the Ventana Group, in particular the 398 

Bravard and Napostá Formations (Fig. 9), it is clear the absence of Paleoproterozoic 399 

population in these units (Fig. 12).  400 

FIGURE 12 NEAR HERE 401 

 The Curamalal Group begins with a high frequency peak of Paleoproterozoic ages 402 

with a minor peak in the Brasiliano ages, showing exhumation of the Tandilia rocks at that 403 

time. An irregular exposed topography extended to the south of the present ranges that 404 

explains the zircon detrital pattern and facies of the conglomerates of La Lola Formation. The 405 

absence of carbonate clasts contrasts with the abundance of carbonates in the Neoproterozoic 406 

sedimentary cover of Tandilia. This could be explained by a combination of climate and 407 

transport that favored resistant lithologies over carbonates.  408 
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  The maximum frequency in the base of Ventana Group shows exhumation of the 409 

Brasiliano rocks and almost no existence of Paleoproterozoic ages, contrasting with the 410 

Curamalal Group pattern. These different patterns also characterize the upper part of the 411 

Curamalal and Ventana Groups (see Figs. 8 and 10). The major difference is the first 412 

occurrence of Ordovician zircons which is exclusive of the Ventana Group and Balcarce 413 

Formation (Fig. 12). The Cerro Largo Formation in the Tandilia System has been considered 414 

correlatable with the Balcarce Formation, but Pazos and Rapalini (2011) kept the unit in the 415 

Precambrian as traditionally suggested in agreement with the detrital pattern of this unit.  416 

 These evidences permit to discard the correlation of both groups and revaluate the 417 

early proposed stratigraphy of Harrington (1947) which, at the present level of knowledge, is 418 

the one that best explains the data. 419 

 420 

5.5 Pillahuincó Group 421 

 The late Paleozoic deposits of this group indicate the inception of a foreland basin 422 

stage in the evolution of the Ventania System (Ramos, 1984; López Gamundí and Rossello, 423 

1992, among others). The unconformity that separates the Ventana and Pillahuincó Group, 424 

although quite elusive in the structural evidence (López Gamundí and Rossello, 1993), 425 

coincides with an important change in the petrography of the sandstones (Andreis and 426 

Cladera, 1992). Compositionally, the initial passive margin phase of the continental platform 427 

was characterized by quartz-rich, craton-derived detritus, but was followed by a foreland 428 

phase that shows a paleocurrent reversal and dominance of arc/foldbelt-derived material 429 

(López Gamundí and Rossello, 1998). 430 

 The recent finding of subrounded clasts with archeocyathids in the glaciomarine Sauce 431 

Grande Formation in Ventania derived from Antarctica (González et al., 2013) as well as in 432 

the Lafonia (Fitzroy) tillites in the Malvinas (Falkland) Islands, and in the Dwyka tillites 433 

(South Africa) support the correlation of these glacial deposits (Veevers and Saeed, 2013). 434 

 The analysis of the detrital zircon provenance of the late Paleozoic deposits (Fig. 13) 435 

shows several differences regarding the early Paleozoic sequences. The first important 436 

difference is that in the Sauce Grande Formation there are Archean zircons with conspicuous 437 

ages of 2729, 2990 and 3200 Ma, not seen in the lower Paleozoic sequence of Ventania. As 438 

the Tandil area shows strong evidence supporting the derivation from a Neoarchean crust 439 

(less than 2.65 Ga) as inferred by Cingolani (2011) based on the positive Hf data, those 440 

zircons together with the reversal of the paleocurrents indicate a different old cratonic source 441 

south of the study area. The second striking difference is the frequency peaks of 319-322 Ma 442 
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in the Piedra Azul, Bonete, and Tunas formations that are characteristic from northern 443 

Patagonia, as well as the Silurian 432-417 Ma peaks, similar to the age recorded in Los 444 

Pájaros Island in northeastern Patagonia granites (Nuñez et al., 1975). The Piedra Azul 445 

Formation  represents early postglacial transgressive deposits, which are overlain by the 446 

marine deposits of the Bonete Formation bearing the typical Eurydesma Gondwana fauna  447 

(Harrington, 1955), which represent the maximum flooding of the basins in the Early 448 

Permian. Above this fauna, some intertidal plain deposits bear an abundant Glossopteris flora, 449 

a typical Gondwana flora also known in the Early Permian of Africa, India, Antarctica and 450 

Australia (Benedetto, 2010). 451 

FIGURE 13 NEAR HERE 452 

 The other frequency peaks (Fig. 13) are common ages in the crystalline basement of 453 

northern Somún Cura Massif.  Zircons ages of Grenvillian (1100-1000 Ma), Brasiliano (584-454 

532 Ma), and Ordovician (491-450) have been widely reported by Pankhurst et al. (2001, 455 

2006); Ramos (2008), and Naipauer et al. (2010). This spectrum of frequency peaks is 456 

duplicated by the detrital zircons of the Sierra Grande Formation (Fig. 14), a Siluro-Devonian 457 

sedimentary cover unconformably deposited over the crystalline basement (Uriz et al., 2011). 458 

FIGURE 14 NEAR HERE 459 

 There are some minor outcrops of sandstones near González Chaves, 113 km east of 460 

the Coronel Pringles in the middle of the Claromecó Basin (Figs. 1 and 2) (Llambías and 461 

Prozzi, 1975). Monteverde (1937) correlated these sandstones with the quartzites of Las 462 

Mostazas in the southeastern part of the Sierra de Pillahuincó (Tunas Formation). Furque 463 

(1965) described similar quartzites with rest of lepidophytes in a similar setting 50 km further 464 

east of González Chaves. A representative sample of these outcrops near González Chaves 465 

was dated (SLV-VE 24, Fig. 15). 466 

FIGURE 15 NEAR HERE 467 

 The detrital zircon ages show two important frequency peaks, one in the Late 468 

Carboniferous (316 Ma), and another in the Early Devonian (406 Ma), a pattern characteristic 469 

of other Pillahuincó Group rocks (Fig. 13). It is important to note that the youngest 470 

sedimentary deposits exposed in the Claromecó Basin belong to this group, although 471 

Tomezzoli and Vilas (1997) and Tomezzoli (2009) indicated that these exposures are 472 

consistent with an Early to Late Permian age based on paleomagnetic grounds. This has been 473 

challenged by Domeier et al. (2011), who supported younger ages based on recent dating in 474 

Sierra Chica. 475 

 476 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5.6 The Permian ash-fall tuffs of Tunas Formation 477 

 The occurrence of pyroclastic levels in the Tunas Formation first described by Iñiguez 478 

et al. (1988) is one of the best time-lines to constrain the age of the late Paleozoic sequences. 479 

The age of this unit was based on the Eurydesma Fauna and the Glossopteris Flora in the 480 

deposits underlying the Tunas Formation, both of Early Permian age (Harrington 1947, 1955; 481 

Benedetto, 2010). The upper part of the Tunas Formation bears the Gangamopteris Flora of 482 

latest Early Permian age according to Archangelsky and Cúneo (1984).   483 

 Several ash-fall tuffs levels were sampled in the Abra del Despeñadero, in the 484 

southeastern sector of Sierra de Pillahuincó. There, thin beds of smectite-rich claystones have 485 

been identified in the predominantly sandy upper half of the Tunas Formation and are 486 

characterized by abundant vitroclasts and fragments of vitric tuffs (Iñiguez et al., 1988; López 487 

Gamundí, 2006). The dated zircons of three beds yielded an average 
206

Pb/
238

U age of 304 488 

Ma, that corresponds to some sort of mixing of zircons formed between 280 and 288 Ma 489 

(interpreted as juvenile zircons based on Hf data) and zircons formed between 290 to 315 490 

Ma. Alessandreti et al. (2013) presented for the same SLV-VE-19 sample an U-Pb in situ LA-491 

MC-ICPMS age of 284 ± 15 Ma.  492 

 One tuff layer of the same outcrop as the samples SLV-VE-19, 20 and 21 has been 493 

dated by Tohver et al. (2008) and yielded an age of 282.4 ± 2.8 Ma (U-Pb-SHRIMP). A 494 

similar age of 280.9 ± 1.9 Ma (U-Pb SHRIMP) was recently reported by López-Gamundí et 495 

al. (2013) on volcanic zircons from a tuff layer in the uppermost section of the Tunas 496 

Formation. Both SHRIMP U-Pb ages are more reliable.  497 

 Based on these data, it is assumed that the tuff layers with the younger frequency 498 

peaks, have crystallization ages close to 280 and 288 Ma (see Fig. 13), indicating a middle 499 

Early Permian age, consistent with SHRIMP recent ages and the biochron of the fossil fauna 500 

and flora. 501 

 The intimate relationship between volcanic activity inboard of the paleo-Pacific 502 

margin, deformation in the adjacent orogenic belt, and subsidence and sedimentation in the 503 

contiguous foreland basin led López Gamundí and Rossello (1998) to interpret the magmatic 504 

belt as an Andean-type margin related to the paleo-Pacific margin. This proposal was 505 

followed by Turner (1999) and Dalziel et al. (2000), among others. The main problem of this 506 

interpretation is that the magmatic arc, as pointed out by Turner (1999) was located over 507 

1,000 km away from the continental margin. No subduction related magmatism can exist that 508 

far from the margin, even if a flat-subduction is proposed. A magmatic arc belt cannot be 509 

developed further than 300-400 km away of the trench. Some authors proposed an 510 
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intermediate location (Pankhurst et al., 2006), but still inconsistent with a magmatic arc along 511 

northern Patagonia in the Somún Cura Massif. Recent work of Chernicoff et al. (2012 a) 512 

demonstrates that a series of calc-alkaline orthogneisses are Permian in age and represent the 513 

relicts of the late Paleozoic magmatic arc developed in the northern Patagonia as proposed by 514 

different authors (Ramos, 2008, and cites therein).  515 

Although, the classic interpretation to explain the pyroclastic levels in the Las Tunas 516 

Formation and in the Paraná Basin in southern Brazil is a source in the Choiyoi volcanic rocks 517 

(Kay et al., 1989), we favor a more proximal origin. Based on U-Pb SHRIMP ages around 518 

281.4 ± 2.5 Ma from Los Reyunos Formation, lower section of the Choiyoi volcanic rocks, 519 

Rocha Campos et al. (2011) correlated these rocks with the older tuffs of the Paraná Basin. 520 

This correlation is supported by the northeast paleocurrent directions measured in the aeolian 521 

sandstones of Los Reyunos Formation by Pazos et al. (2011). However, if we want to use the 522 

same Choiyoi source for the pyroclastic deposits of Las Tunas Formation, even with similar 523 

ages, the dominant winds should be to the southeast, different from what was measured in the 524 

Choiyoi intercalated aeolian sandstones. The distance is closer from Somún Cura, the ages are 525 

similar, and the required paleowind direction is also to the northeast. Therefore, we prefer as a 526 

potential source the Early Permian widespread calderas and rhyolites of the same age found in 527 

the Somún Cura Massif. This interpretation also explains the source of the large amount of 528 

volcanic debris and igneous Carboniferous detrital zircons found in Las Tunas Formation. 529 

 530 

6. Lu-Hf-Isotope analyses 531 

 Hf isotopes have been analyzed in 65 detrital zircons of samples from the Cambrian 532 

paragneiss (SLV-VE-02), and from the Lolén (SLVE-01) and Tunas (SLV-VE 20/21) 533 

Formations, in order to understand the characteristics of the source region (Fig. 16). 534 

 Several zircons from different representative sources have been analyzed in the sample 535 

of metamorphic basement (SLV-VE-02). Two Neoarchean zircons yielded negative values of 536 

Hf(t)  of -7.06  and -5.11 and  TDM ages 2.98 and 3.22 Ga; one Mesoarchean zircon has an 537 

Hf(t) of +1.73 with a TDM age of 3.06 Ga. The Paleoproterozoic source was analyzed in 538 

eight zircons, which yielded values of Hf(t)  between + 2.19 and -1.8. These values are 539 

typical of the juvenile arc granitoids of Tandilia (Fig. 16). The younger zircon of 1,782 Ma 540 

gave a quite negative value of -5.57 far from the previous ones; the TDM ages yielded 541 

between 2.57 and 2.19 Ga. This 1.78 Ga corresponds to the age of post-collisional granites in 542 

the Tandilia area (Cingolani, 2011), which clearly shows important crustal recycling (Fig. 16). 543 
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A few Mesoproterozoic zircons analyzed have disperse Hf(t) values from -14.8 and an TDM 544 

age of 2.05 Ga, to Hf(t) positives and TDM ages 1.87 and 1.62 Ga. The other well 545 

represented fraction is the Neoproterozoic (ca. 552 Ma) with Hf(t) values between -5.4 and -546 

3.08 with similar TDM Mesoproterozoic ages between 1.34 and 1.26 Ga within the range 547 

described for the Sierras Pampeanas by Dahlquist et al. (2013). 548 

 FIGURE 16 NEAR HERE 549 

 In the Lolén Formation 35 zircons have been analyzed from sample (SL-VE-01) 550 

representing different sources (Fig. 16). The Paleoproterozoic source yielded values of Hf(t) 551 

of +2.86 and -1.57 and TDM ages between 2.49 and 2.31 Ga; however, a few zircons yielded 552 

Hf(t) values more negatives between -4.04 and -20.68 and older TDM ages between 2.81 and 553 

2.59 Ga. Grenville-age zircons yielded similar Hf(t) values, but highly positive, between 554 

+12.75 and +7.22, and model ages close to the crystallization ages, between 1.27 and 1.50 Ga, 555 

showing their juvenile nature (Fig. 16). The Neoproterozoic zircons have variable 556 

characteristics with a group of highly negative Hf(t) values between -35.17 and -18.22 and 557 

model ages between 2.52 and 1.80 Ga; a second group has less negative Hf(t) values 558 

between -5.64 and -0.73 and younger TDM ages between 1.16 and 1.35 Ga. The Paleozoic 559 

sources can also be grouped in two sets, a group of Cambrian, Ordovician, and Devonian 560 

zircons with very negative Hf(t) values (-43.93 and -11.09) and TDM ages between 2.61 and 561 

1.47 Ga; the other group has more positive Hf(t) values (+28.71 and -5.01) and younger 562 

TDM ages (1.26 and 1. 03 Ga). 563 

 The last samples from the Tunas Formation (SLV-VE 20/21), which have late 564 

Paleozoic zircons (290-340 Ma) yielded Hf(t) values between +10.51 and -1.87, with TDM 565 

ages restricted between 0.98 and 0.80 Ga. These zircons probably belong to the juvenile 566 

magmatic arc of northern Patagonia (see Ramos, 2008). There is also a crystal with highly 567 

negative Hf(t) value (-30.82) and a model age of 1.82 Ga, very distinct of the rest of the 568 

group (Fig. 16). Those highly negative values were also recorded by Chernicoff et al. (2012 569 

a). 570 

 571 

7. Analyses of the provenance  572 

 Based on the previous detrital zircon analyses, together with conventional 573 

petrographic and paleocurrents studies performed by Reinoso (1968), Andreis and Cladera 574 

(1992) and López Gamundí and Rossello (1998), among others, a tentative paleogeography 575 

can be reconstructed along a series of stages. 576 
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 577 

7.1 Cambrian-Ordovician 578 

 The provenance at this stage looks simple and conditioned by the basement exposed at 579 

that time. The Paleoproterozoic of Tandilia is the main source, a clear indication that these 580 

mountains were conspicuous at that time. Through time, the Pampean basement of Ventania 581 

starts being exhumed and Cambrian and Neoproterozoic granitoids became the main source 582 

(Fig. 17).  583 

FIGURE 17 NEAR HERE 584 

 The proposed paleogeography shows an old mountain system being exhumed, 585 

represented by the Tandilia mountains, surrounded to the west (present coordinates) by the 586 

Pampean orogenic belt of Eastern Sierras Pampeanas. The exhumation of this belt produced 587 

an increased participation of this source through time. At the eastern side the Punta Mogotes 588 

Belt, a Brasiliano orogen related to the final closure of Adamastor Ocean at Early Cambrian 589 

times (Gaucher et al., 2005), was one of the last events related to the amalgamation of 590 

Gondwana. However, this orogen was not source of the analyzed samples of Ventania. The 591 

comparison of the different units of the Curamalal Group (Figs. 7 and 8) with the Mogotes 592 

Formation detrital zircon patterns shows striking differences (Fig.18). 593 

FIGURE 18 NEAR HERE 594 

 The Cambrian-Ordovician paleogeography is illustrated in Fig. 19. The drainage 595 

should have an important component from the west or northwest to explain the lack of zircons 596 

from the Punta Mogotes Belt seen in the frequency peaks of Fig. 18. Note that these peaks are 597 

partially recognized in the younger Balcarce Formation (Fig. 11). 598 

FIGURE 19 NEAR HERE 599 

7.2 Silurian-Devonian 600 

 At this time the main dominant provenance was from the west and northwest. The 601 

Pampean basement of Eastern Sierras Pampeanas as described by Rapela et al. (1998), Ramos 602 

et al. (2010) and Chernicoff et al. (2009, 2012 b), was the main source of the lower Ventana 603 

Group (Fig. 17). The angular unconformity between the Balcarce Formation and the 604 

Neoproterozoic and Early Cambrian sedimentary cover of Tandilia (Cingolani, 2011) may be 605 

either the result of the collision of Pampia with the Río de la Plata Craton (Early Cambrian), 606 

or the Famatinian collision (Middle Ordovician). The sedimentary record of Balcarce 607 

Formation indicates a post Hirnantian glaciation age (Late Ordovician). The Pampean 608 

unconformity is seen in different places of Eastern Sierras Pampeanas and was dated in 530 609 

Ma by Escayola et al. (2007) and Ianizzotto et al. (2013). But, as the main source is coming 610 
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from Eastern Sierras Pampeanas which is closer to Tandilia, it is more probable that 611 

deformation is related to the Pampean orogen (see further details in Pazos and Rapalini, 612 

2011). 613 

  Through time, the Pampean Belt had the relief partially eroded, and during Silurian 614 

times the first Ordovician zircons were recorded, indicating that either the Famatinian Belt 615 

was supplying zircons to the area, or some scarce Ordovician granitoids in the Eastern 616 

Pampean Belt were exhumed. Also, Grenvillian-age zircons began to appear in the pattern of 617 

provenance, suggesting that the Mesoproterozoic basement of Cuyania and/or Pampia was 618 

also exhumed (Sato et al., 2000). The relief of Tandilia was almost non-existent as a source. 619 

At this time, an important source from Punta Mogotes Belt is recorded in the Balcarce 620 

Formation, indicating that this belt was actively exhumed. In Silurian times the 621 

paleogeography was characterized by higher mountains in the Famatinian Belt in the west, a 622 

partially eroded Pampean Belt, almost non-existent Tandilia Mountains, and an important 623 

relief in the Punta Mogotes Belt. Some sort of by-pass existed through the Pampean Belt in 624 

order to register Ordovician zircons in the Balcarce and Lolén Formations. The continental 625 

margin was opened to the present south (Fig. 19). 626 

 627 

 7.3 Late Paleozoic 628 

 A drastic change in paleogeography was produced at this time. A volcanic relief 629 

associated with a magmatic arc was located to the south, in present northern Patagonia. 630 

Volcanic debris (Andreis and Cladera, 1992) together with magmatic zircons were recorded in 631 

Ventania from 320 to 270 Ma. Classic petrographic provenance studies in Ventania and Cape 632 

Fold Belt of South Africa indicate a dissected arc source for these rocks (López Gamundí and 633 

Rossello, 1998). The older data of Late Carboniferous age observed as detrital zircons are in 634 

agreement with their derivation from the northern late Paleozoic magmatic arc proposed by 635 

Ramos (2008) in northern Patagonian along the Somún Cura Massif. Recent studies of 636 

Chernicoff et al. (2012 a) in the Yaminué region in the Somún Cura Massif show that a biotite 637 

paraschist has a maximum U/Pb SHRIMP age of 318 ± 5 Ma coherent with the frequency 638 

peaks of several units of the Pillahuincó Group of the Ventania System.  On the other hand, 639 

the tonalitic orthogneiss has a crystallization age of 261.3 ± 2.7 Ma, which is broadly coeval 640 

with deformation, and Neoarchean-Paleoproterozoic inheritance, indicating the occurrence of 641 

Archean crust in this sector of Patagonia. Hf TDM ages of Permian zircons are mainly Meso-642 

Paleoarchean (2.97–3.35 Ga) with highly negative (Hf) values (ca. –33) according to 643 

Chernicoff et al. (2012 a). It is interesting to remark that the first Archean zircons observed in 644 
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Ventania are the 2729, 2990 and 3200 Ma frequency peaks of Sauce Grande Formation, 645 

within the range of inherited Archean zircons of the Yaminué region described by these 646 

authors. 647 

  The obtained zircon dates of the ash-fall tuffs of the Tunas Formation indicate an 648 

Early Permian age, close to the depositional age of this unit (López Gamundí et al., 1995), 649 

which was interpreted as synorogenic deposits based on the occurrence of growth strata. The 650 

age of deformation is consistent with the deformation ages of the orthogneisses in north 651 

Patagonia in the adjacent Somún Cura Massif (Chernicoff et al., 2012a). 652 

 A Permian very juvenile poorly dissected relief dominated the Somún Cura Massif and 653 

the uplifted Ventania fold belt providing immature detritus to the Claromecó Basin. The 654 

Ventania fold and thrust belt continues in the offshore in the Colorado syntaxis (Pángaro and 655 

Ramos, 2012), a mirror image of the Cape Syntaxis (Fig. 20). 656 

 657 

8. Correlation with the Cape Fold Belt in South Africa 658 

 It is important to note that in South Africa, the Cape Fold Belt was developed at the 659 

same time that the Ventania Belt (Fig. 20) as parts of the Gondwanides Orogen (Keidel, 1916, 660 

1921). There is consensus in the correlation of the different units of the Neoproterozoic-661 

Cambrian basement and the Paleozoic sedimentary sequences since the early work of Keidel 662 

(1916) and DuToit (1927) followed by Harrington (1947). This correlation was based on the 663 

rock types and age of the basement as proposed by Rapela et al. (2003), Milani and DeWitt 664 

(2008), and Chemale et al. (2011b). On fossiliferous grounds the correlation was based on the 665 

Eurydesma fauna and the Glossopteris flora, as well as in the Devonian marine fossils 666 

(Harrington, 1955; Benedetto, 2010). Another piercing point is the correlation of the glacial 667 

deposits of Sauce Grande and the Dwyka Tillite, which has been identified since the early 668 

work of Keidel (1913), and corroborated several times by more recent works (López Gamundi 669 

and Rossello, 1998). 670 

FIGURE 20 NEAR HERE 671 

 A recent study on the detrital zircons of several pre-Carboniferous units of the Cape 672 

Supergroup shows striking differences and similarities with the Ventania System (Fourie et 673 

al., 2011). The main difference is the dominant Mesoproterozoic (1.0-1.2 Ga) provenance of 674 

the Cape Supergroup that points out to the Namaqua Belt as the source area. The Curamalal 675 

and Ventana Groups have the Paleoproterozoic ages from Tandilia Belt (2.2-2.0 Ga) as the 676 

main Precambrian source. The similarities are the Neoproterozoic-Cambrian ages derived in 677 

the present study from the Eastern Sierras Pampeanas, and from the pan-African belts and the 678 
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Cape Granites for Fourie et al. (2011). Both studies have also a striking coincidence in the 679 

Ordovician ages. The analyses performed in the pre-Carboniferous rocks of the Cape Fold 680 

Belt have a noticeable frequency peak at 469 Ma, similar to the frequency peak of 475 Ma of 681 

Lolén Formation in the Ventania Belt that in the present study is straight forward derived 682 

from the Famatinian Belt of Western Sierras Pampeanas. A similar Ordovician peak (478 Ma, 683 

see Fig. 11) was identified in the Balcarce Formation by Rapela et al. (2011). Nonetheless, 684 

Fourie et al. (2011) assumed that the source area could be either the Ross Orogen in 685 

Antarctica or the Patagonian Deseado Massif of Argentina. As we noticed, the abrupt change 686 

in provenance occurred after the collision of Patagonia, where a very different provenance is 687 

recorded for the first time.  688 

 Based on the evaluation of both detrital zircon data bases we consider the Ordovician 689 

(480-460 Ma) provenances in both Ventania and Cape belts, as derived from Western Sierras 690 

Pampeanas, while the Neoproterozoic-Cambrian (560-530 Ma) zircons have local sources. 691 

Zircons are derived in the Ventania Belt from Eastern Sierra Pampeanas, but in the Cape Fold 692 

Belt come from local pan-African belts. 693 

 694 

9. Concluding remarks 695 

 The obtained data permit to confirm some hypotheses and discard some previous 696 

interpretations. The comparison of the provenance between the Curamalal and Ventana 697 

Groups allows once more to confirm the stratigraphy of Harrington (1947), and to reject some 698 

hypotheses that interpreted these units as tectonic repetitions of the same succession. These 699 

pre-Carboniferous sequences of the Ventania Belt have a pattern derived from the Tandilia 700 

Belt, as well as from Eastern and Western Sierras Pampeanas. These characteristics can be 701 

compared with the detrital zircon pattern of the pre-Carboniferous Cape Fold Belt sequences. 702 

Differences and similarities can be explained with common and local sources; both belts share 703 

a similar Early to Middle Ordovician age zircons, which seem to be derived from the Sierras 704 

Pampeanas Belt. 705 

 The change in provenance between the early Paleozoic deposits of the Ventana Group 706 

and the late Paleozoic foreland sequences of the Pillahuincó Group indicates a different 707 

source region from these deposits. A series of Carboniferous to Permian zircons, absent in the 708 

previous units, together with the drastic change in paleocurrents indicate their derivation from 709 

northern Patagonia as part of the Gondwanides Belt. The source area for the Pillahuincó 710 

Group matches one to one the lithological characteristics of the Somún Cura Massif (see 711 

location in Fig. 1), and the U-Pb ages of the main igneous and metamorphic rocks. 712 
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 The occurrence of clasts with archeocyathids in the Somún Cura Massif sequences, 713 

together with the detrital zircon patterns, are compatible with a source in Eastern Antarctica 714 

(González et al., 2011; Naipauer et al., 2011; Ramos and Naipauer, 2012; Veevers and Saeed, 715 

2013). The recent finding of archeocyathids in clasts of the Sauce Grande tillites (González et 716 

al., 2013), reinforces this provenance. This match indicates that Patagonia should have 717 

originated in Eastern Gondwana, and that it was transferred to Western Gondwana during the 718 

Gondwanan orogeny. For further details see the recent analysis of Ramos and Naipauer  719 

(2013 and cites there in). Although some recent papers proposed a continuation of the 720 

magmatic activity in the early Paleozoic from the Sierras Pampeanas to the Somún Cura area 721 

(Rapalini et al., 2013), a classic proposal advanced by Bracaccini (1960), it is not able to 722 

elucidate the presence of archeocyathids (see discussion in Ramos and Naipauer, 2013). 723 

Rapalini et al. (2013) follow the arguments of Dalziel et al. (2013) who propose a continuous 724 

archeocyathid reef along the margin of Antarctica. However, this argument needs a magmatic 725 

arc located in the Somún Cura arc more than thousand kilometers away from the Pacific 726 

margin (see discussion in Ramos, 2008). 727 

 The integrated evolution of the Gondwanides in this sector of the southwestern 728 

Gondwana margin with the general evolution of the Terra Australis Orogen as defined by 729 

Cawood (2005) and modified by Ramos (2009), shows some interesting features. The early 730 

Paleozoic continental margin of Ventania interrupts the almost continuous Famatinian-Ross 731 

orogens. The Famatinian Orogen characterizes an active continental margin with a 732 

voluminous magmatic arc developed along the proto-Andean margin of Western Gondwana 733 

from Venezuela and Colombia through most of Argentina down to Ventania, during latest 734 

Cambrian and Middle Ordovician times. The Ross Orogen (Stump, 1995; Myrow et al., 2001) 735 

continues to the present east from Patagonia all along the Transantarctic Mountains and 736 

Australia, and has a latest Cambrian to Early Ordovician magmatic arc. The Ventania early 737 

Paleozoic basin is devoid of any magmatic activity in these intervals, representing a passive 738 

continental margin. The tectonic causes of such differences are beyond the present research.  739 
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Figure captions 1306 

 1307 

Figure 1: Location of the Ventania and Tandilia systems in the province of Buenos Aires, 1308 

localities mentioned in the text, and main basement provinces of central Argentina and 1309 

Uruguay (based on Ramos, 2009 and Cingolani, 2011). 1310 

 1311 

Figure 2: Main geological features of the Ventania System in the province of Buenos Aires. 1312 

Numbers indicate the samples with detrital zircon U/Pb Laser ablation analyses (geology after 1313 

Schiller, 1930; Harrington, 1947; Suero, 1972). 1314 

 1315 

Figure 3: Main basement exposures of the Ventania System with available ages based on 1316 

Varela et al. (1987), Rapela et al. (2003), Rapela and Kostadinoff (2005), and Tohver et al. 1317 

(2012). 1318 

 1319 

Figure 4: Stratigraphic column of the Paleozoic sedimentary rocks of the Ventania System 1320 

(based on Harrington, 1947), with the stratigraphic positions of the analyzed samples. 1321 

Paleocurrents after Reinoso (1968), Andreis and Cladera (1992), and López Gamundí and 1322 

Rossello (1998). 1323 

 1324 
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Figure 5: Structural cross section of the Gondwanides of northern Patagonia restored for the 1325 

end of the Paleozoic. The hinterland region developed in present Somún Cura Massif with 1326 

exhumed late Paleozoic arc-granitoids is shown as well as the Ventania System with the fold 1327 

and thrust belt and associated Claromecó Basin (based on Von Gosen et al., 1991; Tomezzoli 1328 

and Cristallini, 1998; Ploskiewicz, 1999; Ramos, 2008; Pángaro and Ramos, 2012). The 1329 

location of potential sutures among Patagonia, Tandilia and Cortijo terranes, as well as the 1330 

Tandilia magmatic arc further  north, are indicated after Teruggi et al. (1988), Max et al. 1331 

(1999), Ramos, (2008) and Cingolani (2011).  1332 

 1333 

Figure 6: a) Detail of the sample site; b) U-Pb frequency plot ages from zircons of a 1334 

paragneiss (sample VE-02) of the metamorphic basement in the eastern slope of Cerro Pan de 1335 

Azúcar, western Sierra de Curamalal (see location in Fig. 2).  1336 

 1337 

Figure 7: a) Tectonic lense of mylonitic granite within quartzite layers of La Lola Formation; 1338 

b) LA-ICP-MS from concordant zircons of this mylonitic granite (sample SLV-VE-04, see 1339 

location in Fig. 2 and analytical data in the supplementary material). 1340 

 1341 

Figure 8: U/Pb frequency plot ages from detrital zircons of the Curamalal Group: SLV-VE-1342 

03 from a quartzite clast of the basal conglomerate of the La Lola Formation, and SLV-VE-1343 

05, quartzitic sandstones interfingered in the upper part of the conglomerates; SLV-VE-09 1344 

from Mascota Formation from Cerro Colorado area; SLV-VE-10 from Mascota Formation 1345 

east of Tornquist (location in Fig. 2). 1346 

 1347 

Figure 9: U/Pb frequency plot ages from detrital zircons of lower part of the Ventana Group. 1348 

Note the up-sequence decrease of the Paleoproterozoic ages (sample location in Fig. 2) and 1349 

clear dominance of Late Neoproterozoic to Cambrian zircons. 1350 

 1351 

Figure 10: U/Pb frequency plot ages from detrital zircons of upper part of the Ventana Group. 1352 

Note that the samples from the Lolén Formation are more than 10 km distant, but have 1353 

coherent patterns (see sample location in Fig. 2). 1354 

 1355 

Figure 11: U/Pb frequency plot ages from detrital zircons of Balcarce Formation (samples 1356 

FBA 264 and PMOG 233) based on Rapela et al. (2007, 2011). Note the important frequency 1357 

peaks of Early Ordovician and Early Cambrian ages (location in Fig. 1). 1358 
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 1359 

Figure 12: Comparison of the detrital zircons provenance based on between Curamalal Group 1360 

and lower and upper Ventana Group. Note the prominent frequency peak of Paleoproterozoic 1361 

zircons in the Curamalal Group which is poorly developed in the Ventana Group, and the 1362 

Famatinian peak (475 Ma) in upper Ventana Group, which does not occur in the older units. 1363 

(FAM: Famatinian; BRAS: Brasiliano-Pampean; GRENV: Grenvillian, and TRANS: 1364 

Transamazonian). 1365 

 1366 

Figure 13: U/Pb frequency plot ages from detrital zircons of the fine sandstones and shales of 1367 

Pillahuincó Group. Note the prominent frequency peaks of 322-304 Ma and the 291-282 Ma 1368 

peaks may be correlated with igneous ages in the northern Somún Cura Massif (Chernicoff et 1369 

al., 2012a, and cites therein). 1370 

 1371 

Figure 14: U/Pb frequency plot ages from zircons from the northern Somún Cura Massif of 1372 

the, a) Sedimentary cover of Sierra Grande Formation (Silurian-Devonian), and b) pre-1373 

Ordovician metasedimentary basement of the El Jagüelito, Mina Gonzalito, and Nahuel Niyeu 1374 

Formations (after Pankhurst et al., 2006; Naipauer et al., 2011 and Uriz et al., 2011). 1375 

 1376 

Figure 15: U/Pb frequency plot ages from detrital zircons of the fine sandstone of González 1377 

Chaves locality. Note the prominent frequency peak at 316 Ma (Late Carboniferous).   1378 

 1379 

Figure 16: Hf isotopic analyses of selected samples from the Ventania System. See 1380 

supplementary material for sample number and figure 2 for location. 1381 

 1382 

Figure 17: U/Pb frequency plot ages from zircons from the Sierra de La Ventana region 1383 

obtained in the present study and the main orogenic events ((FAM: Famatinian; BRAS: 1384 

Brasiliano-Pampean; GRENV: Grenvillian, and TRANS: Transamazonian). 1385 

 1386 

Figure 18: U-Pb frequency plots of detrital zircons of Mogotes Formation. Note the different 1387 

pattern with the Balcarce Formation of Fig. 11(after Rapela et al., 2007, 2011). 1388 

 1389 

Figure 19: Paleogeography of the Ventania System through time; a) Cambrian-Ordovician; b) 1390 

Silurian-Devonian; and c) late Paleozoic times. The Pampean Orogen depicted after Ramos 1391 

(1988), Rapela et al. (1998), and Tohver et al. (2012); the Punta Mogotes Belt based on 1392 
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Gaucher et al. (2005); the Gondwanides Orogen based on Ramos (2008) and Pángaro and 1393 

Ramos (2012). 1394 

 1395 

Figure 20: Location of the Ventania Fold Belt in the province of Buenos Aires, Argentina and 1396 

its correlation with the Cape Fold Belt of South Africa as part of the Gondwanides. Tectonic 1397 

framework of the pre-break up of Western Gondwana is based on the reconstruction of 1398 

Pángaro and Ramos (2012). 1399 
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  9 

ABSTRACT 10 

The U-Pb and Lu-Hf isotopic analyses of the different sedimentary sequences of the Ventania 11 

System, an old Paleozoic orogenic belt exposed in the southern region of the Río de la Plata 12 

Craton in the province of Buenos Aires, Argentina, provide new evidence for the 13 

understanding of the tectonic evolution of the western sector of the Gondwanides mountain 14 

belt. These ranges formed as result of the late Paleozoic collision of the Patagonia terrane 15 

against the continental margin of Gondwana. The provenance analysis together with the 16 

sedimentary paleocurrents confirm a dominant source from the Tandilia System, a 17 

Paleoproterozoic mountain belt formed during the amalgamation of the Río de la Plata Craton 18 

at about 1,800-2,200 Ma, and incorporated to Western Gondwana during the Brasiliano 19 

Orogeny at 550-530 Ma. The local dominant source at the base of the early Paleozoic changed 20 

to more distant supplies toward the top of the sequences, when is recorded an increasing 21 

participation of detritus from first, Cambrian (560-520 Ma) zircons from the Pampean 22 

Orogen, and later on Ordovician (480-460 Ma) zircons from the Famatinian Orogen. The 23 

detrital zircon patterns and the maximum age of the units shed light on some previous 24 

discrepancies in the early Paleozoic stratigraphy. The Balcarce Formation, an early Paleozoic 25 

sedimentary cover of the Tandilia metamorphic and igneous basement, shows striking 26 

differences when compared with the new data from the Ventania System. The two data-sets 27 

reveal different sources for the two regions. The late Paleozoic foreland basin deposits mark 28 

an abrupt change of 180º in the paleocurrent directions, in the petrographic composition of the 29 

sediments, and in the provenance of detrital zircons. These data indicate a southern 30 

provenance with the first evidence of Carboniferous and Permian magmatic zircons. The 31 

oldest Archean zircons together with the finding of clasts with archeocyathids support the 32 

provenance from Patagonia, which was derived from Eastern Gondwana. The U-Pb ages of 33 

the ash-fall tuffs in the Tunas Formation confirm the Early Permian age of the Eurydesma 34 
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Fauna in the Ventania System. The U-Pb data together with the Lu-Hf isotopic data enhance 35 

the comprehension of the tectonic evolution of the Ventania System as part of the larger 36 

Gondwanides Belt that amalgamated to Western Gondwana during Late Permian times with 37 

some independent pieces derived from Eastern Gondwana. 38 

 39 

Keywords: Gondwanides, Eurydesma Fauna, Patagonia, collision, Famatinian and Pampean 40 

belts, zircon geochronology, tectonics. 41 

 42 

1. Introduction 43 

 The Ventania System is a complex fold and thrust belt developed in the southwestern 44 

margin of Gondwana during late Paleozoic times (Keidel, 1916; Harrington, 1942,1947; 45 

Suero, 1972; Killmurray, 1975; Ramos 1986; Von Gosen et al., 1990). Since the early work of 46 

Du Toit (1927) it is assumed that Ventania was part of a larger system, which encompasses 47 

the Cape Fold Belt of South Africa. Du Toit (1937) named this orogen as the Gondwanides 48 

following pioneer work of Keidel (1921), and confirmed later by several works (see Veevers 49 

2003, 2004; Milani and De Witt, 2008). In recent years many studies have analyzed the 50 

evolution of the Ventania System (Fig. 1) and the adjacent Claromecó foreland basin (Varela 51 

et al., 1987; Tomezzoli and Vilas, 1999; Tomezzoli and Cristallini, 1998; Dimieri et al., 2005; 52 

Cingolani 2005; Ramos and Kostadinoff, 2005). Current studies were able to track the extent 53 

of the Ventania Fold Belt in the offshore based on new seismic and geophysical data, 54 

depicting the Colorado Syntaxis (Pángaro and Ramos, 2012). This feature is the mirror image 55 

of the Cape Syntaxis and has similar characteristics (De Beer, 1995; Johnston, 2000). 56 

FIGURE 1 NEAR HERE 57 

 There are two main problems in the tectonic interpretation of Ventania. The first 58 

problem is the stratigraphy of the early Paleozoic units as for some authors the Curamalal and 59 

Ventana Groups are the same unit tectonically repeated (Kilmurray, 1975; Tomezzoli and 60 

Cristallini, 2004), although most of the stratigraphers agree about the original sequences 61 

proposed by Harrington (1947) where Ventana is younger than Curamalal. The second 62 

problem, and perhaps the most important, is if the Ventania fold and thrust belt was originated 63 

by collision with an allochthonous Patagonia terrane in the late Paleozoic (Ramos, 1984, 64 

2008; Kay et al., 1989; Sellés Martínez, 1989; Von Gosen, 2003; Chernicoff and Zappettini, 65 

2004; among others), or was an intracratonic basin inverted by contraction and strike-slip 66 

tectonics related to oblique subduction further to the south along the present continental 67 

margin (Cobbold et al., 1991; López Gamundí et al., 1994, 1995; Rossello et al., 1997; 68 
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Dalziel et al., 2000; Gregori et al., 2008, among others). Some authors refute the allochthony 69 

of Patagonia based on paleogeographic and paleoclimatic reconstructions (López Gamundí 70 

and Rossello, 1998). The provenance analyses here presented shed light to both problems and 71 

provide a robust answer to previous uncertainties. 72 

 73 

1.1 Location 74 

 The Ventania System is a 30 km wide mountain chain located in the southern part of 75 

the province of Buenos Aires in central eastern Argentina. It is surrounded by plains locally 76 

known as pampas, and has a length of 180 km with a W-NW trend (Fig. 2).  77 

FIGURE 2 NEAR HERE 78 

 These mountains have a maximum height in the Cerro Tres Picos of 1,250 meters. 79 

There are several ranges as the Sierras de Curamalal, Ventana and Pillahuincó (Fig. 2), which 80 

expose the early and late Paleozoic sequences, tightly folded, with a constant northeast 81 

vergence (Harrington, 1947; Suero, 1972).   82 

 83 

2. Stratigraphy 84 

2.1 Metamorphic and igneous basement 85 

 There are very scarce exposures of the basement in the southwestern slope of the 86 

Sierra de Curamalal. Most of the authors recognized the igneous origin of these rocks, which 87 

are highly deformed, with typical cataclastic and mylonitic textures (Kilmurray, 1968; 88 

Gregori et al., 2005). There are also rhyolites exposed in different sectors further north (Figs. 89 

2 and 3) and some isolated outcrops of granites exposed in Cerro Colorado and López Lecube 90 

quarries further to the west.  91 

FIGURE 3 NEAR HERE 92 

 The available geochronological data indicate an age of 607 ± 5.2 Ma for the deformed 93 

granites of Cerro Corral (U-Pb SHRIMP ages in zircons, Rapela et al., 2003), that confirm old 94 

Rb-Sr ages of ~ 603-612 Ma of Varela and Cingolani (1976). New data of the Pan de Azúcar 95 

Granite yielded an age of 581 ± 8 Ma (U-Pb SHRIMP ages in zircons, Tohver et al., 2012). 96 

The postectonic granites in Cerro Colorado (531.1 ± 4.1 Ma and 523.8 ± 4 Ma), San Mario 97 

(524.3 ± 5.3 Ma), and Los Chilenos (533 ± 12 Ma), as well as the La Ermita Rhyolite (509 ± 98 

5.3 Ma and 505 ± 18 Ma), were assigned to the Cambrian (Rapela et al., 2003; Tohver et al., 99 

2012). The Agua Blanca Granite has an inheritance age of 2182 ± 18 Ma that indicates a 100 

Paleoproterozoic basement in the area as part of the Río de la Plata Craton (Tohver et al., 101 

2012). The westernmost outcrops of López Lecube quarry yielded an age of 258.5 ± 1.9 Ma 102 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

by U-Pb SHRIMP in zircons that corresponds to postectonic granites of the Gondwanide 103 

Orogeny and it is not part of the Ventania basement (Rapela and Kostadinoff, 2005). 104 

 The igneous rocks have been divided in two suites based on their composition and 105 

tectonic setting: a calcalkaline orogenic and collisional Neoproterozoic suite and a 106 

postorogenic extensional Cambrian suite (Gregori et al., 2005). The last episode was 107 

associated with a Cambrian rift by Rapela et al. (2003). 108 

 109 

2.2 The Paleozoic sedimentary successions 110 

 The early Paleozoic sedimentary succession includes two sequences, the Curamalal 111 

and Ventania Groups (Fig. 4) deposited during Ordovician and Devonian times (Harrington, 112 

1947; Sellés Martínez, 2001). The late Paleozoic is represented by the Pillahuincó Group (Fig. 113 

4), which is mainly Cisuralian (Early Permian). The whole Paleozoic succession is around 114 

4,500 m thick, with the two lowermost sequences measuring 2,400 m thick. The upper part of 115 

the succession documents a higher subsidence rate compared with the underlying part, but 116 

also a contrasting paleocurrent pattern, which varies from SW to SE, with strong NE 117 

prograding deltaic lobes in the uppermost part of the sedimentary section. The succession 118 

contains mainly sandstones, claystones and conglomerates in the lower part. However, glacial 119 

diamictites and glaciomarine deposits constitute a special type of coarse-grained deposits that 120 

document the late Paleozoic glaciation (Andreis et al., 1989). 121 

 The Curamalal Group, which represents the beginning of the sedimentary record in the 122 

basin, contains conglomerates with coarse-grained clasts in clast-supported to patchy sandy 123 

matrix-supported types, with beds up to 1.5 m in thickness and erosive to sharp bases in the 124 

lower part of La Lola Formation. Internally they contain well rounded quartzite clasts 125 

showing normal or rarely reverse gradation. The outcrops of the source area remain unknown 126 

but the almost monomict composition suggests a quartzite unit situated at a certain distance 127 

that allowed the well roundness of clasts by hyperconcentrated flows or diluted debris flows. 128 

Sandy deposits include different types of cross-bedding; some of them were interpreted as 129 

hummocky cross stratification by Zavala et al. (2000). However, they exhibit a unidirectional 130 

pattern and in all cases resemble more bidimensional subaqueous dunes. Giant cross-beds up 131 

to 4 m in amplitude are common in medium grained sandstones containing clay chips, and 132 

mud drapes. Thin beds show the same sedimentary structures and in cases depict clear 133 

bidirectional paleocurrents that document tidal control during the sedimentation. In the 134 

Ventana Group, the lower unit (Bravard Formation) has some fine conglomerates with a 135 

quartzitic composition of the clasts. The overlying Napostá Formation is well known for its 136 
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ichnological content that includes Skolithos, Arenicolites and Daedalus. Abundant tidal 137 

features have been observed, including herringbone crossbeds and mud drapes. The Lolén 138 

Formation is the uppermost unit of the Ventana Group and exhibits more variability in clast 139 

composition and contains brachiopods and lycophytid plant remains as Haplostigma that have 140 

been used to date the top part in the Middle Devonian (Cingolani et al., 2002).  141 

  A paraconformity separates the Ventana from the overlying Pillahuincó Group, 142 

deposited between the latest Carboniferous and the Cisuralian (Early Permian) indicating a 143 

prolonged hiatus spanning the Upper Devonian to the middle Pennsylvanian. This group is 144 

crucial to understand the evolution of the Ventana System because a thick succession was 145 

deposited in a relatively short time. This fact documents a high subsidence rate related to a 146 

foreland basin which contrasts with the stable depositional settings for the underlying groups 147 

(Fig. 4).  148 

FIGURE 4 NEAR HERE 149 

 The Sauce Grande Formation rests unconformably over the Ventana Group and is a 150 

glaciomarine succession that documents the late Paleozoic glaciation in the Atlantic basins of 151 

Argentina. The Sauce Grande Formation represents Late Carboniferous-earliest Permian 152 

(Cisuralian) glacial deposits 400 m thick that are also recognized in the Claromecó Basin, 153 

which correlates with the Dwyka Formation in the Karoo Basin. This correlation of glacial 154 

deposits is known since the pioneer studies of Keidel (1916) and Du Toit (1927). The 155 

Malvinas /Falkland Islands also record equivalent glacial deposits in the Lafonia Formation 156 

(Frakes and Crowell, 1969; Bellosi and Jalfín, 1984, 1989). The pre-breakup position of the 157 

Malvinas (Falkland) Islands based on the early reconstruction of Martin et al. (1981) is south 158 

of the Karoo Basin and off the coast of South Africa. Recent studies of the Sauce Grande 159 

tillites have found reworked limestone clasts with archeocyathids that indicate a Patagonian 160 

derivation from an Antarctic source (González et al., 2011, 2013). Some paleomagnetic 161 

studies support a position further to the east, but need a 180º rotation to match the data 162 

(Mitchell et al., 1986). Based on these data, López Gamundí and Rossello (1998) conclude 163 

that the paleoice flow directions of the Dwyka and the Lafonia glacial sequences were similar, 164 

but different from the south-north direction of the Sauce Grande tillites.  165 

 The Piedra Azul Formation represents early postglacial transgressive deposits, which 166 

are overlain by the marine Bonete Formation. These deposits represent the maximum flooding 167 

of the basin in the Early Permian and bear the typical Gondwana fauna of Eurydesma 168 

(Harrington, 1955). This thick-shelled bivalve Eurydesma was a cold-resistant and immobile, 169 

epifaunal suspension feeder that dominated marine environment of Gondwana in the Early 170 
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Permian (Jones et al., 2006). Above these levels, intertidal plains deposits bear an abundant 171 

Glossopteris flora, a widespread typical Gondwana flora also known in the Early Permian of 172 

Africa, India, Antarctica and Australia (Benedetto, 2010). The upper unit of the group is the 173 

Tunas Formation, represented by prodeltaic to subaerial delta plain deposits with 174 

paleocurrents that indicate a source area situated to the south-southwest. Very well preserved 175 

ichnofossils as Cochlichnus and Gordia have been observed in the Las Mostazas quarry and 176 

cross-bedding exposures that confirm the paleocurrent pattern suggested by Andreis and 177 

Cladera (1992) for the unit.  178 

 Recent studies on the microflora of several wells of the offshore Claromecó Basin 179 

have identified on palynological bases almost the entire Permian sequence, including for the 180 

first time Lopingian assemblages (Balarino, 2012). 181 

 182 

3. Structure 183 

 The structure of the Ventania fold and thrust belt was a matter of discussion since the 184 

early work of Harrington (1947). Based on the extraordinary ductile folding of the early 185 

Paleozoic quartzites described by Keidel (1916) and Du Toit (1927), most of the authors 186 

interpreted the structure as a dominant fold-type (Harrington, 1970). Detailed surveys done by 187 

Varela et al. (1987), Von Gosen et al. (1990, 1991) and Tomezzoli and Cristallini (1998) 188 

recognized the main thrusts and confirmed the old thrust hypothesis of Schiller (1930). 189 

Seismic studies performed in the offshore depict those thrusts and their relationship with 190 

lower to middle crustal deformed rocks exposed further south in the Somún Curá Massif in 191 

the hinterland region (Pángaro and Ramos, 2012). These authors have shown that the 192 

Ventania foreland fold and thrust belt is separated from the hinterland by an area of minimum 193 

deformation interpreted as a late Paleozoic piggy-back basin. This basin is now beneath the 194 

Colorado Basin, a Jurassic to Early Cretaceous aulacogenic basin developed above the suture 195 

between Patagonia and Western Gondwana. This suture previously proposed by different 196 

authors in land, has been depicted in the offshore by a magnetic anomaly interpreted as 197 

evidence of mafic and ultramafic rocks by Max et al. (1999) and Ghidella et al. (1995). 198 

FIGURE 5 NEAR HERE 199 

 The age of deformation of the Ventania fold and thrust belt is constrained in the Early 200 

Permian based on the growth strata of Tunas Formation described by López Gamundí et al. 201 

(1995), the paleomagnetic evidence of syndeformational  magnetization of Tomezzoli and 202 

Vilas (1999), and the illite recrystallization age of Buggish (1987). 203 

 204 
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4. Material and methods 205 

 A systematic field reconnaissance was made of the different Paleozoic units and the 206 

metamorphic basement, analyzing their main sedimentological and structural characteristics. 207 

A large volume of 24 samples from Curamalal, Ventana and Pillahuincó Groups with detailed 208 

sampling in the uppermost tuff layers were collected. The location of the samples is indicated 209 

in Figs. 2 and 4 and the sample list and the U-Pb and Lu-Hf analytical data are presented in 210 

the electronic supplementary material. Petrographic and geochemistry information of 211 

sedimentary and tuff samples can be found in Alessandretti et al. (2013). 212 

 Samples were crushed and milled using jaw crusher. Then, the zircons were separated 213 

by conventional procedures using heavy liquids and an isodynamic magnetic separator after 214 

concentration by hand panning. The most clear and inclusion-free zircons from the least 215 

magnetic fractions were handpicked.  All zircons were mounted in epoxy in 2.5-cm-diameter 216 

circular grain mounts and polished until the zircons were just revealed. Images of zircons 217 

were obtained using the optical microscope (Leica MZ 125) and back-scatter electron 218 

microscope (Jeol JSM 5800) at the Eletron Microscope Center of the Federal University of 219 

Río Grande do Sul, but are only illustrated when necessary to support the interpretation.  220 

Zircon grains were dated with laser ablation microprobe (New Wave UP213) coupled to a 221 

MC-ICP-MS (Neptune) at the Geochronology Laboratory of the University of Brasilia.  222 

 U-Pb isotope data were acquired using static mode with spot size of 30 um in 223 

diameter. Laser-induced elemental fractional and instrumental mass discrimination were 224 

corrected by the reference zircon (GJ-1) (Jackson et al., 2004), following the measurement of 225 

two GJ-1 analyses to every four sample zircon spots. The collector configuration used for 226 

simultaneous measurements of Th, U, Pb and Hg isotopes was 
238

U, 
232

Th and 
208

Pb in 227 

faraday cups (H4, H2 and L4, respectively) and 
207

Pb, 
206

Pb, 
204

Pb
+
Hg and 

202
Hg in Multiplier 228 

Ion Counting (MIC)  channels attached to the L4 (MICs IC5, IC4, IC3 and IC2, respectively). 229 

The external error is calculated after propagation error of the GJ-1 mean and the individual 230 

sample zircon (or spot). A detailed description of analytical conditions and data reduction can 231 

be found in Chemale et al. (2012). Isoplot 3 software (Ludwig, 2003) was used to generate the 232 

concordia diagrams and histograms. For the concordia age calculations and frequency 233 

histograms, only the analyses with 100 ± 10% of concordance were used. All of the calculated 234 

ages are reported at the 95% confidence level.  235 

 Lu, Yb and Hf isotopes in single zircon crystals were acquired using static mode with 236 

spot size of 50 um in diameter. The laser spot was driven to the same site or zircon phase 237 

dated by the U-Pb method. To minimize aerosol deposition around the ablation pit and to 238 
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improve transport efficiency, He was flushed along with Ar into the ablation cell. The 239 

Faraday collectors were arranged the following way: 
171

Yb (low 4), 
173

Yb (low 3), 
174

Hf (low 240 

2), 
175

Lu (low 1), 
176

(Hf+Yb+Lu) (Center), 
177

Hf (high 1), 
178

Hf (high 2) and 
179

Hf (high 3). 241 

Detail of operation analytical conditions can be found in Chemale et al. (2011a). To correct 242 

for isobaric interferences of Lu and Yb isotopes on mass 176, the isotopes 
171

Yb, 
173

Yb and 243 

175
Lu were simultaneously monitored during the analyses. The 

176
Lu and 

176
Yb concentrations 244 

were calculated using a 
176

Lu/
175

Lu ratio of 0.026549 and a 
173

Yb/
171

Yb ratio of 1.123456 245 

(Chu et al., 2002; Thirwall and Walder, 1995). Correction of Hf isotopic ratios for 246 

instrumental mass bias was based on an exponential law and used the reference 
179

Hf/
177

Hf 247 

value of 0.7325 (Patchett et al., 1981). Each analytical session included determinations of the 248 

βHf and βYb factors for each individual spot. The mass bias behavior of Lu was assumed to 249 

follow that of Yb.  250 

 Lu-Hf model ages (TDM) of zircon grains were calculated based on a depleted mantle 251 

source with 
176

Hf/
177

Hf = 0.28325 and 
176

Lu/
177

Hf = 0.0388 (Andersen et al., 2009). We also 252 

calculated model ages of individual zircons for felsic and mafic sources assuming the 253 

following parental magma compositions: mafic, Lu/Hf = 0.022; felsic, Lu/Hf = 0.010 254 

(Pietranik et al., 2008). The values of Hf(t) were calculated assuming the CHUR 
176

Hf/
177

Hf 255 

ratio of 0.282785 (Bouvier et al., 2008) and the decay constant of  λ
176

Lu = 1.867 × 10−11/a 256 

(Söderlund et al., 2004). 257 

 258 

5. Results 259 

5.1 Pan de Azúcar mylonitic belt 260 

 This belt of highly deformed metamorphic rock was identified as the Pan de Azúcar 261 

Formation by Cuerda et al. (1975) in the eastern slope of the Cerro Pan de Azúcar beneath the 262 

contact with the La Lola Formation. Previous authors interpreted rocks similar to sample 263 

SLV-VE 02 (Fig. 6a), as derived from igneous protolith, whereas others as Von Gosen et al. 264 

(1990) described paragneisses from these exposures. We interpreted this sample based on the 265 

internal textures seen in the back-scattering image and the Th/U ratio in each dated zircon 266 

(Fig. 6) as gneiss of igneous origin; apparently deformational and metamorphic process has 267 

not affected the detrital zircons. One of the main frequency peaks (Fig. 6b) coincides with the 268 

ages of the Cambrian suite proposed by Gregori et al. (2005), although the major frequency 269 

peak clearly indicates a Paleoproterozoic component in this rock (Fig. 6 a-b), similar to the 270 

age interpreted by Tohver et al. (2012) as a basement inheritance in the granites of Agua 271 

Blanca. These ages are between the main magmatic activity (2250–2120 Ma) and the 272 
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collisional overprint (2100–2080 Ma) recorded in the basement of Tandilia by Cingolani 273 

(2011). There are also some few older and younger zircons.  274 

FIGURE 6 NEAR HERE 275 

 It is possible that the orthogneiss affected by a post-540 Ma contractional deformation 276 

may correlate with the main orogeny of the Saldania Belt recognized by Chemale et al. 277 

(2011b) in southernmost Africa. In a Gondwana plate tectonic context, a subduction zone has 278 

been proposed at the southern margin of the Kalahari plate, close to the Precambrian-279 

Cambrian boundary, as suggested by Rozendaal et al. (1999), and its extension in the Sierra 280 

de la Ventana Orogen (Chemale et al., 2011b). Following Gregori et al. (2005) deformation in 281 

Sierra de la Ventana should be older than 533 Ma, which is the age of the postectonic 282 

granites. The age pattern of this orthogneiss shows different inherited zircons. 283 

 However, another possible alternative would be to consider that sample a highly 284 

deformed quartzite of La Lola Formation, due to the similar pattern of zircon ages in 285 

comparison with other samples of this unit (see SLV-VE 05 in Fig. 8). This interpretation 286 

would indicate that the main deformation of this sample could be Gondwanian in age, instead 287 

of Brasiliano. 288 

 289 

5.2 Curamalal Group 290 

 The base of this group is represented by La Lola Formation, which is nicely exposed 291 

in the eastern slope of Cerro Pan de Azúcar (Andreis and López Gamundí, 1989). There is a 292 

30 m thick orthoconglomerate dominantly formed by clasts of quartzite (SLV-VE-03). These 293 

conglomerates are covered by quartzitic sandstones (SLV-VE-05). It is interesting to remark 294 

that tectonically interposed with these quartzites, east of the Abra Mayer, there are some 295 

lenses of mylonitic granite. One of these lenses with calcalkaline composition has a unique 296 

frequency peak at 541.0 ± 8.4 Ma within the range of basement granites (Figs. 7 a,b).  297 

FIGURE 7 NEAR HERE 298 

  The sedimentary facies and provenance of these conglomerates have been studied by 299 

Zavala et al. (2000), who recognized a proximal shelfal environment in a flood- dominated 300 

fan delta system developed from the Tandilia area. However, the good mineralogical maturity 301 

almost dominated by quartzite clasts up to 25 cm in size and good roundness suggest that the 302 

source area was closer, indicating that the present day quartzite outcrops of Tandilia extended 303 

well into the south. The pattern of detrital zircons of both samples (see samples SLV-03 and 304 

SLV-05 in Fig. 8) confirms the proposal of Zavala et al. (2000), and shows that the main peak 305 

around 2050-2170 Ma corresponds with the maximum magmatic activity of the Tandilia arc 306 
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according with Cingolani (2011). The lower levels of La Lola Formation have minor 307 

Cambrian peaks at 545 and 520 Ma, which indicate exhumation of the post-tectonic rocks in 308 

the surrounding area. 309 

  The sample SLV-VE-09 is from the lower part of Mascota Formation from Sierra de 310 

Chasicó, which is unconformably overlying the Cerro Colorado Granite (Harrington, 311 

1968).The maximum age of sedimentation is 534 Ma as indicated by the highest frequency 312 

peak (Fig. 8). This quartzite has been interpreted as being older than the Los Chilenos Granite 313 

(533 Ma, Thover et al, 2012), but the present data may favor that the Mascota Formation is 314 

younger than the granite based on field observations that coincide with criteria used in the 315 

Harrington (1947) map. The sample SLV-VE-10 was collected east of Tornquist (see Fig. 2) 316 

from the Mascota Formation, and presents similar age distribution pattern as sample SLV-317 

VE-09. In these samples the Paleoproterozoic sources start decreasing and some minor 318 

Mesoproterozoic peaks are visible. 319 

 The analysis of the older units of the Curamalal Group shows an interesting trend in 320 

their sources (Fig. 8) with a continuous decrease in the Paleoproterozoic provenance from the 321 

La Lola Formation at the base of the Curamalal Group upwards, parallels the increase of the 322 

Cambrian zircons towards the top of the Mascota Formation. This increase of Cambrian peaks 323 

of 545 and 534 Ma may indicate a potential derivation from Eastern Sierras Pampeanas (see 324 

Fig. 1) which has been exhumed at that time. The input of Grenville-age zircons around 1200 325 

Ma in the Mascota Formation is somewhat older to be derived from the Namaqua belt of 326 

western Kalahari craton, but similar ages recorded in the detrital zircons of the Punta Mogotes 327 

basement from a borehole core, were interpreted as derived from the western Kaapval Craton 328 

by Rapela et al. (2011). Similar age zircons were also recognized in the Cerro Largo 329 

Formation from Tandilia by Gaucher et al. (2008). However, the most potential Grenville-age 330 

source based on the rank of ages observed could be the Eastern Sierras Pampeanas where ages 331 

from 1000 to 1200 Ma are common (Escayola et al., 2007). 332 

FIGURE 8 NEAR HERE 333 

 5.3 Ventana Group 334 

 The different units of the Ventana Group are conformably deposited on the Curamalal 335 

Group. The provenance analysis based on the detrital zircons shows as the most important 336 

frequency peak Brasiliano ages around (564-540 Ma) (Fig. 9). The Paleoproterozoic ages of 337 

Tandilia are less significant and tend to disappear. Some minor evidence of Ordovician 338 

zircons (482 Ma) is seen in the Napostá Formation, as well as in the Bravard Formation, 339 

which will be dominant in the upper part of the sequence. Uriz et al. (2012) analyzed a sample 340 
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from the Napostá Formation and detected an important frequency peak of 473 Ma, partially 341 

equivalent to the Ordovician peak found by us. 342 

FIGURE 9 NEAR HERE 343 

 The zircons of Providencia Formation follow the same trend of the lower section of 344 

the Ventana Group (compare with Fig. 10), but an important change is recorded in the Lolén 345 

Formation, already recognized by Uriz et al. (2011). There, an important peak of Early 346 

Ordovician zircons is seen for the first time (490 Ma), as well as increasingly old Brasiliano 347 

ages (641-612 Ma). The first occurrence of an Ordovician frequency peak in the Lolén 348 

Formation is very similar to the one recognized by Rapela et al. (2007) further to the 349 

northeast, in somewhat equivalent nearshore quartzitic sandstones of the Balcarce Formation. 350 

This unit is exposed nearby the town of Balcarce (see location in Fig.1), and is 351 

unconformably deposited on the metamorphic basement of the Tandilia System and pinch out 352 

over the glacial diamictites of the Volcán Formation (Pazos et al., 2008).  353 

 There are not precise biostratigraphic constraints for its age, but it was assumed to be 354 

broadly between Ordovician and Early Silurian based on its trace fossils (Borrello, 1966). 355 

According to Rapela et al. (2007) who reported detrital zircon ages as young as 475–480 Ma, 356 

the Balcarce Formation is not older than Early Ordovician, suggesting a Late Ordovician to 357 

Early Silurian sedimentation age. Moreover, the trace fossils described by Seilacher et al. 358 

(2002) from several localities, differ significantly from the familiar Arenigian suite. Rather, 359 

they resemble the Lower Silurian ichnofaunas of  Libya, Chad and Benin, with trilobite 360 

tunnels (Cruziana ancora), palmate Arthrophycus alleghaniensis and Gyrochorte zigzag as 361 

shared elements (Seilacher et al., 2002), but also Diplocraterion conforming monospecific 362 

suites has been observed. These authors therefore assigned an Early Silurian age to the 363 

Balcarce Formation and they mentioned that the ichnofauna possibly signals an even further 364 

southward extension of the Malvinocaffric Province. It is interesting to remark that the matrix 365 

of the Cerro Volcán diamictites, a four meters thick level underlying typical quartzites of the 366 

Balcarce Formation, has detrital zircons 485-490 Ma old and a maximum peak of 530 Ma 367 

(Zimmermann and Spalletti, 2009; Van Staden et al., 2010). These data reinforce the 368 

assignation to the Silurian of this unit since these glacial deposits could be interpreted as 369 

representing the Hirnantian glaciation of the end of the Ordovician. 370 

FIGURE 10 NEAR HERE 371 

 The siliciclastic deposits of the Balcarce Formation were developed in a nearshore and 372 

inner shelf environment on a tide dominated platform, affected by storm events in a marine 373 

system that was open to the south based on the pattern of progradational clinoforms (Poiré et 374 
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al., 2003). Paleocurrents indicate a north dominant sediment supply for the western and 375 

central areas of the Balcarce Formation, while in the eastern part of the basin the main 376 

transport directions are east-west oriented (Teruggi, 1964). 377 

 The Lolén Formation is the only unit bearing marine invertebrate fossils in the lower 378 

Paleozoic sequences of the Ventania System and the occurrence of brachiopods is known 379 

since the early work of Harrington (1947). Benedetto (2010) analyzed these brachiopods and 380 

assigned them to Cryptonella, an Early Devonian genus. Based on the age of these 381 

brachiopods, Newton and Cingolani (1990) correlated the Lolén Formation with the 382 

Bokkeveld Group of the Cape Fold Belt, confirming the correlation of Du Toit (1937). 383 

 Therefore,  a partial correlation between Lolén and Balcarce Formations is proposed 384 

based on the detrital zircon pattern (Fig. 11), not only the Early Ordovician sources, but also 385 

the range of Brasiliano ages (640-610  Ma), which are older than previous ages recorded in 386 

the early Paleozoic of Ventania. The Ordovician provenance of both units should come from 387 

the northwest, derived from the Western Sierras Pampeanas Orogen, the only sector that 388 

records plutonic and volcanic rocks of Famatinian age at these latitudes (Ramos et al., 2010). 389 

FIGURE 11 NEAR HERE 390 

5.4 Comparison between the Curamalal and the Ventana Groups 391 

 Kilmurray (1975) proposed that both groups were result of a tectonic repetition based 392 

on an apparent similarity between the quartzitic sandstones. Tomezzoli and Cristallini (2004) 393 

formalized Kilmurray’ hypothesis in their study of the structure of Sierras de la Ventana and 394 

Curamalal through a viable structural section of these ranges, which shows both groups as a 395 

single sequence tectonically repeated. However, our present results indicate a striking 396 

difference between the detrital zircon patterns of both groups. When the pattern of La Lola 397 

Formation (Fig. 8) is compared with the lower part of the Ventana Group, in particular the 398 

Bravard and Napostá Formations (Fig. 9), it is clear the absence of Paleoproterozoic 399 

population in these units (Fig. 12).  400 

FIGURE 12 NEAR HERE 401 

 The Curamalal Group begins with a high frequency peak of Paleoproterozoic ages 402 

with a minor peak in the Brasiliano ages, showing exhumation of the Tandilia rocks at that 403 

time. An irregular exposed topography extended to the south of the present ranges that 404 

explains the zircon detrital pattern and facies of the conglomerates of La Lola Formation. The 405 

absence of carbonate clasts contrasts with the abundance of carbonates in the Neoproterozoic 406 

sedimentary cover of Tandilia. This could be explained by a combination of climate and 407 

transport that favored resistant lithologies over carbonates.  408 
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  The maximum frequency in the base of Ventana Group shows exhumation of the 409 

Brasiliano rocks and almost no existence of Paleoproterozoic ages, contrasting with the 410 

Curamalal Group pattern. These different patterns also characterize the upper part of the 411 

Curamalal and Ventana Groups (see Figs. 8 and 10). The major difference is the first 412 

occurrence of Ordovician zircons which is exclusive of the Ventana Group and Balcarce 413 

Formation (Fig. 12). The Cerro Largo Formation in the Tandilia System has been considered 414 

correlatable with the Balcarce Formation, but Pazos and Rapalini (2011) kept the unit in the 415 

Precambrian as traditionally suggested in agreement with the detrital pattern of this unit.  416 

 These evidences permit to discard the correlation of both groups and revaluate the 417 

early proposed stratigraphy of Harrington (1947) which, at the present level of knowledge, is 418 

the one that best explains the data. 419 

 420 

5.5 Pillahuincó Group 421 

 The late Paleozoic deposits of this group indicate the inception of a foreland basin 422 

stage in the evolution of the Ventania System (Ramos, 1984; López Gamundí and Rossello, 423 

1992, among others). The unconformity that separates the Ventana and Pillahuincó Group, 424 

although quite elusive in the structural evidence (López Gamundí and Rossello, 1993), 425 

coincides with an important change in the petrography of the sandstones (Andreis and 426 

Cladera, 1992). Compositionally, the initial passive margin phase of the continental platform 427 

was characterized by quartz-rich, craton-derived detritus, but was followed by a foreland 428 

phase that shows a paleocurrent reversal and dominance of arc/foldbelt-derived material 429 

(López Gamundí and Rossello, 1998). 430 

 The recent finding of subrounded clasts with archeocyathids in the glaciomarine Sauce 431 

Grande Formation in Ventania derived from Antarctica (González et al., 2013) as well as in 432 

the Lafonia (Fitzroy) tillites in the Malvinas (Falkland) Islands, and in the Dwyka tillites 433 

(South Africa) support the correlation of these glacial deposits (Veevers and Saeed, 2013). 434 

 The analysis of the detrital zircon provenance of the late Paleozoic deposits (Fig. 13) 435 

shows several differences regarding the early Paleozoic sequences. The first important 436 

difference is that in the Sauce Grande Formation there are Archean zircons with conspicuous 437 

ages of 2729, 2990 and 3200 Ma, not seen in the lower Paleozoic sequence of Ventania. As 438 

the Tandil area shows strong evidence supporting the derivation from a Neoarchean crust 439 

(less than 2.65 Ga) as inferred by Cingolani (2011) based on the positive Hf data, those 440 

zircons together with the reversal of the paleocurrents indicate a different old cratonic source 441 

south of the study area. The second striking difference is the frequency peaks of 319-322 Ma 442 
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in the Piedra Azul, Bonete, and Tunas formations that are characteristic from northern 443 

Patagonia, as well as the Silurian 432-417 Ma peaks, similar to the age recorded in Los 444 

Pájaros Island in northeastern Patagonia granites (Nuñez et al., 1975). The Piedra Azul 445 

Formation  represents early postglacial transgressive deposits, which are overlain by the 446 

marine deposits of the Bonete Formation bearing the typical Eurydesma Gondwana fauna  447 

(Harrington, 1955), which represent the maximum flooding of the basins in the Early 448 

Permian. Above this fauna, some intertidal plain deposits bear an abundant Glossopteris flora, 449 

a typical Gondwana flora also known in the Early Permian of Africa, India, Antarctica and 450 

Australia (Benedetto, 2010). 451 

FIGURE 13 NEAR HERE 452 

 The other frequency peaks (Fig. 13) are common ages in the crystalline basement of 453 

northern Somún Cura Massif.  Zircons ages of Grenvillian (1100-1000 Ma), Brasiliano (584-454 

532 Ma), and Ordovician (491-450) have been widely reported by Pankhurst et al. (2001, 455 

2006); Ramos (2008), and Naipauer et al. (2010). This spectrum of frequency peaks is 456 

duplicated by the detrital zircons of the Sierra Grande Formation (Fig. 14), a Siluro-Devonian 457 

sedimentary cover unconformably deposited over the crystalline basement (Uriz et al., 2011). 458 

FIGURE 14 NEAR HERE 459 

 There are some minor outcrops of sandstones near González Chaves, 113 km east of 460 

the Coronel Pringles in the middle of the Claromecó Basin (Figs. 1 and 2) (Llambías and 461 

Prozzi, 1975). Monteverde (1937) correlated these sandstones with the quartzites of Las 462 

Mostazas in the southeastern part of the Sierra de Pillahuincó (Tunas Formation). Furque 463 

(1965) described similar quartzites with rest of lepidophytes in a similar setting 50 km further 464 

east of González Chaves. A representative sample of these outcrops near González Chaves 465 

was dated (SLV-VE 24, Fig. 15). 466 

FIGURE 15 NEAR HERE 467 

 The detrital zircon ages show two important frequency peaks, one in the Late 468 

Carboniferous (316 Ma), and another in the Early Devonian (406 Ma), a pattern characteristic 469 

of other Pillahuincó Group rocks (Fig. 13). It is important to note that the youngest 470 

sedimentary deposits exposed in the Claromecó Basin belong to this group, although 471 

Tomezzoli and Vilas (1997) and Tomezzoli (2009) indicated that these exposures are 472 

consistent with an Early to Late Permian age based on paleomagnetic grounds. This has been 473 

challenged by Domeier et al. (2011), who supported younger ages based on recent dating in 474 

Sierra Chica. 475 

 476 
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5.6 The Permian ash-fall tuffs of Tunas Formation 477 

 The occurrence of pyroclastic levels in the Tunas Formation first described by Iñiguez 478 

et al. (1988) is one of the best time-lines to constrain the age of the late Paleozoic sequences. 479 

The age of this unit was based on the Eurydesma Fauna and the Glossopteris Flora in the 480 

deposits underlying the Tunas Formation, both of Early Permian age (Harrington 1947, 1955; 481 

Benedetto, 2010). The upper part of the Tunas Formation bears the Gangamopteris Flora of 482 

latest Early Permian age according to Archangelsky and Cúneo (1984).   483 

 Several ash-fall tuffs levels were sampled in the Abra del Despeñadero, in the 484 

southeastern sector of Sierra de Pillahuincó. There, thin beds of smectite-rich claystones have 485 

been identified in the predominantly sandy upper half of the Tunas Formation and are 486 

characterized by abundant vitroclasts and fragments of vitric tuffs (Iñiguez et al., 1988; López 487 

Gamundí, 2006). The dated zircons of three beds yielded an average 
206

Pb/
238

U age of 304 488 

Ma, that corresponds to some sort of mixing of zircons formed between 280 and 288 Ma 489 

(interpreted as juvenile zircons based on Hf data) and zircons formed between 290 to 315 490 

Ma. Alessandreti et al. (2013) presented for the same SLV-VE-19 sample an U-Pb in situ LA-491 

MC-ICPMS age of 284 ± 15 Ma.  492 

 One tuff layer of the same outcrop as the samples SLV-VE-19, 20 and 21 has been 493 

dated by Tohver et al. (2008) and yielded an age of 282.4 ± 2.8 Ma (U-Pb-SHRIMP). A 494 

similar age of 280.9 ± 1.9 Ma (U-Pb SHRIMP) was recently reported by López-Gamundí et 495 

al. (2013) on volcanic zircons from a tuff layer in the uppermost section of the Tunas 496 

Formation. Both SHRIMP U-Pb ages are more reliable.  497 

 Based on these data, it is assumed that the tuff layers with the younger frequency 498 

peaks, have crystallization ages close to 280 and 288 Ma (see Fig. 13), indicating a middle 499 

Early Permian age, consistent with SHRIMP recent ages and the biochron of the fossil fauna 500 

and flora. 501 

 The intimate relationship between volcanic activity inboard of the paleo-Pacific 502 

margin, deformation in the adjacent orogenic belt, and subsidence and sedimentation in the 503 

contiguous foreland basin led López Gamundí and Rossello (1998) to interpret the magmatic 504 

belt as an Andean-type margin related to the paleo-Pacific margin. This proposal was 505 

followed by Turner (1999) and Dalziel et al. (2000), among others. The main problem of this 506 

interpretation is that the magmatic arc, as pointed out by Turner (1999) was located over 507 

1,000 km away from the continental margin. No subduction related magmatism can exist that 508 

far from the margin, even if a flat-subduction is proposed. A magmatic arc belt cannot be 509 

developed further than 300-400 km away of the trench. Some authors proposed an 510 
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intermediate location (Pankhurst et al., 2006), but still inconsistent with a magmatic arc along 511 

northern Patagonia in the Somún Cura Massif. Recent work of Chernicoff et al. (2012 a) 512 

demonstrates that a series of calc-alkaline orthogneisses are Permian in age and represent the 513 

relicts of the late Paleozoic magmatic arc developed in the northern Patagonia as proposed by 514 

different authors (Ramos, 2008, and cites therein).  515 

Although, the classic interpretation to explain the pyroclastic levels in the Las Tunas 516 

Formation and in the Paraná Basin in southern Brazil is a source in the Choiyoi volcanic rocks 517 

(Kay et al., 1989), we favor a more proximal origin. Based on U-Pb SHRIMP ages around 518 

281.4 ± 2.5 Ma from Los Reyunos Formation, lower section of the Choiyoi volcanic rocks, 519 

Rocha Campos et al. (2011) correlated these rocks with the older tuffs of the Paraná Basin. 520 

This correlation is supported by the northeast paleocurrent directions measured in the aeolian 521 

sandstones of Los Reyunos Formation by Pazos et al. (2011). However, if we want to use the 522 

same Choiyoi source for the pyroclastic deposits of Las Tunas Formation, even with similar 523 

ages, the dominant winds should be to the southeast, different from what was measured in the 524 

Choiyoi intercalated aeolian sandstones. The distance is closer from Somún Cura, the ages are 525 

similar, and the required paleowind direction is also to the northeast. Therefore, we prefer as a 526 

potential source the Early Permian widespread calderas and rhyolites of the same age found in 527 

the Somún Cura Massif. This interpretation also explains the source of the large amount of 528 

volcanic debris and igneous Carboniferous detrital zircons found in Las Tunas Formation. 529 

 530 

6. Lu-Hf-Isotope analyses 531 

 Hf isotopes have been analyzed in 65 detrital zircons of samples from the Cambrian 532 

paragneiss (SLV-VE-02), and from the Lolén (SLVE-01) and Tunas (SLV-VE 20/21) 533 

Formations, in order to understand the characteristics of the source region (Fig. 16). 534 

 Several zircons from different representative sources have been analyzed in the sample 535 

of metamorphic basement (SLV-VE-02). Two Neoarchean zircons yielded negative values of 536 

Hf(t)  of -7.06  and -5.11 and  TDM ages 2.98 and 3.22 Ga; one Mesoarchean zircon has an 537 

Hf(t) of +1.73 with a TDM age of 3.06 Ga. The Paleoproterozoic source was analyzed in 538 

eight zircons, which yielded values of Hf(t)  between + 2.19 and -1.8. These values are 539 

typical of the juvenile arc granitoids of Tandilia (Fig. 16). The younger zircon of 1,782 Ma 540 

gave a quite negative value of -5.57 far from the previous ones; the TDM ages yielded 541 

between 2.57 and 2.19 Ga. This 1.78 Ga corresponds to the age of post-collisional granites in 542 

the Tandilia area (Cingolani, 2011), which clearly shows important crustal recycling (Fig. 16). 543 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A few Mesoproterozoic zircons analyzed have disperse Hf(t) values from -14.8 and an TDM 544 

age of 2.05 Ga, to Hf(t) positives and TDM ages 1.87 and 1.62 Ga. The other well 545 

represented fraction is the Neoproterozoic (ca. 552 Ma) with Hf(t) values between -5.4 and -546 

3.08 with similar TDM Mesoproterozoic ages between 1.34 and 1.26 Ga within the range 547 

described for the Sierras Pampeanas by Dahlquist et al. (2013). 548 

 FIGURE 16 NEAR HERE 549 

 In the Lolén Formation 35 zircons have been analyzed from sample (SL-VE-01) 550 

representing different sources (Fig. 16). The Paleoproterozoic source yielded values of Hf(t) 551 

of +2.86 and -1.57 and TDM ages between 2.49 and 2.31 Ga; however, a few zircons yielded 552 

Hf(t) values more negatives between -4.04 and -20.68 and older TDM ages between 2.81 and 553 

2.59 Ga. Grenville-age zircons yielded similar Hf(t) values, but highly positive, between 554 

+12.75 and +7.22, and model ages close to the crystallization ages, between 1.27 and 1.50 Ga, 555 

showing their juvenile nature (Fig. 16). The Neoproterozoic zircons have variable 556 

characteristics with a group of highly negative Hf(t) values between -35.17 and -18.22 and 557 

model ages between 2.52 and 1.80 Ga; a second group has less negative Hf(t) values 558 

between -5.64 and -0.73 and younger TDM ages between 1.16 and 1.35 Ga. The Paleozoic 559 

sources can also be grouped in two sets, a group of Cambrian, Ordovician, and Devonian 560 

zircons with very negative Hf(t) values (-43.93 and -11.09) and TDM ages between 2.61 and 561 

1.47 Ga; the other group has more positive Hf(t) values (+28.71 and -5.01) and younger 562 

TDM ages (1.26 and 1. 03 Ga). 563 

 The last samples from the Tunas Formation (SLV-VE 20/21), which have late 564 

Paleozoic zircons (290-340 Ma) yielded Hf(t) values between +10.51 and -1.87, with TDM 565 

ages restricted between 0.98 and 0.80 Ga. These zircons probably belong to the juvenile 566 

magmatic arc of northern Patagonia (see Ramos, 2008). There is also a crystal with highly 567 

negative Hf(t) value (-30.82) and a model age of 1.82 Ga, very distinct of the rest of the 568 

group (Fig. 16). Those highly negative values were also recorded by Chernicoff et al. (2012 569 

a). 570 

 571 

7. Analyses of the provenance  572 

 Based on the previous detrital zircon analyses, together with conventional 573 

petrographic and paleocurrents studies performed by Reinoso (1968), Andreis and Cladera 574 

(1992) and López Gamundí and Rossello (1998), among others, a tentative paleogeography 575 

can be reconstructed along a series of stages. 576 
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 577 

7.1 Cambrian-Ordovician 578 

 The provenance at this stage looks simple and conditioned by the basement exposed at 579 

that time. The Paleoproterozoic of Tandilia is the main source, a clear indication that these 580 

mountains were conspicuous at that time. Through time, the Pampean basement of Ventania 581 

starts being exhumed and Cambrian and Neoproterozoic granitoids became the main source 582 

(Fig. 17).  583 

FIGURE 17 NEAR HERE 584 

 The proposed paleogeography shows an old mountain system being exhumed, 585 

represented by the Tandilia mountains, surrounded to the west (present coordinates) by the 586 

Pampean orogenic belt of Eastern Sierras Pampeanas. The exhumation of this belt produced 587 

an increased participation of this source through time. At the eastern side the Punta Mogotes 588 

Belt, a Brasiliano orogen related to the final closure of Adamastor Ocean at Early Cambrian 589 

times (Gaucher et al., 2005), was one of the last events related to the amalgamation of 590 

Gondwana. However, this orogen was not source of the analyzed samples of Ventania. The 591 

comparison of the different units of the Curamalal Group (Figs. 7 and 8) with the Mogotes 592 

Formation detrital zircon patterns shows striking differences (Fig.18). 593 

FIGURE 18 NEAR HERE 594 

 The Cambrian-Ordovician paleogeography is illustrated in Fig. 19. The drainage 595 

should have an important component from the west or northwest to explain the lack of zircons 596 

from the Punta Mogotes Belt seen in the frequency peaks of Fig. 18. Note that these peaks are 597 

partially recognized in the younger Balcarce Formation (Fig. 11). 598 

FIGURE 19 NEAR HERE 599 

7.2 Silurian-Devonian 600 

 At this time the main dominant provenance was from the west and northwest. The 601 

Pampean basement of Eastern Sierras Pampeanas as described by Rapela et al. (1998), Ramos 602 

et al. (2010) and Chernicoff et al. (2009, 2012 b), was the main source of the lower Ventana 603 

Group (Fig. 17). The angular unconformity between the Balcarce Formation and the 604 

Neoproterozoic and Early Cambrian sedimentary cover of Tandilia (Cingolani, 2011) may be 605 

either the result of the collision of Pampia with the Río de la Plata Craton (Early Cambrian), 606 

or the Famatinian collision (Middle Ordovician). The sedimentary record of Balcarce 607 

Formation indicates a post Hirnantian glaciation age (Late Ordovician). The Pampean 608 

unconformity is seen in different places of Eastern Sierras Pampeanas and was dated in 530 609 

Ma by Escayola et al. (2007) and Ianizzotto et al. (2013). But, as the main source is coming 610 
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from Eastern Sierras Pampeanas which is closer to Tandilia, it is more probable that 611 

deformation is related to the Pampean orogen (see further details in Pazos and Rapalini, 612 

2011). 613 

  Through time, the Pampean Belt had the relief partially eroded, and during Silurian 614 

times the first Ordovician zircons were recorded, indicating that either the Famatinian Belt 615 

was supplying zircons to the area, or some scarce Ordovician granitoids in the Eastern 616 

Pampean Belt were exhumed. Also, Grenvillian-age zircons began to appear in the pattern of 617 

provenance, suggesting that the Mesoproterozoic basement of Cuyania and/or Pampia was 618 

also exhumed (Sato et al., 2000). The relief of Tandilia was almost non-existent as a source. 619 

At this time, an important source from Punta Mogotes Belt is recorded in the Balcarce 620 

Formation, indicating that this belt was actively exhumed. In Silurian times the 621 

paleogeography was characterized by higher mountains in the Famatinian Belt in the west, a 622 

partially eroded Pampean Belt, almost non-existent Tandilia Mountains, and an important 623 

relief in the Punta Mogotes Belt. Some sort of by-pass existed through the Pampean Belt in 624 

order to register Ordovician zircons in the Balcarce and Lolén Formations. The continental 625 

margin was opened to the present south (Fig. 19). 626 

 627 

 7.3 Late Paleozoic 628 

 A drastic change in paleogeography was produced at this time. A volcanic relief 629 

associated with a magmatic arc was located to the south, in present northern Patagonia. 630 

Volcanic debris (Andreis and Cladera, 1992) together with magmatic zircons were recorded in 631 

Ventania from 320 to 270 Ma. Classic petrographic provenance studies in Ventania and Cape 632 

Fold Belt of South Africa indicate a dissected arc source for these rocks (López Gamundí and 633 

Rossello, 1998). The older data of Late Carboniferous age observed as detrital zircons are in 634 

agreement with their derivation from the northern late Paleozoic magmatic arc proposed by 635 

Ramos (2008) in northern Patagonian along the Somún Cura Massif. Recent studies of 636 

Chernicoff et al. (2012 a) in the Yaminué region in the Somún Cura Massif show that a biotite 637 

paraschist has a maximum U/Pb SHRIMP age of 318 ± 5 Ma coherent with the frequency 638 

peaks of several units of the Pillahuincó Group of the Ventania System.  On the other hand, 639 

the tonalitic orthogneiss has a crystallization age of 261.3 ± 2.7 Ma, which is broadly coeval 640 

with deformation, and Neoarchean-Paleoproterozoic inheritance, indicating the occurrence of 641 

Archean crust in this sector of Patagonia. Hf TDM ages of Permian zircons are mainly Meso-642 

Paleoarchean (2.97–3.35 Ga) with highly negative (Hf) values (ca. –33) according to 643 

Chernicoff et al. (2012 a). It is interesting to remark that the first Archean zircons observed in 644 
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Ventania are the 2729, 2990 and 3200 Ma frequency peaks of Sauce Grande Formation, 645 

within the range of inherited Archean zircons of the Yaminué region described by these 646 

authors. 647 

  The obtained zircon dates of the ash-fall tuffs of the Tunas Formation indicate an 648 

Early Permian age, close to the depositional age of this unit (López Gamundí et al., 1995), 649 

which was interpreted as synorogenic deposits based on the occurrence of growth strata. The 650 

age of deformation is consistent with the deformation ages of the orthogneisses in north 651 

Patagonia in the adjacent Somún Cura Massif (Chernicoff et al., 2012a). 652 

 A Permian very juvenile poorly dissected relief dominated the Somún Cura Massif and 653 

the uplifted Ventania fold belt providing immature detritus to the Claromecó Basin. The 654 

Ventania fold and thrust belt continues in the offshore in the Colorado syntaxis (Pángaro and 655 

Ramos, 2012), a mirror image of the Cape Syntaxis (Fig. 20). 656 

 657 

8. Correlation with the Cape Fold Belt in South Africa 658 

 It is important to note that in South Africa, the Cape Fold Belt was developed at the 659 

same time that the Ventania Belt (Fig. 20) as parts of the Gondwanides Orogen (Keidel, 1916, 660 

1921). There is consensus in the correlation of the different units of the Neoproterozoic-661 

Cambrian basement and the Paleozoic sedimentary sequences since the early work of Keidel 662 

(1916) and DuToit (1927) followed by Harrington (1947). This correlation was based on the 663 

rock types and age of the basement as proposed by Rapela et al. (2003), Milani and DeWitt 664 

(2008), and Chemale et al. (2011b). On fossiliferous grounds the correlation was based on the 665 

Eurydesma fauna and the Glossopteris flora, as well as in the Devonian marine fossils 666 

(Harrington, 1955; Benedetto, 2010). Another piercing point is the correlation of the glacial 667 

deposits of Sauce Grande and the Dwyka Tillite, which has been identified since the early 668 

work of Keidel (1913), and corroborated several times by more recent works (López Gamundi 669 

and Rossello, 1998). 670 

FIGURE 20 NEAR HERE 671 

 A recent study on the detrital zircons of several pre-Carboniferous units of the Cape 672 

Supergroup shows striking differences and similarities with the Ventania System (Fourie et 673 

al., 2011). The main difference is the dominant Mesoproterozoic (1.0-1.2 Ga) provenance of 674 

the Cape Supergroup that points out to the Namaqua Belt as the source area. The Curamalal 675 

and Ventana Groups have the Paleoproterozoic ages from Tandilia Belt (2.2-2.0 Ga) as the 676 

main Precambrian source. The similarities are the Neoproterozoic-Cambrian ages derived in 677 

the present study from the Eastern Sierras Pampeanas, and from the pan-African belts and the 678 
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Cape Granites for Fourie et al. (2011). Both studies have also a striking coincidence in the 679 

Ordovician ages. The analyses performed in the pre-Carboniferous rocks of the Cape Fold 680 

Belt have a noticeable frequency peak at 469 Ma, similar to the frequency peak of 475 Ma of 681 

Lolén Formation in the Ventania Belt that in the present study is straight forward derived 682 

from the Famatinian Belt of Western Sierras Pampeanas. A similar Ordovician peak (478 Ma, 683 

see Fig. 11) was identified in the Balcarce Formation by Rapela et al. (2011). Nonetheless, 684 

Fourie et al. (2011) assumed that the source area could be either the Ross Orogen in 685 

Antarctica or the Patagonian Deseado Massif of Argentina. As we noticed, the abrupt change 686 

in provenance occurred after the collision of Patagonia, where a very different provenance is 687 

recorded for the first time.  688 

 Based on the evaluation of both detrital zircon data bases we consider the Ordovician 689 

(480-460 Ma) provenances in both Ventania and Cape belts, as derived from Western Sierras 690 

Pampeanas, while the Neoproterozoic-Cambrian (560-530 Ma) zircons have local sources. 691 

Zircons are derived in the Ventania Belt from Eastern Sierra Pampeanas, but in the Cape Fold 692 

Belt come from local pan-African belts. 693 

 694 

9. Concluding remarks 695 

 The obtained data permit to confirm some hypotheses and discard some previous 696 

interpretations. The comparison of the provenance between the Curamalal and Ventana 697 

Groups allows once more to confirm the stratigraphy of Harrington (1947), and to reject some 698 

hypotheses that interpreted these units as tectonic repetitions of the same succession. These 699 

pre-Carboniferous sequences of the Ventania Belt have a pattern derived from the Tandilia 700 

Belt, as well as from Eastern and Western Sierras Pampeanas. These characteristics can be 701 

compared with the detrital zircon pattern of the pre-Carboniferous Cape Fold Belt sequences. 702 

Differences and similarities can be explained with common and local sources; both belts share 703 

a similar Early to Middle Ordovician age zircons, which seem to be derived from the Sierras 704 

Pampeanas Belt. 705 

 The change in provenance between the early Paleozoic deposits of the Ventana Group 706 

and the late Paleozoic foreland sequences of the Pillahuincó Group indicates a different 707 

source region from these deposits. A series of Carboniferous to Permian zircons, absent in the 708 

previous units, together with the drastic change in paleocurrents indicate their derivation from 709 

northern Patagonia as part of the Gondwanides Belt. The source area for the Pillahuincó 710 

Group matches one to one the lithological characteristics of the Somún Cura Massif (see 711 

location in Fig. 1), and the U-Pb ages of the main igneous and metamorphic rocks. 712 
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 The occurrence of clasts with archeocyathids in the Somún Cura Massif sequences, 713 

together with the detrital zircon patterns, are compatible with a source in Eastern Antarctica 714 

(González et al., 2011; Naipauer et al., 2011; Ramos and Naipauer, 2012; Veevers and Saeed, 715 

2013). The recent finding of archeocyathids in clasts of the Sauce Grande tillites (González et 716 

al., 2013), reinforces this provenance. This match indicates that Patagonia should have 717 

originated in Eastern Gondwana, and that it was transferred to Western Gondwana during the 718 

Gondwanan orogeny. For further details see the recent analysis of Ramos and Naipauer  719 

(2013 and cites there in). Although some recent papers proposed a continuation of the 720 

magmatic activity in the early Paleozoic from the Sierras Pampeanas to the Somún Cura area 721 

(Rapalini et al., 2013), a classic proposal advanced by Bracaccini (1960), it is not able to 722 

elucidate the presence of archeocyathids (see discussion in Ramos and Naipauer, 2013). 723 

Rapalini et al. (2013) follow the arguments of Dalziel et al. (2013) who propose a continuous 724 

archeocyathid reef along the margin of Antarctica. However, this argument needs a magmatic 725 

arc located in the Somún Cura arc more than thousand kilometers away from the Pacific 726 

margin (see discussion in Ramos, 2008). 727 

 The integrated evolution of the Gondwanides in this sector of the southwestern 728 

Gondwana margin with the general evolution of the Terra Australis Orogen as defined by 729 

Cawood (2005) and modified by Ramos (2009), shows some interesting features. The early 730 

Paleozoic continental margin of Ventania interrupts the almost continuous Famatinian-Ross 731 

orogens. The Famatinian Orogen characterizes an active continental margin with a 732 

voluminous magmatic arc developed along the proto-Andean margin of Western Gondwana 733 

from Venezuela and Colombia through most of Argentina down to Ventania, during latest 734 

Cambrian and Middle Ordovician times. The Ross Orogen (Stump, 1995; Myrow et al., 2001) 735 

continues to the present east from Patagonia all along the Transantarctic Mountains and 736 

Australia, and has a latest Cambrian to Early Ordovician magmatic arc. The Ventania early 737 

Paleozoic basin is devoid of any magmatic activity in these intervals, representing a passive 738 

continental margin. The tectonic causes of such differences are beyond the present research.  739 
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Figure captions 1306 

 1307 

Figure 1: Location of the Ventania and Tandilia systems in the province of Buenos Aires, 1308 

localities mentioned in the text, and main basement provinces of central Argentina and 1309 

Uruguay (based on Ramos, 2009 and Cingolani, 2011). 1310 

 1311 

Figure 2: Main geological features of the Ventania System in the province of Buenos Aires. 1312 

Numbers indicate the samples with detrital zircon U/Pb Laser ablation analyses (geology after 1313 

Schiller, 1930; Harrington, 1947; Suero, 1972). 1314 

 1315 

Figure 3: Main basement exposures of the Ventania System with available ages based on 1316 

Varela et al. (1987), Rapela et al. (2003), Rapela and Kostadinoff (2005), and Tohver et al. 1317 

(2012). 1318 

 1319 

Figure 4: Stratigraphic column of the Paleozoic sedimentary rocks of the Ventania System 1320 

(based on Harrington, 1947), with the stratigraphic positions of the analyzed samples. 1321 

Paleocurrents after Reinoso (1968), Andreis and Cladera (1992), and López Gamundí and 1322 

Rossello (1998). 1323 

 1324 
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Figure 5: Structural cross section of the Gondwanides of northern Patagonia restored for the 1325 

end of the Paleozoic. The hinterland region developed in present Somún Cura Massif with 1326 

exhumed late Paleozoic arc-granitoids is shown as well as the Ventania System with the fold 1327 

and thrust belt and associated Claromecó Basin (based on Von Gosen et al., 1991; Tomezzoli 1328 

and Cristallini, 1998; Ploskiewicz, 1999; Ramos, 2008; Pángaro and Ramos, 2012). The 1329 

location of potential sutures among Patagonia, Tandilia and Cortijo terranes, as well as the 1330 

Tandilia magmatic arc further  north, are indicated after Teruggi et al. (1988), Max et al. 1331 

(1999), Ramos, (2008) and Cingolani (2011).  1332 

 1333 

Figure 6: a) Detail of the sample site; b) U-Pb frequency plot ages from zircons of a 1334 

paragneiss (sample VE-02) of the metamorphic basement in the eastern slope of Cerro Pan de 1335 

Azúcar, western Sierra de Curamalal (see location in Fig. 2).  1336 

 1337 

Figure 7: a) Tectonic lense of mylonitic granite within quartzite layers of La Lola Formation; 1338 

b) LA-ICP-MS from concordant zircons of this mylonitic granite (sample SLV-VE-04, see 1339 

location in Fig. 2 and analytical data in the supplementary material). 1340 

 1341 

Figure 8: U/Pb frequency plot ages from detrital zircons of the Curamalal Group: SLV-VE-1342 

03 from a quartzite clast of the basal conglomerate of the La Lola Formation, and SLV-VE-1343 

05, quartzitic sandstones interfingered in the upper part of the conglomerates; SLV-VE-09 1344 

from Mascota Formation from Cerro Colorado area; SLV-VE-10 from Mascota Formation 1345 

east of Tornquist (location in Fig. 2). 1346 

 1347 

Figure 9: U/Pb frequency plot ages from detrital zircons of lower part of the Ventana Group. 1348 

Note the up-sequence decrease of the Paleoproterozoic ages (sample location in Fig. 2) and 1349 

clear dominance of Late Neoproterozoic to Cambrian zircons. 1350 

 1351 

Figure 10: U/Pb frequency plot ages from detrital zircons of upper part of the Ventana Group. 1352 

Note that the samples from the Lolén Formation are more than 10 km distant, but have 1353 

coherent patterns (see sample location in Fig. 2). 1354 

 1355 

Figure 11: U/Pb frequency plot ages from detrital zircons of Balcarce Formation (samples 1356 

FBA 264 and PMOG 233) based on Rapela et al. (2007, 2011). Note the important frequency 1357 

peaks of Early Ordovician and Early Cambrian ages (location in Fig. 1). 1358 
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 1359 

Figure 12: Comparison of the detrital zircons provenance based on between Curamalal Group 1360 

and lower and upper Ventana Group. Note the prominent frequency peak of Paleoproterozoic 1361 

zircons in the Curamalal Group which is poorly developed in the Ventana Group, and the 1362 

Famatinian peak (475 Ma) in upper Ventana Group, which does not occur in the older units. 1363 

(FAM: Famatinian; BRAS: Brasiliano-Pampean; GRENV: Grenvillian, and TRANS: 1364 

Transamazonian). 1365 

 1366 

Figure 13: U/Pb frequency plot ages from detrital zircons of the fine sandstones and shales of 1367 

Pillahuincó Group. Note the prominent frequency peaks of 322-304 Ma and the 291-282 Ma 1368 

peaks may be correlated with igneous ages in the northern Somún Cura Massif (Chernicoff et 1369 

al., 2012a, and cites therein). 1370 

 1371 

Figure 14: U/Pb frequency plot ages from zircons from the northern Somún Cura Massif of 1372 

the, a) Sedimentary cover of Sierra Grande Formation (Silurian-Devonian), and b) pre-1373 

Ordovician metasedimentary basement of the El Jagüelito, Mina Gonzalito, and Nahuel Niyeu 1374 

Formations (after Pankhurst et al., 2006; Naipauer et al., 2011 and Uriz et al., 2011). 1375 

 1376 

Figure 15: U/Pb frequency plot ages from detrital zircons of the fine sandstone of González 1377 

Chaves locality. Note the prominent frequency peak at 316 Ma (Late Carboniferous).   1378 

 1379 

Figure 16: Hf isotopic analyses of selected samples from the Ventania System. See 1380 

supplementary material for sample number and figure 2 for location. 1381 

 1382 

Figure 17: U/Pb frequency plot ages from zircons from the Sierra de La Ventana region 1383 

obtained in the present study and the main orogenic events ((FAM: Famatinian; BRAS: 1384 

Brasiliano-Pampean; GRENV: Grenvillian, and TRANS: Transamazonian). 1385 

 1386 

Figure 18: U-Pb frequency plots of detrital zircons of Mogotes Formation. Note the different 1387 

pattern with the Balcarce Formation of Fig. 11(after Rapela et al., 2007, 2011). 1388 

 1389 

Figure 19: Paleogeography of the Ventania System through time; a) Cambrian-Ordovician; b) 1390 

Silurian-Devonian; and c) late Paleozoic times. The Pampean Orogen depicted after Ramos 1391 

(1988), Rapela et al. (1998), and Tohver et al. (2012); the Punta Mogotes Belt based on 1392 
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Gaucher et al. (2005); the Gondwanides Orogen based on Ramos (2008) and Pángaro and 1393 

Ramos (2012). 1394 

 1395 

Figure 20: Location of the Ventania Fold Belt in the province of Buenos Aires, Argentina and 1396 

its correlation with the Cape Fold Belt of South Africa as part of the Gondwanides. Tectonic 1397 

framework of the pre-break up of Western Gondwana is based on the reconstruction of 1398 

Pángaro and Ramos (2012). 1399 
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Table 3:  Lu-Hf data

 Lu-Hf data obtained by MC-ICPMS in detrital zircons from the quartzite of Lolén Fm, Sierra de la Ventana (sample SLV-VE-01 )

Sample (Present day ratios) Sample Initial Ratios T D M Assumed Values

Name U/Pb Age ±2σσσσ  176Hf/177Hf ±2SE  176Lu/177Hf ±2SE  176Hf/177Hf (t) εεεεHf(0) εεεεHf(t) ±2SE Ga t (Ma) 4560

(Ma) λλλλ (Ga-1) a 0.01867

002-A-I-03 2093 106 0.281346 3.61E-05 0.000343 1.93E-05 0.281332 -50.88 -4.04 0.43 2.59  (176Hf/177Hf)0chur b
0.282785

003-A-I-05 2157 53 0.281476 2.66E-05 0.000319 9.70E-06 0.281463 -46.29 2.08 0.11 2.41  (176Hf/177Hf) i chur 0.279718

004-A-I-08 2023 43 0.281510 2.84E-05 0.000608 1.16E-05 0.281487 -45.09 -0.18 0.01 2.39  (176Lu/177Hf)0 chur b
0.0336

005-A-I-09 2165 62 0.281498 2.99E-05 0.000462 1.44E-05 0.281479 -45.49 2.86 0.17 2.39  (176Hf/177Hf)DM c
0.28325

006-A-I-10 461 54 0.282186 3.61E-05 0.000517 1.88E-05 0.282181 -21.19 -11.09 1.70 1.47  (176Lu/177Hf)DM c
0.0388

009-A-I-11 2066 59 0.281272 3.67E-05 0.000320 5.66E-06 0.281260 -53.49 -7.23 0.34 2.68  (176Lu/177Hf)BSE d
0.015

010-A-I-14 2178 63 0.281183 3.14E-05 0.000432 4.32E-06 0.281165 -56.66 -8.01 0.31 2.81 176Lu/177Hf e 0.022

011-A-I-18 569 40 0.282413 3.98E-05 0.000728 1.92E-05 0.282406 -13.14 -0.73 0.07 1.16 176Lu/177Hf e 0.010

012-A-I-22 2118 90 0.281476 4.59E-05 0.000703 4.74E-05 0.281447 -46.30 0.63 0.07 2.44

013-A-I-26 551 26 0.281929 4.09E-05 0.000571 1.23E-05 0.281923 -30.28 -18.22 1.25 1.82

014-A-I-34 2083 120 0.281417 5.72E-05 0.000228 1.91E-05 0.281408 -48.36 -1.57 0.22 2.49

015-A-I-36 2136 87 0.281480 2.99E-05 0.000476 3.88E-05 0.281460 -46.16 1.50 0.18 2.42

016-B-II-02 557 56 0.282283 4.73E-05 0.000812 3.15E-05 0.282275 -17.75 -5.64 0.79 1.35

017-B-II-08 2092 87 0.281503 3.56E-05 0.000428 1.62E-05 0.281486 -45.35 1.38 0.11 2.39

018-B-II-14 2092 87 0.281467 4.59E-05 0.000468 7.61E-06 0.281449 -46.60 0.07 0.00 2.43

033-D-IV-02 433 40 0.282470 3.89E-05 0.000510 2.86E-05 0.282466 -11.15 -1.66 0.25 1.08

034-D-IV-03 499 64 0.282518 3.77E-05 0.001187 1.47E-05 0.282507 -9.44 1.29 0.18 1.03

035-D-IV-07 427 56 0.282436 3.97E-05 0.000740 9.41E-06 0.282430 -12.33 -3.04 0.44 1.13

036-D-IV-22 2688 46 0.281218 5.78E-05 0.000554 1.47E-05 0.281189 -55.42 4.76 0.21 2.77

037-E-V-11 1320 113 0.282167 5.85E-05 0.000574 4.70E-06 0.282153 -21.84 7.32 0.69 1.50

038-E-14 486 81 0.282345 6.08E-05 0.000894 3.78E-05 0.282337 -15.54 -5.01 1.05 1.26

039-F-VI-01 1300 118 0.282310 4.95E-05 0.000767 2.33E-05 0.282291 -16.80 11.77 1.42 1.31

040-F-VI-04 1104 52 0.282330 4.07E-05 0.000444 6.66E-06 0.282319 -16.10 12.75 1.35 1.27

041-G-VII-05 1814 54 0.281510 2.98E-05 0.000379 3.06E-05 0.281502 -45.08 -20.68 2.64 2.37

042-G-VII-06 485 65 0.282454 3.34E-05 0.000524 1.73E-05 0.282436 -11.70 28.71 1.81 1.10

021-B-II-16 2051 170 0.281480 4.15E-05 0.000482 3.43E-05 0.281461 -46.15 -0.44 0.07 2.42
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022-B-II-21 597 67 0.281529 1.06E-04 0.001158 9.05E-05 0.281516 -44.41 -31.59 6.03 2.39

023-B-II-25 2051 170 0.281570 4.17E-05 0.000882 4.67E-05 0.281536 -42.97 2.21 0.30 2.32

024-B-II-26 500 30 0.281888 3.46E-05 0.000345 1.84E-05 0.281885 -31.72 -20.72 2.35 1.86

025-B-II-31 2082 152 0.281515 4.74E-05 0.000598 1.05E-05 0.281491 -44.92 1.35 0.12 2.38

026-B-II-37 531 37 0.282397 4.55E-05 0.001041 5.61E-05 0.282386 -13.74 -2.27 0.28 1.20

027-C-III-06 500 15 0.281987 3.48E-05 0.000130 1.65E-05 0.281986 -28.21 -17.13 2.69 1.72

028-C-III-18 464 15 0.281527 5.39E-05 0.000409 1.70E-05 0.281523 -44.49 -34.32 2.55 2.35

029-C-III-21 362 15 0.281317 3.22E-05 0.000164 2.98E-06 0.281316 -51.91 -43.93 2.62 2.61

030-C-III-27 617 15 0.281410 1.61E-04 0.000676 1.42E-05 0.281403 -48.61 -35.17 1.61 2.52

Lu-Hf data obtained by MC-ICPMS in detrital zircons from the mylonitic paragneiss of Pan de Azúcar  area, Sierra de la Ventana (sample SLV-VE-02 )

Sample (Present day ratios) Sample Initial Ratios T D M Assumed Values

Name U/Pb Age ±2σσσσ  176Hf/177Hf ±2SE  176Lu/177Hf ±2SE  176Hf/177Hf (t) εεεεHf(0) εεεεHf(t) ±2SE Ga t (Ma) 4560

(Ma) λλλλ (Ga-1) a 0.01867

065-A-1 979 29 0.281755 4.45E-05 0.000423 7.75E-06 0.281747 -36.43 -14.82 0.71 2.05  (176Hf/177Hf)0chur b
0.282785

066-A-6 2690 17 0.280890 3.40E-05 0.000670 6.14E-05 0.280856 -67.00 -7.06 0.69 3.22  (176Hf/177Hf) i chur 0.279718

067-A-9 2079 11 0.281501 4.13E-05 0.000678 6.68E-05 0.281475 -45.39 0.69 0.07 2.40  (176Lu/177Hf)0 chur b
0.0336

068-A-14 2170 20 0.281352 3.78E-05 0.000168 4.40E-05 0.281345 -50.68 -1.80 0.49 2.57  (176Hf/177Hf)DM c
0.28325

069-A-18 2170 20 0.281472 1.16E-04 0.000548 3.91E-05 0.281449 -46.43 1.90 0.15 2.43  (176Lu/177Hf)DM c
0.0388

070-B-05 1190 11 0.282073 4.30E-05 0.000477 8.15E-06 0.282063 -25.16 1.15 0.03 1.62  (176Lu/177Hf)BSE d
0.015

072-B-06 2128 18 0.281491 4.43E-05 0.000634 6.68E-05 0.281465 -45.77 1.48 0.17 2.41 176Lu/177Hf e 0.022

71-B-07 2897 11 0.280988 3.00E-05 0.000388 1.49E-06 0.280966 -63.55 1.73 0.01 3.06 176Lu/177Hf e 0.010

075-B-09 2507 36 0.281043 5.70E-05 0.000243 1.99E-05 0.281031 -61.60 -5.11 0.49 2.98

076-B-11 1811 10 0.281651 3.02E-05 0.000453 3.91E-06 0.281635 -40.11 0.20 0.00 2.19

078-B-17 2059 8 0.281568 4.61E-05 0.000970 5.93E-05 0.281530 -43.04 2.19 0.14 2.33

079-C-1 552 20 0.282315 4.55E-05 0.001017 9.96E-05 0.282304 -16.63 -4.70 0.63 1.31

080-C-3 552 20 0.282294 4.95E-05 0.000939 4.69E-05 0.282284 -17.36 -5.40 0.47 1.34

081-C-4 552 20 0.282366 5.76E-05 0.001587 6.14E-05 0.282350 -14.80 -3.08 0.23 1.26

082-C10 1539 18 0.281893 3.73E-05 0.000565 1.23E-05 0.281876 -31.56 2.51 0.08 1.87

083-C-16 1782 11 0.281532 5.83E-05 0.001186 4.43E-05 0.281491 -44.33 -5.57 0.24 2.39

084-C-17 552 20 0.282353 3.46E-05 0.001000 2.37E-06 0.282343 -15.27 -3.33 0.13 1.26

085-D-1 2111 19 0.281505 4.61E-05 0.000442 7.73E-06 0.281487 -45.27 1.88 0.05 2.38



Lu-Hf data obtained by MC-ICPMS in detrital zircons from the tuffs of Tunas Fm., Sierra de la Ventana (sample SLV-VE-20 and SLE-VE-21 )

Sample (Present day ratios) Sample Initial Ratios T D M Assumed Values

Name U/Pb Age ±2σσσσ  176Hf/177Hf ±2SE  176Lu/177Hf ±2SE  176Hf/177Hf (t) εεεεHf(0) εεεεHf(t) ±2SE Ga t (Ma) 4560

(Ma) λλλλ (Ga-1) a 0.01867

045-ZR-8-A-17 317 15 0.282623 4.38E-05 0.000979 1.97E-05 0.282617 -5.74 1.11 0.07 0.88  (176Hf/177Hf)0chur b
0.282785

046-ZR-8-A-40 316 8 0.282888 3.68E-04 0.000824 9.75E-05 0.282883 3.64 10.51 1.52 0.51  (176Hf/177Hf) i chur 0.279718

047-ZR-8-B-II-35 311 20 0.282661 7.86E-05 0.000787 1.21E-05 0.282657 -4.38 2.38 0.19 0.82  (176Lu/177Hf)0 chur b
0.0336

048-ZR-8 C-III-18 290 20 0.282678 4.89E-05 0.000926 6.47E-05 0.282673 -3.77 2.50 0.35 0.80  (176Hf/177Hf)DM c
0.28325

049-ZR-8-C-III-13 311 19 0.282594 8.77E-05 0.001079 3.57E-05 0.282588 -6.74 -0.05 0.00 0.92  (176Lu/177Hf)DM c
0.0388

050-ZR-8-C-III-6 300 22 0.282547 1.05E-04 0.000664 2.15E-05 0.282543 -8.41 -1.87 0.20 0.98  (176Lu/177Hf)BSE d
0.015

051-ZR-8 E-V-3 303 11 0.282552 3.36E-05 0.000596 1.64E-05 0.282548 -8.25 -1.63 0.10 0.97 176Lu/177Hf e 0.022

052-ZR-8 E-V-7 312 9 0.282545 6.66E-05 0.000718 1.06E-05 0.282541 -8.48 -1.69 0.07 0.98 176Lu/177Hf e 0.010

053-ZR-8 E-V-9 340 8 0.282565 4.99E-05 0.000991 2.99E-05 0.282559 -7.78 -0.44 0.02 0.96

036-Zr 8 E-V-11 303 6 0.281914 2.71E-05 0.000096 1.33E-05 0.281913 -30.82 -24.11 3.81 1.82

056-ZR-8 F-VI-18 420 18 0.282633 5.55E-05 0.001006 4.83E-05 0.282625 -5.36 3.71 0.34 0.87

057-ZR-8 F-VI-01 468 16 0.282643 3.56E-05 0.000627 1.86E-05 0.282637 -5.02 5.22 0.33 0.85

a 176Lu decay constant (Söderlund et al., 2004)
b Chondritic values (Bouvier et al., 2008)
c Present day Depleted Manlte (Griffin et al., 2000; updated by Andersen et al., 2009)
d Goodge and Vervoort, EPSL 243, 711-731 (2006)

e 176Lu/177Hf ratios of mafic and felsic crust from Pietranik et al. (2008)






