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Abstract Purpose:
During the postnatal stage, cardiovascular nitric oxide (NO) system and caveolins (cav) may be regulated
differentially in response to hypovolemic state induced by water restriction. Our aim was to examine the
effects of water restriction on NO synthases (NOS) and cav in the atria, ventricle and aorta of growing rats.
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measured.
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Dehydration induced a larger increase in SBP in WR25 group. Ventricular NOS activity, eNOS and nNOS
of WR25 pups were increased, and both cav were decreased. In the WR50 group, NOS activity remained
unchanged. In the atria, NOS activity, eNOS and nNOS decreased in WR25 associated with increased
cav-1; in the WR50 group, NOS activity was increased without changes in NOS isoforms. In the aorta of
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Conclusions:
NO system adjustments in cardiovascular system under osmotic stress in vivo depend on postnatal age,
being eNOS and nNOS, the isoforms that determine NOS activity in cardiac tissue in 25-day-old pups.
Changes in cav abundance during hypovolemic state may contribute to age-related NO production.
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in NOS isoforms. In the aorta of WR25, NOS activity and 

iNOS were decreased; NOS activity was unchanged in 

WR50, despite the decreased levels of eNOS and increased 

iNOS, cav-1 and cav-3.

Conclusions NO system adjustments in cardiovascular 

system under osmotic stress in vivo depend on postnatal 

age, being eNOS and nNOS, the isoforms that determine 

NOS activity in cardiac tissue in 25-day-old pups. Changes 

in cav abundance during hypovolemic state may contribute 

to age-related NO production.

Keywords Nitric oxide · Caveolins · Water restriction · 

Cardiovascular system · Postnatal growth

Introduction

Dehydration is a significant problem of the newborn infant, 

and it is currently considered one of the main causes of 

mortality in children [1]. An inadequate hydration during 

infancy may have cardiovascular consequences in adult-

hood, such as sodium retention and higher blood pressure 

[2]. Cardiovascular response to dehydration consists of the 

activation of several neurohumoral systems to maintain 

blood pressure and perfuse tissues appropriately, despite 

the contraction of blood volume. Many studies have shown 

increased activity of the renin-angiotensin system, levels 

of vasopressin and sympathoadrenal activity in water-

deprived rats [3, 4]. Another well-known regulator of car-

diovascular function is nitric oxide (NO), synthesized by 

NO synthases (NOS) in cardiomyocytes and endothelial 

cells [5]. In cardiovascular system, eNOS expressed in 

vascular endothelium and cardiomyocytes has paracrine 

effects on myocardial contraction, such as the modula-

tion of cardiac muscle relaxation, oxygen consumption 

Abstract 

Purpose During the postnatal stage, cardiovascular nitric 

oxide (NO) system and caveolins (cav) may be regulated 

differentially in response to hypovolemic state induced by 

water restriction. Our aim was to examine the effects of 

water restriction on NO synthases (NOS) and cav in the 

atria, ventricle and aorta of growing rats.

Methods Male Sprague–Dawley rats aged 25 and 50 days 

were divided into (n = 15): WR: water restriction 3 days; 

WAL: water ad libitum 3 days. Systolic blood pressure, 

NOS activity and NOS/cav protein levels were measured.

Results Dehydration induced a larger increase in SBP 

in WR25 group. Ventricular NOS activity, eNOS and 

nNOS of WR25 pups were increased, and both cav were 

decreased. In the WR50 group, NOS activity remained 

unchanged. In the atria, NOS activity, eNOS and nNOS 

decreased in WR25 associated with increased cav-1; in the 

WR50 group, NOS activity was increased without changes 
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and β-adrenergic response [5]. Neuronal isoform is pre-

sent in parasympathetic ganglia and cardiac myocytes, and 

it is the most relevant isoform involved in the regulation 

of cardiac excitation–contraction coupling by autocrine 

mechanisms [5]. On the other hand, iNOS expression has 

been reported in inflammatory cells, fibroblasts, myocytes 

and coronary vascular smooth muscle, being its expres-

sion associated with septic shock, myocarditis, transplant 

rejection and isquemia [6, 7]. NO has been involved in 

fluid homeostasis, considering its diuretic and natriuretic 

actions on the kidney [8] and its neuromodulatory effects 

on the hypothalamic–pituitary–adrenal axis and vasopress-

inergic axis in water-deprived rats [9]. Despite the fact that 

NO system has also been implicated in cardiac develop-

ment during early stages of life [10, 11], cardiovascular 

NO system response to hypovolemia has not been fully 

studied during this period.

Caveolins (cav), the structural proteins of caveolae, 

are well-known negative regulators of the activity of the 

endothelial isoform of NOS (eNOS). In cardiomyocytes, 

eNOS is associated with caveolin-3 (cav-3) and, to a lesser 

extent, to caveolin-1 (cav-1). In vascular tissue, eNOS is 

also targeted to caveolae interacting with cav-1 in endothe-

lial cells [12]. Cav-3 is also found in the vasculature, but it 

is expressed in vascular smooth muscle [13]. Within caveo-

lae, cav control aspects of the activity of signaling pathways 

involved in cardiac development, modulating the angiogenic 

process, cell proliferation and differentiation and T-tubule 

biogenesis [14]. Moreover, cav have also been implicated 

in the regulation of enzymes associated with signaling path-

ways that determine cellular redox status [15], and some 

authors hypothesize that oxidative stress may be involved in 

osmosensor signaling [16]. Therefore, changes in cav abun-

dance are likely to modulate the cardiac growth process as 

well as the adjustment to osmotic stress.

In previous work done in our laboratory, we showed that 

changes in cardiovascular NO system in response to water 

deprivation were dependent on the age of the animals, as 

young and aging rats were studied [17]. Moreover, cav are 

also involved in cardiac NOS regulation in an age-depend-

ent way during hypovolemic state [18]. The mentioned 

data suggest that during the postnatal stage, cardiovascular 

NO system and cav may be regulated differentially during 

hypovolemic state to support the hemodynamic alterations. 

The involvement of NO pathways in adaptation to hypov-

olemic state and their age-related differences are necessary 

to provide an appropriate treatment in order to prevent the 

consequences of this nutritional deficiency on growth and 

development or later in the adult life. Thus, the objective 

was to evaluate the effects of osmotic stress triggered by 

water restriction on NOS activity and NOS/cav protein 

levels in the right atria, left ventricle and thoracic aorta in 

growing rats.

Materials and methods

Animals

Male Sprague–Dawley rats were obtained from the breed-

ing laboratories of the School of Pharmacy and Biochem-

istry (University of Buenos Aires, Argentina). Newborn 

rats were maintained with their dam until day 21 (wean-

ing age). When they reached the age of 25 and 50 days, the 

animals were housed individually in metabolic cages with 

an automatic light/dark cycle of 12 h/12 h and fed with 

standard rat chow from nutriments Purina (Buenos Aires, 

Argentina) and tap water ad libitum until the beginning of 

the experimental period. Animals were cared for in accord-

ance with guidelines of the ‘Guide for the Care and Use 

of Laboratory Animals’ (National Academy Press, 1996, 

USA). All study protocols were reviewed and approved by 

the National Administration of Medicine, Food and Medi-

cal Technology, Department of Health and Environment of 

the Nation, Argentina (No. 6344-96).

Experimental protocol

Male Sprague–Dawley rats aged 25 and 50 days were ran-

domly assigned as follows (n = 15 each group):

WAL group animals had continuous access to both food 

and water during the 3-day experimental period, represent-

ing a normohydrated group of rats.

WR group rats were deprived of water for 72 h but had 

continuous access to food.

Animals of both experimental groups were placed in 

metabolic cages 2 days before the beginning of the experi-

ments in order to adapt to the new environment. At the 

end of each experimental period and with the purpose of 

validating that water restriction established a dehydration 

status, we determined body weight and hematocrit, as pre-

viously described [19]. At the end of each experimental 

period, animals from each group were killed by decapita-

tion in order to isolate the right atria, the left ventricle and 

thoracic aorta.

Histological evaluation of cardiac tissue

Cardiac tissue from all groups of animals were fixed 

in phosphate-buffered 10 % formaldehyde (pH 7.2) 

and embedded in paraffin using conventional histologi-

cal techniques. Paraffin sections were cut at 4 µm with a 

microtome (Leica RM 2125, Wetzlar, Germany), depar-

affined and rehydrated. The slides were stained with Mal-

lory’s trichrome. Sections were analyzed using an Olym-

pus BX51 light microscope equipped with a digital camera 

(Qcolor 3 Olympus America Inc., Canada) and connected 

to the Image-Pro Plus software. The major and minor 

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A
u

th
o

r
 P

r
o

o
f



U
N

C
O

R
R

E
C

T
E
D

 P
R
O

O
F

Journal : Large 394 Dispatch : 15-12-2014 Pages : 11

Article No : 820 ¨  LE ¨  TYPESET

MS Code : EJON-D-14-00250 þ   CP þ   DISK

Eur J Nutr 

1 3

diameters of cardiomyocytes were measured using Q Cap-

ture Pro software in 4-µm-thick cross sections of the heart 

stained with hematoxylin and eosin at 400× magnifica-

tion. Cardiomyocytes chosen to be measured had central 

and nearly round shape nuclei. Afterward, major and minor 

diameters were averaged to obtain mean cardiomyocyte 

diameter.

Hemodynamic parameters

Systolic blood pressure (SBP) was indirectly measured in 

awaken animals by the tail-cuff method using a Power-

Lab data acquisition system device and LabChart software 

(AD Instruments). Prior to the measuring SBP, rats were 

warmed in a thermostated and silent room for 30 min. 

The SBP value for each rat was calculated as the average 

of five separate measurements at each session. Heart rate 

(HR) was also calculated from the pulse pressure signals by 

using LabChart software.

Total NOS activity

NO system activity in cardiac tissue was assessed by 

measuring the conversion of [14C]-L-arginine to [14C]-

L-citrulline. 50 µg of protein of homogenized tissues were 

incubated in Tris-HCl buffer (pH 7.4) containing 1 mg/

mL of L-arginine, [14C] L-arginine (346 mCi/mL), L-valine 

(67 mM), NADPH (1 mM), calmodulin (30 nM), tetrahi-

drobiopterin (5 µM) and CaCl2 (2 mM) for 1 h at room 

temperature. Negative controls were performed by add-

ing 10 mM L-NAME (NOS unspecific inhibitor) to reac-

tion medium. At the end of the incubation period, reaction 

was arrested by adding HEPES-EDTA solution (pH 5.5) at 

0 °C. Reaction mixtures were loaded into cation exchange 

columns (Dowex AG 50 W-X8, Na + form; Bio-Rad), and 

[14C]-L-citrulline was eluted from columns with 1 mL of 

ddH2O. The amount of [14C]-L-citrulline eluted was quanti-

fied using a liquid scintillation counter (Wallac 1414 Win-

Spectral; EG&G, Finland). All compounds, except [U14C]-

L-arginine monohydrochloride (346 mCi/mmol, Amersham 

Life Science), were purchased from Sigma Chemicals. 

Total protein levels were determined by the Lowry method, 

using bovine serum albumin as a standard.

Protein levels of NOS and caveolin isoforms

NOS protein levels were determined by Western blotting. 

Tissues were disrupted on ice using a tissue homogenizer 

(Omni International) in buffer containing 50 mM Tris, 

0.1 mM EDTA, 0.1 mM EGTA, 1 % Triton, 1 mM PMSF, 

1 µM pepstatin, 2 µM leupeptin, 1× protease inhibitor 

cocktail (Roche Diagnostics). Protein concentration was 

determined by Lowry assay. Equal amounts of protein 

(50–75 µg protein/lane) of pooled samples were separated 

by electrophoresis in 8 % SDS-polyacrylamide gels (Bio-

Rad), transferred to a nitrocellulose membrane (BioRad) 

and blocked with 5 % nonfat milk. Membranes were incu-

bated with rabbit antibodies against each NOS and cav iso-

form (dilution 1:1,000) and an anti-rabbit antibody conju-

gated with HSP (dilution 1:10,000). Samples were revealed 

by chemiluminescence using ECL reagent for 2–4 min. 

Bands were quantified by densitometry scanning using a 

Hewlett-Packard scanner and gel analyzer tools of Image J 

software (NIH). Each Western blot was made by triplicate. 

Protein levels were expressed as a ratio of the optical den-

sities of each NOS/cav isoform and β-actin band to detect 

inaccuracies in protein loading. Western blot detection sys-

tem and Hybond-ECL membranes were from Amersham 

Pharmacia Biotech.

The antibodies for NOS isoforms detection [iNOS 

(610333), eNOS (610298) and nNOS (610311)] were sup-

plied by BD Biosciences, anti β-actin antibody by Millipore 

(04-1116) and antibodies anti-cav-1 (sc-7875) and -3 (sc-

28828) were supplied by Santa Cruz Biotechnology and the 

secondary antibody (170-6515) by Bio-Rad laboratories.

Thiobarbituric acid reactive substances (TBARS)

Heart samples (left ventricle and right atria) and thoracic 

aorta tissue from all groups of animals were homogenized 

in a medium consisting of 120 mM KCl 30 mM phosphate 

buffer (pH 7.4) (1:5) at 0–4 °C. The suspension was centri-

fuged at 600g for 10 min at 0–4 °C to remove nuclei and 

cell debris. Oxidative damage to phospholipids was evalu-

ated in the supernatant as thiobarbituric acid reactive sub-

stances (TBARS) by a fluorometric assay. Tissue homogen-

ates (100 µL) were added to 200 µL 0.1 N HCl, 30 µL 10 % 

(w/v) phosphotungstic acid and 100 µL 0.7 % (w/v) 2-thio-

barbituric acid. The mixture was heated in boiling water for 

60 min. TBARS were extracted in 1 mL of n-butanol. After 

a centrifugation at 1,000g for 10 min, the fluorescence of 

the butanolic layer was measured in a Perkin Elmer LS 

55 luminescence spectrometer at 515 nm (excitation) and 

553 nm (emission). A calibration curve was prepared using 

1,1,3,3-tetramethoxypropane as standard. Results were 

expressed as pmol TBARS/mg protein.

Statistical analysis

Data in tables and figures are expressed as mean val-

ues ± SD. Data were evaluated with one-way analysis of 

variance (ANOVA), and Tukey’s post hoc test for multiple 

comparisons was used. Normal distribution was assessed 

by using Shapiro–Wilk test. The Levene’s test of equal-

ity of error variance was used to evaluate the homogene-

ity of variances. When SD presented statistically significant 
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differences, Tamhane’s T2 test was used for post hoc com-

parisons. All statistical procedures were performed using 

SPSS statistical software package release 16.0 version.

Results

Features of dehydrated animals

In order to confirm that our experimental model induced a 

hypovolemic state, we determined body weight and hem-

atocrit. Results are shown in Table 1. Animals from both 

age groups presented decreased body weight and increased 

hematocrit as expected. Moreover, heart weight and mean 

cardiomyocyte diameter were larger for the 50-day-old 

group. However, the ratio of heart weight/body weight 

(HW/BW) was smaller for this age group compared to the 

25-day-old pups. Both heart weight and cardiomyocyte 

diameter were decreased in dehydrated animals from the 

youngest group. However, when comparing the ratio HW/

BW, it did not show any significant differences when com-

pared to control animals. In contrast, animals from the old-

est group who were submitted to water restriction did not 

present any differences in these parameters, with exception 

of body weight, as previously described. Cardiac tissue 

stained with Masson’s trichrome did not show increased 

fibrosis in neither of the experimental groups, as it can be 

observed in Fig. 1.

Hemodynamic parameters

Control animals aged 50 days presented higher SBP and 

lower HR values than control 25-day-old rats. Water restric-

tion caused a significant rise in SBP in both age groups, 

larger for the youngest group. However, HR decreased in 

the 25-day-old pups but was increased in 50-day-old rats. 

Results are shown in Fig. 2.

Total NOS activity

Control pups presented higher levels of cardiac NOS 

activity when compared to the 50-day-old group. In the 

left ventricle (Fig. 3a), no changes were observed in 

response to water restriction in the oldest group; however, 

NOS activity was increased in the 25-day-old pups sub-

mitted to dehydration. In the right atrium, NOS activity 

was decreased in dehydrated pups but was increased in 

the 50-day-old rats (Fig. 4a). In aorta tissue, NOS activ-

ity was also higher in the youngest group as shown in 

Fig. 5a. In response to water restriction, 25-day-old pups 

presented decreased NOS activity in the thoracic aorta; 

however, the oldest group did not show changes in NOS 

activity.

Table 1  General features of 25- 

and 50-day-old rats

Results are expressed as 

mean ± SD (n = 10 each 

group)

* p < 0.001 versus respective C, 
# p < 0.001 versus respective R, 
† p < 0.001 versus C25

25-day-old rat 50-day-old rats

WAL WR WAL WR

Body weight (g) 83 ± 10 52 ± 6* 240 ± 12† 179 ± 10*

Hematocrit (%) 42 ± 1 56 ± 1* 48 ± 1† 63 ± 1*

Heart weight (g) 0.46 ± 0.07 0.34 ± 0.08* 0.83 ± 0.13† 0.73 ± 0.09

Heart weight/body weight (g/100 g) 0.49 ± 0.04 0.50 ± 0.06 0.35 ± 0.04† 0.38 ± 0.05

Cardiomyocyte diameter (µm) 15.4 ± 0.3 12.1 ± 0.2* 17.5 ± 0.4† 16.3 ± 0.3
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Fig. 1  Trichrome staining of the heart of 25- and 50-day-old rats 

submitted to water restriction (WR) or water ad libitum (WAL) 

(n = 4 each group). a Representative photographs of cardiac tis-

sue (×400). b Fibrosis quantification shows no significant differ-

ences among the experimental groups (AU: arbitrary units). Data are 

expressed as mean ± SD
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NOS isoforms protein levels

As it can be observed in Fig. 3b–d, in the left ventricle, 

NOS protein levels were higher in the 50-day-old control 

group compared to 25-day-old WAL pups. NOS isoforms 

protein levels were increased in response to dehydration in 

both age groups, except for iNOS in the youngest group. In 

the right atrium, eNOS and iNOS protein levels were simi-

lar between the two age groups, and nNOS protein levels 

were higher in the youngest group (Fig. 4b–d). In response 

to dehydration, eNOS and nNOS were decreased in the 

25-day-old pups, without changes in the inducible isoform. 

In the oldest group, NOS isoforms protein levels did not 

change. In the thoracic aorta, eNOS and iNOS protein lev-

els were lower in the 50-day-old group, as shown in Fig. 5b, 

c. No positive reactivity was found for neuronal isoform in 

both age groups. Dehydrated pups presented decreased lev-

els of iNOS without changes in eNOS, whereas the oldest 

group had increased levels of iNOS but decreased eNOS.

Caveolin 1 and 3 protein levels

Ventricular cav-1 and 3 protein levels were higher in con-

trol 25-day-old pups when compared to the oldest group 

(Fig. 3e, f). After dehydration, in the youngest group, both 

cav isoforms were decreased. However, in the 50-day-old 

group, cav-1 was increased but cav-3 decreased after dehy-

dration. In Fig. 4e, f, in the right atria, cav-1 protein levels 

were increased in response to dehydration in the young-

est group, without changes in the oldest group. In the tho-

racic aorta, both cav protein levels were lower in the oldest 

group compared to the 25-day-old group. Water restriction 

increased both cav levels in the 50-day-old group, whereas 

in the youngest group, cav-1 did not change, and cav-3 was 

increased (Fig. 5d, e).

TBARS

Control animals of 25 days of age presented higher TBARS 

levels in comparison with the 50-day-old group in the stud-

ied tissues. In the left ventricle, after water restriction, lipid 

peroxidation was increased in both age groups, being this 

rise larger in the youngest group (Fig. 6a). Results in the 

right atria (Fig. 6b) indicated that lipid peroxidation was 

decreased in the youngest group, but it was increased in the 

oldest one. In the aorta tissue, rats of 25 days of age pre-

sented decreased TBARS levels in response to dehydration. 

The oldest group did not show changes in this parameter 

after water restriction. Results are shown in Fig. 6c.

Discussion

The present work was designed to study the effects of 

dehydration induced by water restriction on cardiovas-

cular NO system and cav during postnatal growth, study-

ing 25- and 50-day-old rats. In order to validate that water 

restriction protocol was efficient to establish a hypovolemic 

state, body weight and hematocrit were determined in both 

age groups. The decreased body weight and increased 

hematocrit in both age groups allowed us to confirm that, 

as previously described [19]. There are very few reports 

focused on the heart of dehydrated individuals, especially 

during postnatal growth. We observed that in the 25-day-

old pups, the decreased heart weight was accompanied by 

a decreased mean cardiomyocyte diameter; meanwhile, 

the oldest group did not show changes in either of these 

parameters (Table 1), confirming that the youngest group 

suffered a more severe osmotic stress as shown in previous 

work done in our laboratory [19]. When studying fibrosis 

development in the heart, no differences were observed in 

both age groups submitted to water restriction. The present 

data in 25-day-old animals coincide with microcardia, a 
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condition that is often observed in young children, second-

ary to severe fluid loss [20]. Thus, even though it is difficult 

to compare experimental models to humans, we suggest 

that a 3-day water restriction protocol in infant rats may be 

a useful animal model to study this pathological condition 

during postnatal life.

In order to study if water restriction induced age-related 

hemodynamic changes, we determined SBP and HR in con-

trol and dehydrated animals of both age groups. It is well 

known that cardiac function is enhanced from weaning age 

to adult life [21], accompanied by functional and anatomi-

cal changes in the cardiovascular system and autonomic 
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respective WAL; †p < 0.01 versus 25-day-old rats

363

364

365

366

367

368

369

370

371

372

373

374

A
u

th
o

r
 P

r
o

o
f



U
N

C
O

R
R

E
C

T
E
D

 P
R
O

O
F

Journal : Large 394 Dispatch : 15-12-2014 Pages : 11

Article No : 820 ¨  LE ¨  TYPESET

MS Code : EJON-D-14-00250 þ   CP þ   DISK

Eur J Nutr 

1 3

nervous system maturation [22]. This may account for the 

differences in basal SBP and HR values in both age groups. 

Response to osmotic stress was also different with post-

natal age: In the youngest group, we observed a higher 

increase in SPB in comparison with the 50-day-old group 

(24 and 16 %, respectively). On the other hand, HR was 

decreased by 6 % in the youngest group and increased by 

5 % in the older rats. Different neurohumoral factors and 

sensitivity to their action may be responsible for this dis-

tinct hemodynamic response to dehydration, such as NO 

system and angiotensin II levels, which are elevated during 

postnatal development [23]. In agreement with this, when 

analyzing NO system activity, our results indicated that in 

cardiac tissue of control animals, NOS activity was higher 
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in 25-day-old pups compared to 50-day-old rats, as well 

as in aorta tissue. Even though higher cav levels would be 

expected in the oldest group, it was observed that these pro-

teins were decreased in ventricular and aorta tissues. Cav 

downregulation in the left ventricle and aorta tissue associ-

ated with postnatal growth may influence not only NO pro-

duction but also other signaling pathways that contribute to 

cardiovascular system maturation. In line with this, Doyle 

et al. suggest that cav changes in aorta smooth muscle cells 

during development participate in tissue differentiation 

[13].

Continuing with the study of NO system, we observed 

that the effects of water restriction on cardiovascular NO 

system were age and tissue specific. In the left ventricle, 

during osmotic stress, it was observed that NOS activity 

was increased in the 25-day-old pups, due to an increase 

in eNOS and nNOS and reduced cav-1 and cav-3 protein 

levels in this age group. In contrast, in the older rats, no 
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changes were observed in enzyme activity despite the 

increased protein levels of all NOS isoforms. This may be 

explained, at least in part, by increased protein levels of 

cav-1 in this age group which may reduce eNOS activity. 

Considering that NO system in the heart has been involved 

in the modulation of myocardial contraction and relaxation, 

oxygen consumption and the modulation of beta adrenergic 

response [5], increased ventricular NO production may 

participate in adaptation to osmotic stress in young pups, 

since they are more sensitive to dehydration, as mentioned 

above, and since they also show a higher increase in lipid 

peroxidation in comparison with the WR 50-day-old group. 

Some authors have reported a link between oxidative stress 

and downstream modulation of protective pathways via cav 

[24]. Moreover, it has been reported that cav expression 

is regulated by both osmotic and oxidative stress [15, 25], 

which may be increased in our experimental conditions as 

TBARS levels increased in both age groups. Volonte et al. 

[26] showed that cellular osmotic or oxidative stress can 

induce cav-1 tyrosine phosphorylation which represents an 

important downstream element in the signal transduction 

cascades. Therefore, the observed age-related changes in 

cav abundance during osmotic stress in vivo not only have 

an impact on NOS activity but also on other molecules 

regulated by caveolae sequestration. Apart from changes 

in cav abundance, we cannot disregard that alterations in 

subcellular localization of cav would also influence NOS 

activity.

Findings in atria tissue of dehydrated rats indicate a 

reduction in NOS activity in the 25-day-old pups, prob-

ably caused by a reduction in constitutive NOS isoforms, 

as described in the left ventricle. Moreover, there was 

an increase in cav-1 protein levels in this tissue that may 

also contribute to the decreased NO production by eNOS. 

In contrast, in the 50-day-old group, NOS activity was 

increased without changes in NOS isoforms protein levels. 

However, cav-1 protein levels remained unchanged, and 

cav-3 was increased. Thus, it is likely that other NOS regu-

lators or posttranslational modifications of the enzyme may 

be involved in the observed changes of NO production. 

Additionally, it is interesting to notice that HR and atrial 

NOS activity presented a similar pattern, suggesting that 

atrial NO production in vivo may contribute to HR regu-

lation. NO’s chronotropic effects are controversial. It has 

been reported that NO has a positive chronotropic effect 

which can be blocked by L-NAME, however, at higher 

concentrations, and it has a bradycardic effect, implicat-

ing that its effects on HR depend on the concentration of 

NO [27, 28]. Previous results from our laboratory indicate 

that NO has a tachycardic effect, in agreement with the 

results obtained in the present study [29]. We cannot dis-

regard that other neurohumoral factors are also involved in 

the observed chronotropic changes. Furthermore, in this tis-

sue, the reduction in NOS activity observed in the youngest 

WR group may be a cause for reduced lipid peroxidation, 

considering that NO is a free radical capable of oxidizing 

lipids and other macromolecules by itself or it may com-

bine with superoxide anion to form peroxynitrite, which 

may also decompose to form a strong oxidant hydroxyl 

radical, resulting in tissue injury [30].
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Fig. 6  Thiobarbituric acid reactive substances (TBARS) levels in 

the left ventricle (a), right atria (b) and thoracic aorta (c) of 25- and 

50-day-old rats submitted to water restriction (WR) or water ad libi-
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In aorta tissue, we also observed an age-dependent effect 

of osmotic stress on NO system. NOS activity was greatly 

decreased in response to dehydration in 25-day-old pups, 

which was accompanied by decreased levels of iNOS, with-

out changes in eNOS. We suggest that if such changes were 

to occur in resistance blood vessels, they may contribute to 

the larger increase in blood pressure in response to osmotic 

stress in this age group. An imbalance of reduced produc-

tion of NO or increased production of reactive oxygen spe-

cies (ROS) may promote endothelial dysfunction [31]. It 

was reported that caloric restriction increased antioxidant 

defenses and decreased TBARS levels in the cardiovascular 

system [32]. However, oxidative stress has not been fully 

studied in models of volume depletion. Because ROS can 

interact and inactivate NO, vascular oxidative stress can 

lead to decrease NO bioavailability [33]. The decreased 

lipid peroxidation observed in response to dehydration 

may be protective in order to prevent endothelial dysfunc-

tion in this age group. In contrast, in the oldest group, NOS 

activity remained unchanged in spite of the decreased lev-

els of eNOS and increased iNOS. As well as in cardiac tis-

sue, other mechanisms may determine NOS activity in the 

50-day-old group. Interestingly, both cav were upregulated 

in response to osmotic stress, with the exception of cav-1 

in the youngest group, probably contributing not to further 

decrease endothelial NO production.

In conclusion, the novel finding of the present study is 

that dehydration state induced by water restriction triggers 

different regulatory mechanisms during postnatal growth 

that involve NOS, cav and lipid peroxidation in a tissue 

specific way, in order to modulate the changes of the hemo-

dynamic parameters. NO production in cardiac and aorta 

tissues under osmotic stress in vivo depend on postnatal 

age, being eNOS and nNOS, the isoforms that determine 

NOS activity in the heart of 25-day-old pups. Changes in 

cav abundance in vivo during hypovolemic state may con-

tribute to age-related NO production.
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