
fcell-08-00635 August 7, 2020 Time: 10:45 # 1

REVIEW
published: 07 August 2020

doi: 10.3389/fcell.2020.00635

Edited by:
Michael Piper,

The University of Queensland,
Australia

Reviewed by:
Roberto Mayor,

University College London,
United Kingdom

Rebecca McLennan,
Stowers Institute for Medical

Research, United States

*Correspondence:
Manuel J. Aybar

manuel.aybar@fbqf.unt.edu.ar
Iván Velasco

ivelasco@ifc.unam.mx

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 06 April 2020
Accepted: 24 June 2020

Published: 07 August 2020

Citation:
Méndez-Maldonado K,

Vega-López GA, Aybar MJ and
Velasco I (2020) Neurogenesis From

Neural Crest Cells: Molecular
Mechanisms in the Formation

of Cranial Nerves and Ganglia.
Front. Cell Dev. Biol. 8:635.

doi: 10.3389/fcell.2020.00635

Neurogenesis From Neural Crest
Cells: Molecular Mechanisms in the
Formation of Cranial Nerves and
Ganglia
Karla Méndez-Maldonado1,2†, Guillermo A. Vega-López3,4†, Manuel J. Aybar3,4* and
Iván Velasco1,5*

1 Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico,
2 Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Ciudad de México, Mexico, 3 Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San
Miguel de Tucumán, Argentina, 4 Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y
Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina, 5 Laboratorio de Reprogramación Celular,
Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México, Mexico

The neural crest (NC) is a transient multipotent cell population that originates in the
dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable
distances through the body to reach their final sites. Derivatives of the NC are
neurons and glia of the peripheral nervous system (PNS) and the enteric nervous
system as well as non-neural cells. Different signaling pathways triggered by Bone
Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch
ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the
processes of induction, specification, cell migration and neural differentiation of the NC.
A specific set of signaling pathways and transcription factors are initially expressed in
the neural plate border and then in the NC cell precursors to the formation of cranial
nerves. The molecular mechanisms of control during embryonic development have
been gradually elucidated, pointing to an important role of transcriptional regulators
when neural differentiation occurs. However, some of these proteins have an important
participation in malformations of the cranial portion and their mutation results in aberrant
neurogenesis. This review aims to give an overview of the role of cell signaling and of the
function of transcription factors involved in the specification of ganglia precursors and
neurogenesis to form the NC-derived cranial nerves during organogenesis.

Keywords: cranial nerve, peripheral nervous system, hindbrain, cell signaling, transcriptional regulatory network,
trigeminal nerve, facial nerve, vagus nerve

Abbreviations: BMP, bone morphogenetic proteins; CN, cranial nerve; CNS, central nervous system; DRG, dorsal root
ganglia; FP, floor plate; hESCs, human embryonic stem cells; Msx, Muscle segment-related homeobox; NC, neural crest;
NCCs, neural crest cells; NT, neural tube; PA, pharyngeal arches; Pax, Paired box; PNS, peripheral nervous system; r,
rhombomere; RA, retinoic acid; RTK, receptor tyrosine kinase; Shh, Sonic hedgehog; Sox, Sry-box; VSMC, vascular smooth
muscle cells; Wnt, Wingless and Int-1; WRPW, Trp-Arg-Pro-Trp; Zic, Zinc finger protein of cerebellum.
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INTRODUCTION

During the embryonic development of vertebrates, one of the
main events after the gastrulation process is neurulation, which
allows the formation of the neural tube (NT). The neural
ectoderm generates not only the central nervous system (CNS)
but also another set of cells between the NT and the non-
neural ectoderm located in the most dorsal part of the NT, called
the neural crest (NC) (Hall, 2008; Simões-Costa et al., 2015).
This versatile and plastic cell population was first described by
Wilhelm His 150 years ago (Hall, 1999). The NC is one of the
most important features that separate vertebrates from other
chordate organisms. It arises at the posterior and lateral borders
of the neural and non-neural ectoderm, the neural plate border
(Figure 1) (Cerrizuela et al., 2020).

NC cells (NCCs) are multipotent and give rise to several cell
types, depending on the site of origin along the anteroposterior
axis of the embryo. NCCs are divided into cranial, trunk
(including cardiac), vagal and sacral (Figure 1A) (Minoux
and Rijli, 2010; Simões-Costa and Bronner, 2013; Vega-Lopez
et al., 2018). Cranial nerves (CN) transmit sensory and motor
information between the brain and tissues of the head and
cervical region. The CN are formed from the contribution of
two specialized embryonic cell populations, cranial NC and
ectodermal placodes.

Origin of the Neural Crest
NCCs, which are multipotent, delaminate from their origin and
migrate throughout the body to differentiate into several cell
types including cells of the peripheral nervous system (PNS),
melanocytes, cranial cartilage and bone, neuroendocrine cells,
and several other phenotypes (Figure 1B). In humans, at least
47 cell types have been defined as NC derivatives (Vickaryous
and Hall, 2006). Proper NC migration relies on environmental
cues such as Eph-Ephrins (Smith et al., 1997), Semaphorin-
3F (Gammill et al., 2007), Versican (Szabó et al., 2016), the
chemokine Stromal cell-derived factor 1 (Theveneau et al.,
2013) or Robo2 (Shiau et al., 2008). The migration patterns
of NCCs have been clearly described for model organisms like
birds, frogs and mice. In all vertebrates, cranial NCCs emerge
from the forebrain, midbrain and hindbrain regions (Couly
and Le Douarin, 1987; Serbedzija et al., 1992). Depending on
their axial origin, cranial NCCs will either migrate through the
facial mesenchyme and into the frontonasal process, or will
populate the branchial arches (Noden, 1975; Lumsden et al.,
1991; Serbedzija et al., 1992). The sensory module of the PNS
in the cranial region is composed of an array of paired ganglia
adjacent to the hindbrain that transduce the perception of touch,
pain, temperature, position and special sensory information
from the periphery to the CNS. Cranial NCCs migrate to form
sensory ganglia such as the trigeminal (V), the facial (VII), the
glossopharyngeal (IX), the vagus (X) CN, and also to form the
motor ganglia for the oculomotor (III) and accesory (XI) CN
(Table 1 and Figures 2, 3).

NC formation is a complex and multistep process
initially directed by cell signaling molecules including Bone
Morphogenetic Proteins (BMPs), Wnts (Wingless and Int-1),

Fibroblast Growth Factor (FGF), and retinoic acid (RA). These
signals reveal the tissue interactions into the ectodermal cell
populations, the neural plate, the non-neural ectoderm, and the
underlying mesoderm in a highly coordinated manner (Vega-
Lopez et al., 2017). It has been proposed that NC specification
occurs during gastrulation as a consequence of the action of
two successive gradients of secreted signals. A combination
of intermediate levels of activity of BMP and Wnt signaling
acting on the ectoderm to induce and specify NC precursors
at the neural plate border, and a subsequent requirement of
both signals is needed for maintenance of specification during
neurulation (Aybar and Mayor, 2002; Steventon et al., 2009). In
chick embryos, it was shown that NCCs are specified as early
as the blastula stage (Prasad et al., 2020). It was demonstrated
that, during gastrulation, Pax7 expression is restricted to cells
located in a region in the medial epiblast, which are NC-fated and
contribute to the neural folds and later to migrating NCCs (Basch
et al., 2006). The inhibition of Pax7 function in chicks inhibited
the expression of key NC markers such as Snai2 (OMIM 602150),
Sox9 (Sry-box 9, OMIM 608160), Sox10 (OMIM 602229), and
HNK1 (beta-1,3-glucuronyltransferase 1 like, OMIM 151290)
(Basch and Bronner-Fraser, 2006). This evidence suggests that
the neural plate-prospective ectoderm interaction at the neural
plate border might not be a requisite for NC specification or
induction, and that neural plate border formation and NC
induction might be separable events.

The various research works carried out to study the
origin of NCCs have identified genes organized into a gene
regulatory network that participate in and control the induction,
specification and differentiation of NC (Simões-Costa et al.,
2015). An example of this are the transcription factors involved
in induction such as FoxD3 (Forkhead Box D3, OMIM 611539),
Snai2 and Sox9 (Sauka-Spengler and Bronner-Fraser, 2006).
García-Castro and co-workers identified a novel pre-neural
border state characterized by early Wnt/β-catenin signaling
targets that displayed different responses to BMP and FGF
signaling from the neural border genes in human cells (Leung
et al., 2016). These pre-border genes Gbx2 (Gastrulation brain
homeobox 2, OMIM 601135), SP5 (OMIM 609391), Zic3 (OMIM
300265) and Zeb2 (OMIM 605802) had their induction and
peak of expression before the classical neural plate border
specifier genes such Msx1/2 (Muscle segment-related homeobox
1/2, OMIM 142983/123101), Pax3/7 (OMIM 606597/167410)
and Zic1 (OMIM 600470). Such specifier genes, together with
signaling molecules, direct the expression of NC-specific genes
like AP-2 (OMIM 107580), FoxD3, Snai2, Sox9, and Sox10.
Specifiers regulate NC effector genes involved in migration
(Sox9, Sox10, Cad7) and differentiation [Col1a, (Collagen, type
I alpha, OMIM 120150); Ngn1 (Neurogenin 1, OMIM 601726);
Mitf (Microphthalmia-associated transcription factor, OMIM
156845)] in human NC development (Betters et al., 2010).
The NC population migrates to different regions of the mouse
embryo from the NT after the epithelial-mesenchymal transition,
maintaining its multipotential character until completing
differentiation in its final destination (Baggiolini et al., 2015).

To study the ontogeny of the NC, different model organisms,
both in vivo and in vitro, have been used. Several proteins
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FIGURE 1 | Neural crest origin, regions in human and mouse embryos and some of its cranial derivatives. (A) The top-left part of the scheme shows the origin of the
neural crest cells (green) that migrate through the embryo. On the top-right side, the level of axial origin (see axial color key) of different regions of the neural crest is
represented in developing mouse or equivalent human embryos; the migration of neural crest is represented in green inside the embryos and the direction of
migration is marked with black arrows. Depending on their axial level of origin and migratory pathways, neural crest cells adopt different fates and contribute to
various tissues and organs. (B) The main cranial derivatives, labeled in green, are shown. Abbreviations: d, days, E, mouse embryonic stage; NCCs, Neural Crest
Cells; s, somite; St, human stage; VSMC, vascular smooth muscle cells.

including transcription factors as well as epigenetic modifiers
that take part in the specification and differentiation of the NC
have been described. The study of transcription factors and of
the signaling pathways in which they participate is important
to understand the differentiation programs and how these
multipotent cells are committed to a specific destination. On the
other hand, transcriptome analysis during the development of the
NC from specification to migration (Meulemans and Bronner-
Fraser, 2004), and a more recent study covering the migration
to the differentiation of the NC, show the importance of the
interaction between the different transcription factors and the
signaling pathways at every stage of NC development (Simões-
Costa et al., 2015). However, these authors acknowledge that
it is difficult to have a complete global map since only a few
transcriptional regulators have been characterized, and little is

known about the function of the products of the effector genes
acting on NC migration (Betancur et al., 2010; Simões-Costa and
Bronner, 2013; Vega-Lopez et al., 2017).

NC and cranial placodes are thought to appear together
during the evolution of vertebrates to give rise to specific sensory
structures of the head (Northcutt and Gans, 1983; Northcutt,
2005). The components of the sensory nervous system of the head
are derived from the NC and from an embryonic cell population
developing in close proximity, the cranial sensory placodes (the
olfactory, lens, otic, trigeminal, epibranchial and paratympanic
placodes). A series of events induce, develop and organize
these cell precursors which, through reciprocal interactions
with NCCs, build the functional sensory system in vertebrates
(Steventon et al., 2014; Singh and Groves, 2016). Migrating NCCs
arrive first at the site of ganglia development (i.e., the trigeminal
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TABLE 1 | Contributions of neural crest cells and placodes to ganglia and cranial nerves.

Cranial nerve Ganglion and type Origin of neurons References

CNI – Olfactory (Ensheating glia
of Olfactory nerves)

Telencephalon/olfactory placode; NCCs at forebrain Boyd et al., 2003; Muller et al., 2004; O’Rahilly and
Müller, 2007; Barraud et al., 2010

CNIII – Oculomotor (m) Ciliary, visceral efferent NCCs at forebrain-midbrain junction (caudal diencephalon
and the anterior mesencephalon)

Noden, 1978; Couly et al., 1993; Wahl et al., 1994;
Lee et al., 2003

CNV – Trigeminal (mix) Trigeminal, general afferent NCCs at forebrain-midbrain junction (from r2 into 1st PA),
trigeminal placode

d’Amico-Martel and Noden, 1980; Forbes and Welt,
1981; D’amico-Martel and Noden, 1983

CNVII – Facial (mix) -Superior, general and special afferent

-Inferior: geniculate, general and special afferent
-Sphenopalatine, visceral efferent
-Submandibular, visceral efferent

-Hindbrain NCCs (from r4 into 2nd PA), 1st epibranchial
placode
-1st epibranchial placode (geniculate)
-Hindbrain NCCs (2nd PA)
-Hindbrain NCCs (2nd PA)

D’amico-Martel and Noden, 1983; Lumsden et al.,
1991; Barlow and Northcutt, 1997; Begbie and
Graham, 2001

CNVIII – Vestibulocochlear (s) Acoustic: cochlear, special afferent; and Vestibular,
special afferent

Otic placode and hindbrain (from r4) NCCs Barlow, 2002; Krimm, 2007; Sandell et al., 2014

CNIX – Glossopharyngeal (mix) -Superior, general and special afferent
-Inferior, petrosal, general and special afferent
-Otic, visceral efferent

-Hindbrain NCCs (from r6 into 3rd PA)
-2nd epibranchial placode (petrosal)
-Hindbrain NCCs (from r6 into 3rd PA)

Narayanan and Narayanan, 1980; D’amico-Martel
and Noden, 1983; O’Rahilly and Müller, 1984; Barlow
and Northcutt, 1997

CNX – Vagus (mix) Superior
laryngeal branch; and recurrent
laryngeal branch

-Superior, general afferent
-Inferior: nodose, general and special afferent

-Vagal: parasympathetic, visceral efferent

-Hindbrain NCCs (from r7-r8 to 4th and 6th PA)
-Hindbrain NCCs (4th and 6th PA); 3rd (nodose) and 4th
epibranchial placodes
-Hindbrain NCCs (4th and 6th PA)

Narayanan and Narayanan, 1980; D’amico-Martel
and Noden, 1983

CNXI – Accessory (m) No ganglion* Hindbrain (from r7-r8 to PA 4); NCCs (4th PA) Muller and O’Rahilly, 1980; O’Rahilly and Müller, 2007

Abbreviations: CN, Cranial Nerve; m, purely motor nerve; mix, mixed nerve (sensory and motor); NC, neural crest; PA, pharyngeal (branchial) arch; r, rhombomere; s, purely sensory nerve. *There is no known ganglion
of the accessory nerve. The cranial part of the accessory nerve sends occasional branches to the superior ganglion of the vagus nerve.
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FIGURE 2 | Contribution of neural crest cells to the formation of cranial nerves I, III, V, VII, VIII, IX, X, and XI. These selected cranial nerves are formed by the
contribution of cranial placodes and neural crest cells, indicated in green. Neural crest-derived Schwann cells produce peripheral myelination of cranial nerves III–XII.
The sensory nerves are the olfactory (I), the optic (II), and the vestibulocochlear (VIII). The motor nerves are the oculomotor (III), the trochlear (IV), the abducens (VI),
and the accessory (XI). The remaining are mixed nerves.

ganglion), but the differentiation of these cells is delayed until
the migration and differentiation of the corresponding placodal
cells in chicks (Covell and Noden, 1989). Placodal specification
and development, as well as its contribution to the assembly of
placodal derivatives, is a complex and wide-ranging topic that
is beyond the scope of this review. We will focus on discussing
the main signaling pathways and relevant transcription factors
involved in the specification of cranial NCCs precursors, their
differentiation to form CNs and ganglia that are exclusively NC-
derived, and the alterations caused by the mutations of certain
genes that are important for the neurogenesis of NC derivatives.

SIGNALING PATHWAYS INVOLVED IN
CRANIAL NEURAL CREST
DEVELOPMENT

There are several signaling pathways and transcription
factors that are known to regulate NC and CN formation
during development. We discuss some important pathways
involved in cranial NCCs induction and specification, in close
relationship with the cranial ganglia and nerves derived from the
NC (Figure 3).

BMPs
Bone morphogenetic proteins are proteins that control several
important steps in the formation and differentiation of the CNS
of vertebrates. These proteins act in different regions of the
CNS to regulate fate, proliferation and differentiation. After
gastrulation, the presence of BMPs and the activation of this
signaling pathway are essential for the differentiation of the

non-neural ectoderm whereas the inhibition of this pathway is
required for the proper formation of the neural plate. It has been
proposed that the later activation of BMPs receptors participates
in the induction of the NC through a very fine regulation where
the presence of BMPs at a specific time will give rise to the NC
in mouse and human Embryonic Stem Cells (ESCs) (Figure 3B)
(Mizuseki et al., 2003; Leung et al., 2016).

Seminal studies in Xenopus have shown that there is an activity
gradient of BMPs controlled by their antagonists and that an
intermediate level is needed to induce the formation of the NC
(LaBonne and Bronner-Fraser, 1998; Marchant et al., 1998; Barth
et al., 1999; Tribulo et al., 2003). Thus, the BMP antagonists
Chordin (OMIM 603475) and Noggin (OMIM 602991) are
expressed in a spatio-temporal manner that influences the
formation of the NC. In mouse, at embryonic day (E) 8.0, Noggin
is expressed in the neural folds and in the dorsal region after
the closure of the NT. The expression of Chordin is low at
the level of the neural plate and in the paraxial mesoderm.
These antagonists participate in the induction of NC as well
as in delamination, but also protect from apoptosis induced by
BMP during migration and differentiation of NCCs. Importantly,
it was observed that the decrease in the expression of these
BMP antagonists alters the PNS derived from the NC and
craniofacial skeletal elements. Noggin knockout mice presented
all cranial nerves, but the vagus (X) and glossopharyngeal (IX) are
disorganized and fused. Double-knockout mice of Noggin and
Chordin lack CN and only a structure similar to the trigeminal
ganglion (V) is present (Anderson et al., 2006). In the chick
embryo, the activity of BMP signaling during the formation of
NC precursors is modulated by CKIP/Smurf factors through
the regulation of Smad degradation, resulting in intermediate
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FIGURE 3 | Gene regulatory network involved in neural crest contribution to the formation of cranial nerves. The cranial ganglia and cranial nerves are formed in
precise positions along the dorso-ventral and antero-posterior axes of the midbrain/hindbrain region. (A) The drawing represents a human embryo at stage 13
(30 days, 32 somites), equivalent to mouse day 9.5-10 (E9.5-10, 20 somites) and chick stage 14 (50 h, 22 somites). The cell signaling pathways that provide
developmental cues to neural crest precursors are color-coded; when these factors diffuse, the target regions are indicated with arrows with the same color. In panel
(B), an idealized scheme of the hindbrain shows the cell signaling gradients and the genes that establish the dorsoventral pattern. (C) The illustration of the human
(33 days, stage 14) and chick (stage 21) hindbrain rendered flat to eliminate cerebral flexures. The levels of origin of the neural crest cells (NCCs) and placodes,
which contribute to the formation on cranial nerves, are indicated on the left. NCCs from the corresponding rhombomeres also populate other embryo structures in a
segmental fashion and generate different craniofacial derivatives. The positions of the cranial ganglia and the otic vesicles are indicated on the right side; the
contribution of NCCs is indicated in green. The segmental nested expression of HOX genes is color-coded. On the right, signaling pathways and the expression of
transcription factors involved in cranial nerve (CN) formation are indicated. Adapted from Lumsden and Keynes (1989), Noden (1991), Yamamoto and Schwarting
(1991), Bally-Cuif and Wassef (1995), Takahashi and Osumi (2002), and Müller and O’Rahilly (2011). Abbreviations: CN, cranial nerve; FP, floor plate; M,
mesencephalon; NCCs, neural crest cells; OV, otic vesicle; r, rhombomere; PA, pharyngeal arches.

levels of BMP activity required for proper NC formation
(Piacentino and Bronner, 2018). In contrast, placode progenitors
have differential BMP signaling requirements as they can be
specified under low or no BMP signaling (Thiery et al., 2020).

A study of human ESCs (hESC) showed that if BMPs are
blocked with Noggin for 24 h on days 0, 1, or 2 of the

differentiation protocol, there is a dramatic decrease in the
induction of human NCCs. However, if the inhibition is made
on day 3, the inhibition is partial, so the participation of BMPs
at the beginning of the induction of the NC is very important,
while the inhibition of this pathway promoted the expression
of neural genes such as SOX1 (OMIM 602148), HES5 (OMIM
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607348), and SOX2 (OMIM 184429) (Leung et al., 2016). This
protocol produced sensory peripheral neurons, and it will be
of interest to investigate if such neurons can contribute to the
sensory CN after grafting them in experimental animals, as
well as the effect of modulating BMPs on peripheral neuron
differentiation. Interestingly, BMP antagonism upregulates these
neural stem cell markers, but several reports indicated that Sox1,
Hes5, and Sox2 are involved in the suppression of neuronal
differentiation by maintaining neural stem and progenitor
cells in an undifferentiated state in mammalian cells (Kan
et al., 2004; Bani-Yaghoub et al., 2006). The generation of
neurons from stem cells depends on the decrease of Sox1-3
expression caused by proneural proteins. However, if Sox1-3
target genes were repressed, independently of proneural activity,
neural progenitor cells differentiated prematurely, and some
neuronal features emerged. These results demonstrate a dual
role of proneural proteins in the acquisition of a definitive
neuronal fate and indicate that the proneural protein-directed
repression of Sox1-3 expression is a required and irreversible
step in the commitment to neuronal differentiation in several
species, including mammals (Guillemot, 1999; Farah et al., 2000;
Bylund et al., 2003).

BMP4 (OMIM 112262) and Smad proteins have been
involved in an interesting mechanism called retrograde signaling
in trigeminal ganglia from rats (Ji and Jaffrey, 2012). This
mechanism elicits a specific transcriptional response that
contributes to the specification of different subpopulations of
sensory neurons in the trigeminal ganglia (CN V). As axons
from the neurons of trigeminal ganglia grow and extend
into their three main peripheral axonal branches (ophthalmic,
maxillary and mandibular) that innervate the corresponding
regions of the face, they encounter BMP4, which results in a
retrograde signal that leads to transport back transcription factors
SMAD-1, -5, and -8 from axons to the somata, where nuclear
accumulation of the phosphorylated and transcriptionally active
Smad forms contributes to neuronal specification and ganglia
patterning (Nohe et al., 2004; Ji and Jaffrey, 2012). BDNF (Brain-
Derived Neurotrophic Factor, OMIM 113505) signaling was
also found to regulate axonal levels of SMAD-1, -5, and -8 in
concert with BMP4, for patterning of the trigeminal ganglia
(Ji and Jaffrey, 2012).

Hippo Pathway
Genetic studies have demonstrated that Hippo signaling is crucial
in organ size regulation, controlling cell number by modulating
cell proliferation and apoptosis processes (Huang et al., 2005).
Hippo is a critical factor for proliferation and epithelial-
mesenchymal transition during embryonic development and
cancer. In the neural tube of the mouse, chicken, and frog,
YAP (Yes-Associated Protein, OMIM 606608) is expressed in
the ventricular zone progenitor cells and co-localizes with the
neural progenitor cell marker Sox2 (Milewski et al., 2004; Cao
et al., 2008). It has been observed that the ectopic expression
of one of the transcriptional regulators of this pathway,
TAZ (Transcriptional Coactivator With PDZ-Binding Motif,
OMIM 607392) in mammalian cells, stimulates cell proliferation,

reduces the inhibition by contact and promotes the epithelial-
mesenchymal transition (Lei et al., 2008).

A relationship between this signaling pathway and the classical
NC genes, such as interaction with Pax3 is through TAZ and
the phosphoprotein YAP65. These proteins participate as co-
activators of Pax3. It has been suggested, using transgenic
mice, that Tead2 (TEA Domain Family Member 2, OMIM
601729) is an endogenous activator of Pax3 in NCCs (Milewski
et al., 2004). Through expression assays, Pax3 and Yap65
were co-localized in the nucleus of NC progenitors in the
dorsal region of the NT. Hippo/TAZ/YAP are critical for
Schwann cell proliferation and differentiation in a stage-
dependent manner. Nuclear TAZ/YAP complexes activate cell
cycle regulators to promote Schwann cell proliferation while
directing differentiation regulators in cooperation with Sox10 for
myelination in rodents (Deng et al., 2017).

Neurofibromatosis 2 (Nf2, OMIM 101000) is a tumor
suppressor that inhibits YAP during dorsal root ganglia (DRG)
development. Merlin, encoded by the NF2 tumor-suppressive
gene, was identified through genetic studies in mouse embryos
and proved to be an important upstream regulator of the
Hippo-Yap pathway. Neurofibromatosis is an inherited disease
characterized by the development of bilateral Schwann cell
tumors originated from CN VIII. Mouse with specific Schwann
cell-inactivated Nf2 alleles developed schwannomas and SC
hyperplasia (McClatchey et al., 1998; Giovannini et al., 1999,
2000). Merlin has also been shown to act as a suppressor of
mouse neural progenitor proliferation, by inhibiting TAZ/YAP
pathway activity (Lavado et al., 2013). The mechanism by
which Merlin regulates YAP activity might involve p21 Protein-
activated kinase 1 (PAK1, OMIM 602590) activation, which
induces phosphorylation of Merlin, thus abrogating its scaffold
function for YAP and LATS1/2 (OMIM 603473/604861), and
thereby attenuates YAP phosphorylation by LATS1/2 in mouse
cells (Sabra et al., 2017); it has been suggested that nuclear
export signals of Merlin mediate YAP nuclear export in epithelial
mammalian cells (Furukawa et al., 2017).

Hindley and co-workers investigated the role of Hippo/YAP
signaling in NC development and neural differentiation. They
showed that the activity of YAP promotes an early NC
phenotype accompanied by premature migratory behavior, and
that Hippo/YAP interacts with RA signaling in hESCs (Hindley
et al., 2016). A recent study demonstrates that YAP is necessary
for the migration of a premigratory pool of NCCs, since
they incorporated YAP signaling into a BMP/Wnt-dependent
molecular network responsible for the migration of trunk-level
NC in avians (Kumar et al., 2019).

Notch Signaling
Notch is a family of conserved receptors whose activation is
induced by specific ligands, Delta-1 (OMIM 606582), Delta-
3 (OMIM 602768), Delta-4 (OMIM 605185), Jagged-1 (OMIM
601920), and Jagged-2 (OMIM 602570), through interaction
with four possible receptors (Notch1-4) (Perdigoto and Bardin,
2013). Once the Notch receptors are activated through the
cell-cell interaction, proteolytic cuts are carried out resulting
in the release of the Notch Intracellular Domain (NICD)
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(Mumm et al., 2000). NICD translocate to the nucleus and
forms a transcriptional complex together with the DNA binding
protein CBF1 (C promoter binding factor 1, OMIM 147183).
This complex recognizes the specific sequence (C/T)GTGGGAA
in its target genes, for example Hes1 (OMIM 139605)
(Kageyama et al., 2000).

Notch1 receptor is present during development of the
rhomboencephalon at E9.5 in mice, showing strong expression
within the hindbrain, including the trigeminal, geniculate,
petrosum and nodose placodes, which give rise to CN V,
VII, IX and X, respectively, and is also expressed in the otic
and olfactory vesicle (Reaume et al., 1992). A study where
human induced pluripotent stem cells were induced toward NC
differentiation showed that when Notch signaling is blocked
using a γ-secretase inhibitor (DAPT) or shRNA for JAGGED-
1, the genes specifying NC [DLX5 (Distal-less homeobox 5,
OMIM 600028), PAX3, SNAI2, SOX10, and TWIST1 (OMIM
601622)] are down-regulated. However, the ectopic expression of
NICD1 increased its expression, demonstrating that Notch also
participates significantly in NC induction (Noisa et al., 2014).
Mead and Yutzey evaluated the function of Notch signaling in
murine NC-derived cell lineages in vivo. They demonstrated
that cell-autonomous Notch has an essential role in proper
NCCs migration, proliferation and differentiation, with critical
implications in craniofacial, cardiac and neurogenic development
(Mead and Yutzey, 2012).

Sonic Hedgehog
Sonic Hedgehog (Shh) signaling is involved in the correct
development of NC and therefore in the generation of its cellular
derivatives (Figure 3B). Shh is a member of the family of
the secreted Hedgehog proteins: Sonic (Shh, OMIM 600725),
Indian (Ihh, OMIM 600726), and Desert Hedgehog (Dhh, OMIM
605423). Shh regulation during NC differentiation is crucial
during head and face morphogenesis. Mutant mice and humans
lacking Shh present holoprosencephaly and cyclopia due to the
lack of separation of the forebrain lobes (Chiang et al., 1996).
It is suggested that Shh inhibition maintains Pax3 expression,
so the lack of Shh-mediated regulation for Pax3 induction
promotes the constitutive induction of NC, generating the
aforementioned phenotypes. A subset of Fox genes regulated by
Shh signaling is important during lip morphogenesis in mice.
Either Shh addition or Foxf2 (OMIM 603250) overexpression
was shown to be sufficient to induce cranial NCCs proliferation
(Everson et al., 2017).

On the other hand, enhanced Shh signaling in mouse,
mediated by loss-of-function (Ptch1Wig/Wig) of the Shh receptor
Patched1 (Ptch1, OMIM 601309), suppressed canonical Wnt
signaling in the CN region. This critically affected the survival
and migration of cranial NCCs and the development of
placodes, as well as the integration between NC and placodes
(Kurosaka et al., 2015). Ptch1Wig/Wig mutants exhibited severely
disorganized trigeminal (CNV) and facial nerves (CNVII) that
did not develop properly and failed to project to their appropriate
target tissues (Kurosaka et al., 2015). High levels of Shh
signaling have been correlated with Moebius Syndrome, which
is characterized by cranial nerve defects including trigeminal,

abducens (CNVI) and facial alterations concurrent with other
craniofacial defects (Verzijl et al., 2003; Vega-Lopez et al., 2018).
NCCs migration is particularly sensitive to Shh levels since in
mice lacking Shh, these cells continue their migration beyond
the normal position and fuse medially, condensing into a single
midline ganglion (Fedtsova et al., 2003). Mutation in the mouse
Hedgehog acyltransferase (Hhat, OMIM 605743) gene produced
hypoplasia and aberrant fusion of cranial ganglia (CN V, VII, IX,
and X) and affected NC and placode gene markers expression,
suggesting that a regionalized action of the Hedgehog signaling
is required for proper cranial ganglia and nerve development
and patterning (Dennis et al., 2012). In vitro analyses showed
that Shh increased the number of cranial NC progenitors, from
quail embryos, yielding neural and mesenchymal lineages. Shh
can decrease the neural-restricted precursors without affecting
survival or proliferation. These data also suggest that the
mesenchymal-neural precursor was able to yield both the PNS
and superficial skeleton (Calloni et al., 2007).

Receptor Tyrosine Kinase (RTK) Family
Humans have 58 known RTKs, which fall into 20 subfamilies.
A few years ago, a systematic work summarized the contribution
of the mouse model to the understanding of the role of a subset
of RTKs in regulating the activity of NCCs in development
(Fantauzzo and Soriano, 2015). With respect to its downstream
signaling, RTKs induce the activation of various pathways,
including PLC-γ, PI3K, MAPK, JNK, Shc, Erk, and the JAK/STAT
pathways. In this section, we discuss insights pointing to
mechanisms of action of some RTK families in relation to
the development of the cranial NC that have emerged from
recent evidence.

Eph Receptors
Ephrin ligands and Eph (erythropoietin-producing human
hepatocellular carcinoma) receptors comprise an increasingly
well studied family of signaling molecules. Ephrins bind to
two families of transmembrane tyrosine kinase receptors, EphA
and EphB. While A-type Ephrins preferentially bind to EphA
receptors, B-type Ephrins do so to EphB receptors. In Xenopus,
the streams of NCCs going to the second branchial arch express
Ephrin-B2, whereas cells reaching the third arch express EphB1;
disruption of Eph-Ephrin signaling results in aberrant migration
of NCCs, causing mixing of the streams in the branchial pouches
(Smith et al., 1997). Eph receptor functions are best characterized
in the mouse nervous system, where they are involved in
neuronal development and axon guidance (Wilkinson, 2001; Xu
and Henkemeyer, 2012), migration and proliferation (Conover
et al., 2000; Holmberg et al., 2006; Jurek et al., 2016) as well as
inflammation (Coulthard et al., 2012).

The Ephrin ligand/Eph receptor proteins are widely
expressed in embryonic tissues. Eph receptors participate
in the development of several NC-derivatives in mouse: teeth
and the establishment of tooth nerves (CN V) (Luukko et al.,
2005; Stokowski et al., 2007; Arthur et al., 2009; Diercke et al.,
2011; Matsumura et al., 2017) and participate in cochlear
innervation patterns (Zhou et al., 2011). Eph receptors play
a role in mouse segmentation and boundary formation of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 August 2020 | Volume 8 | Article 635

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00635 August 7, 2020 Time: 10:45 # 9

Méndez-Maldonado et al. Neural Crest-Derived Cranial Nerves

the developing hindbrain, which results in the formation of
rhombomeres (r), which are crucial for the orderly formation of
CN and specification of NCCs (Flenniken et al., 1996; Flanagan
and Vanderhaeghen, 1998; Merrill et al., 2006; Mellott and
Burke, 2008; Klein, 2012). Mouse EphA5−/− (OMIM 600004)
had only <15% of the normal complement of Gonadotropin-
releasing hormone neurons in the brain (Gamble, 2005).
This also produced infertility in adult female homozygous
GNR23 mice, providing a causal link between Ephrin-related
mutations and human hypogonadotropic hypogonadism such
as Kallman syndrome. It has been shown through genetic
labeling that a fraction of GnRH neurons are derived from NCCs
(Forni et al., 2011).

A key step in epigenetic control of expression is gene silencing
by hypermethylation of CpG islands present at promoter regions
(Nakao, 2001). Both specific enzymes and methyl-CpG-binding
proteins (MBPs) play a major role in the epigenetic control
of gene expression through the recognition and binding to
methylated DNA, as well as by the recruitment of remodeling
complexes (Defossez and Stancheva, 2011). During development,
EphA5 receptor controls the axonal mapping of retinal ganglion
cells in the visual system (Zhou, 1997). Recent findings showed
site-specific differences in methylation of CpG islands in the
EphA5 promoter, which could account for the activation or
repression of this promoter and might influence the graded
EphA5 expression in the mesencephalic tectum (Petkova et al.,
2011). During mouse embryonic development, high levels of
EphA5 protein were also found in cranial nerve ganglia V,
VIII, X, and XII (Cooper et al., 2009). Therefore, it seems
reasonable to speculate that this epigenetic methylation may
regulate the neurogenesis of these cranial nerves as it does in the
myencephalic region.

EGFR/ErbB Receptors
The Epidermal Growth Factor Receptor (EGFR, OMIM 131550)
and the related ErbB (v-erb-b2 avian erythroblastic leukemia
viral oncogene B) proteins transduce after EGF (OMIM
131530) binding. ErbB2−/− (OMIM 164870) mice die around
midgestation due to cardiac defects. Cranial ganglia are
also morphologically aberrant and these embryos show an
altered pattern of ErbB3 (OMIM 190151) staining (Meyer and
Birchmeier, 1995; Erickson et al., 1997; Britsch et al., 1998;
Garratt et al., 2000). ErbB3 mutant mice embryos die at a later
stage as they have reduced numbers of Schwann cell precursors
derived from NCCs and therefore lack cranial ganglia nerves,
caused by the death of around 80% of both motor and sensory
neurons (Riethmacher et al., 1997). Chick NCCs from the
hindbrain and ectodermal cells from placodes, participate in
the development of cranial ganglia (D’amico-Martel and Noden,
1983; Le Douarin et al., 1986). A chemical mutagenesis screen
in Sox10-reporter mice identified an amino acid substitution in
the extracellular portion of ErbB3 that resulted in alterations in
homozygotic mutants similar to those reported in ErbB3 knock-
outs (Buac et al., 2008).

ErbB4 (OMIM 190151) null mouse die at mid-gestation, at
E11, due to cardiac defects (Gassmann et al., 1995). In order
to overcome this lethality, ErbB4 mutant mice were engineered

to express ErbB4 only in the heart. The embryos survived, but
presented aberrant cranial nerve architecture, such as ectopic
nerve projections of trigeminal (V) and facial (VII) ganglia
(Tidcombe et al., 2003). These results suggested the participation
of ErbB4 in the control of NCCs migration and axon extension.
ErbB4 (alongside Ephrin) is expressed in r3 while one of its
ligands, Neuregulin 1 (OMIM 142445), is expressed in r2 and r4
(Golding et al., 2000, 2004).

FGF Receptors
Fibroblast growth factor signaling is composed of 22 members,
although only eighteen FGFs signal via FGF Receptor
(FGFR) interactions (FGF1–10 and 16–23). There are seven
signaling receptors, encoded by four FGFR genes, FGFR1–
4 (Zhang et al., 2006). FGFs exert their cellular effects
by interacting with FGFRs, but FGF-FGFR complexes
can only be formed in the presence of heparan sulfate
(Pellegrini et al., 2000; Schlessinger et al., 2000). FGFRs, a
class of RTK, dimerize and undergo transphosphorylation
of the kinase domain upon ligand binding. Four signaling
pathways can be activated to transduce intracellularly:
MAP Kinase (MAPK), PI3K/AKT, PLC-γ, and STAT
(Ornitz and Itoh, 2015).

In mice, FGF signaling is necessary for cell survival during the
development of tissues, including the embryonic telencephalon
and the mid-hindbrain junction (Sato et al., 2004; Zervas et al.,
2005; Paek et al., 2009). In zebrafish and chick, FGF3 (OMIM
164950) and FGF8 (OMIM 600483) emanating from r4 are both
necessary and sufficient to promote the development of the
adjacent r5 and r6 by regulating the expression of transcription
factors including Krox20 (Maves et al., 2002; Walshe et al., 2002;
Waskiewicz et al., 2002; Wiellette and Sive, 2003; Hernandez
et al., 2004; Aragón et al., 2005; Labalette et al., 2011).

Fibroblast growth factor activating FGFR-2(IIIb) (OMIM
176943) at placodal sites (Pirvola et al., 2000), and RA, primarily
associated with NC-derived mesenchyme (LaMantia et al., 2000),
modulate multiple aspects of sensory neuronal differentiation,
including cranial sensory neuron survival, neurogenesis and
cranial nerve differentiation. FGFR-2(IIIb) knock-in mouse
shows severe dysgenesis of the cochleovestibular membranous
labyrinth and sensory patches of the vestibulocochlear
ganglion (CN VIII) remain small and poorly developed
(Pirvola et al., 2000).

MBD1 (Methyl-CpG-binding domain protein 1, OMIM
156535)-null neural stem cells display impaired neurogenesis and
increased genomic stability. A possible mechanism is the direct
binding of MBD1 to the hypermethylated promoter region of
the important neural growth factor FGF2. In agreement, MBD1
loss-of-function induces the FGF2 promoter hypomethylation,
thus increasing its expression in mouse adult neural stem cells,
which prevents differentiation (Li et al., 2008). Ma et al. showed
that Gadd45b (Growth arrest and DNA damage-inducible
gene 45 beta, OMIM 604948) could induce demethylation
in promoters of several genes that participate in mouse
neurogenesis, including Bdnf (region IX) and FGF1 (promoter
B, OMIM 131220) (Alam et al., 1996). Interestingly, attenuated
dendritic growth was found in Gadd45b knock-out mice after
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electro-convulsive treatment, compared to wild-type animals,
indicating that Gadd45b is required for DNA demethylation
in adult neurogenesis (Ma et al., 2009). Whether or not these
mechanisms are shared in NC differentiation to CN is an
interesting research topic.

PTK7 Receptors
Protein tyrosine kinase 7 (PTK7, OMIM 601890), also named
Colon Carcinoma Kinase 4 (CCK4) and Kinase-Like Gene
(KLG) in chicken, is the only member of this RTK family
(Jung et al., 2002). PTK7 null mice die perinatally (Lu et al.,
2004). Interestingly, Chuzhoi mice, which are homozygous for
an ENU-induced splice site mutation in the PTK7 gene, also
die perinatally and similarly to null individuals, exhibit severe
neural tube closure defects, have abnormal NCCs distribution
and display altered morphology of cranial ganglia and DRG,
cardiac outflow tract and ventricular septal defects (Paudyal et al.,
2010). PTK7 regulates NC migration via β-Catenin-independent
Wnt signaling, and it has been shown that ROR2 (RTK-like
orphan, OMIM 602337) is capable of replacing PTK7 function
in this process (Podleschny et al., 2015). The human PTK7 gene
has a promoter with 420-bp-long CpG islands (Jung et al., 2002),
but epigenetic regulation is unclear at this point.

Trk Receptors
Trks (tropomyosin-related kinases) receptors are a subfamily of
TRKs activated by neurotrophins (McDonald and Hendrickson,
1993; Murray-Rust et al., 1993). Three types of Trks receptors
have been identified during vertebrate development: TrkA
(OMIM 191315), TrkB (OMIM 600456) and TrkC (OMIM
191316), activated by NGF (OMIM 162030), BDNF/NT-
4 (OMIM 162662) and NT-3 (OMIM 162660), respectively
(Hempstead et al., 1991).

The mouse deficiency of NT-3 (Huang et al., 1999), TrkA,
TrkB or TrkC (Lewin and Barde, 1996) causes variable
loss (39–82%) or decrease of nociceptors and low-threshold
mechanoreceptors in the trigeminal ganglion (CN V). TrkB
has been found to directly interact with ErbB2 (also known as
Her2) for signal transduction in human cells (Choy et al., 2017).
Mouse TrkB and p75NTR (OMIM 162010) serve as co-receptors
of Ephrin-A (Lim et al., 2008; Marler et al., 2008; Barton et al.,
2014). Trks have been detected in all classes of PNS neurons with
the notable exception of parasympathetic neurons of the ciliary
ganglion. With regards to sensory neurons, TrkA is expressed
only in DRG and other neural crest-derived ganglia, whereas
TrkB and TrkC are expressed to some extent in all sensory
ganglia. During embryogenesis, up to 70% of DRG neurons
express TrkA but this number declines to around 40% in the
adult rat. Co-expression in a single neuron of two members
of the Trk family is common, e.g., in adult rat DRG few cells
express TrkB alone, while the combinations TrkA + TrkB or
TrkB + TrkC are more common (McMahon et al., 1994; Lindsay,
1996). TrkB expression is Ca2+ dependent in mouse cortical
neurons (Kingsbury et al., 2003), but thyroid hormone T3 down-
regulates the expression of TrkB through a negative response
element located downstream of its transcription initiation site,
during the development of rat brain (Pombo et al., 2000).

TrkB was shown to be transcriptionally repressed by Runx3, a
Runt domain transcription factor, in mouse and human cells
(Inoue et al., 2007).

BDNF and NGF signals emanating from chicken sensory
ganglia stimulate cranial motor axon growth (Li et al., 2020).
MeCP2 (Methyl-CpG-Binding Protein 2, OMIM 300005) acts
with REST/NRSF (Re1-Silencing Transcription factor/Neuron-
Restrictive Silencer Factor, OMIM 600571) to recruit Histone
Deacetylases, causing a decrease in the expression of BDNF. On
the other hand, MeCP2 is released from the BDNF promoter in
mouse neurons as a consequence of membrane depolarization,
thereby allowing its transcription (Ballas et al., 2005; Zhou
et al., 2006). Neuronal activity promotes MeCP2 phosphorylation
at specific sites, which differentially changes its binding to
gene promoters such as BDNF, a step that is decisive for
proper neuronal development and synaptic plasticity in mice
(Na and Monteggia, 2011).

VEGF Receptors
Vascular endothelial growth factor receptors (VEGFRs) are
important in the formation of the vascular system during
embryonic development. The mammalian VEGFR are three
related type III RTKs known as VEGFR1, VEGFR2, and VEGFR3.
These receptors, which bind to VEGF ligands, consist of five
glycoproteins referred to as VEGFA, VEGFB, VEGFC, VEGFD
and placenta growth factor (PlGF) (Ferrara et al., 2003). The
transmembrane protein neuropilin 1 (NRP1, OMIM 602069)
is essential for the patterning of the facial nerve (VII) in
mouse, as it binds the secreted Semaphorin SEMA3A (OMIM
603961) to guide facial branchiomotor axons in invading the
second branchial arch. However, NRP1 can also be activated by
the VEGF isoform VEGF164 to control the position of facial
branchiomotor neuron cell bodies within the chick hindbrain
(Anderson et al., 2003; Schwarz et al., 2004). Cranial NCCs
express VEGFR2 and its co-receptor NRP1 as they migrate
from the hindbrain at the level of r4 to invade pharyngeal
arch 2 in response to chemoattraction by VEGF also in chicken
(McLennan et al., 2010).

Wnt Signaling
Wnts proteins are secreted glycoproteins that participate in a
wide variety of cellular processes in development and disease.
Binding of Wnts to receptors composed of Frizzled and Lrp5/6
triggers a canonical pathway that results in the stabilization of
β-catenin (OMIM 116806), which otherwise is phosphorylated
by GSK3β (OMIM 605004) and undergoes constant degradation
by the proteasome. Stabilized β-catenin interacts with TCF to
activate the expression of target genes (Nusse and Clevers,
2017). Non-canonical signaling pathways are associated with
Wnts, namely the Planar cell polarity in Drosophila and the
Wnt/Ca2+ pathway in vertebrates. The latter involves at least
two branches: Ror1/2 activation of Phospholipase C, associated
with Wnt binding to Frizzled receptors, produces IP3 and DAG,
which increases cytoplasmic Ca2+ concentrations; the second
mechanism is the direct activation of Ror1/2 by Wnts, resulting
in increases in cytoplasmic Ca2+, which activates Calpain (De,
2011). The interaction of Wnt with other signaling pathways,
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e.g., with the Smad pathway, has been demonstrated in hESCs
(Menendez et al., 2011). An efficient method was described for
the generation of NCCs from human pluripotent stem cells
through the sustained activation of Wnt signaling combined
with low Smad signaling, accomplished by the inhibition of the
Activin/Nodal pathway. After 12 days, this constant inhibition
of Smad considerably inhibited the formation of CNS Pax6
(OMIM 607108)-positive cells and increased the percentage of
cells positive for the low affinity neurotrophin receptor, p75NTR,
which is expressed in the migratory NC (Heuer et al., 1990; Wislet
et al., 2018). Within the population of p75 positive cells, authors
found cells with intermediate levels of p75, but positive for Pax6;
in contrast, the cell population that expresses high levels of p75
was positive for Ap-2α (OMIM 107580), characteristic of NCCs
(Menendez et al., 2011). Whether or not a chronic inhibition of
Smads has a similar effect in vivo remains to be tested.

The activities of genes that influence the morphogenesis of the
head are related to Wnt signaling through the expression of Wnt
antagonist proteins, the main one being Dkk1 (OMIM 605189).
Loss of expression of Dkk1 promotes an ectopic activation
of Wnt/β-catenin signaling during gastrulation. Using in vivo
assays, it was demonstrated that Dkk1 and Wnt3a (OMIM
606359) are regulated in a negative feedback loop. In agreement
with this, 51% of double heterozygous mice for Dkk1 and Wnt3a
showed reduced forebrain while 30% were normal. A small
percentage of mice had malformations of eyes and pharyngeal
arches as well as defects in the trunk. Therefore, regulation of
Wnt signaling participates in the formation of the head but also in
several mouse NC derivatives, although there are other pathways
and transcription factors involved in the morphogenesis of the
head (Lewis et al., 2008).

The canonical Wnt pathway prominently participates in the
induction, lineage specification, delamination and differentiation
of NC derivatives (Figure 3B). Differentiation into several cell
types of the mouse NC is dependent on the sequential activation
of Wnt signaling, which indicates that the decision of the cellular
differentiation is regulated by the activation state of Wnt/β-
Catenin (Hari et al., 2012). In vitro, Wnt/β-Catenin signaling
centrally participates during differentiation to NC, inducing
transcriptional factors that are expressed before factors expressed
in neural borders, such PAX3, PAX7, MSX1, and TFAP2A. These
pre-border transcriptional regulators are GBX2, SP5, ZIC3 and
ZEB2 (Leung et al., 2016). In the case of Gbx2 and its role in CN
formation, the initial characterization of Gbx2 mutants in mice
demonstrated defects, specifically the absence of the trigeminal
nerve (CN V) (Byrd and Meyers, 2005). In addition to the several
transcription factors that are important in the induction and
specification of NC, there are some proteins, such as Heat Shock
Proteins, that participate in these processes. An example of this
is the heat shock binding protein 1 (HSBP1). A study in mouse
and zebrafish showed that HSBP1 participates in both the pre-
implantation status of the blastocyst and the development of the
NC. This was demonstrated by the deletion of HSBP1, where its
absence promoted a cell arrest or degeneration before reaching
the blastocyst stage. With respect to NC, mice deficient in Hsbp1
showed an increase in the expression of inducers of NC, Snai2,
Tfap2α and FoxD3, suggesting that HSBP1 has a potential role in

the Wnt pathway (Eroglu et al., 2014). The participation of Heat
Shock Proteins in neuronal differentiation to form CN has not
been explored yet and, given the importance of Wnt signaling
for NC, represents an area of opportunity. Some of the functions
associated to molecules in NC development are summarized
in Table 2.

RELEVANT NEURAL CREST-EXPRESSED
TRANSCRIPTION FACTORS REQUIRED
FOR NEUROGENESIS AND FOR THE
FORMATION OF CRANIAL NERVES AND
GANGLIA

bHLH Family
Hand2
The basic helix-loop-helix (bHLH) DNA binding protein Hand2
(dHand, Thing-2, Hed, OMIM 602407) is expressed in a
subset of NC-derived cells where it participates in various
aspects of cell specification, lineage segregation, and cell type-
specific gene expression (Hendershot et al., 2007, 2008). Loss
of Hand2 results in embryonic lethality by E9.5. In order to
study the role of Hand2 in NC, a specific deletion of Hand2
was engineered by crossing floxed Hand2 mice with Wnt1-Cre
transgenic mice. Hand2 knock-out in NC-derived cells caused
severe effects on development in all NC-derived structures and
tissues where Hand2 is expressed. In the autonomic nervous
system, conditional interruption of Hand2 function results in a
marked and progressive loss of neurons concomitant with a loss
of Tyrosine Hydroxylase (TH) expression in mice (Hendershot
et al., 2008). There are few studies tackling the importance of
Hand2 in NC development and differentiation and none about
its importance in CN formation.

Hes Family
The Hes genes are homologs of the Drosophila hairy and
Enhancer of Split gene. The Hes family is composed of seven
members, Hes4 being absent in the mouse genome. Hes genes
encode nuclear proteins that repress transcription, either actively
or passively (Kageyama and Ohtsuka, 1999). These genes have
conserved domains that confer the transcriptional function to
all Hes factors. The bHLH domain contains the DNA binding
site and the dimerization region. Hes factors can form homo-
and heterodimers with Hes-related bHLH repressors, such as
Hey factors, Mash1 (OMIM 100790), E47 and Ids. The Orange
domain regulates the selection of the bHLH heterodimer, and
the WRPW Groucho-binding domain at the C-terminus consists
of a tetrapeptide Trp-ArgPro-Trp that represses transcription.
This sequence also acts as a polyubiquitination signal for the
degradation of Hes by the proteasome (Akazawa et al., 1992;
Sasai et al., 1992; Ohsako et al., 1994; Kobayashi and Kageyama,
2014). The Hes transcription factors are essential effectors of
Notch signaling that regulate the maintenance of progenitor cells
and the time of their differentiation into various tissues and
organs (Kageyama and Ohtsuka, 1999). Hes1 (OMIM 139505) is
a negative regulator of neural differentiation, since it represses
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TABLE 2 | Cues required for development of NCCs are NC-derived cranial nerves.

Molecule (in alphabetical
order)

Participation in neural crest development Proposed role References

BMPs Induction, migration and differentiation Cell fate decision, epithelial-to-mesenchymal transition,
delamination, apoptosis

Nie et al., 2006

β-Catenin Specification
Survival and/or differentiation

Conditional inactivation of β-catenin results in increased
apoptosis in mouse cranial NCCs and craniofacial
malformations

Brault et al., 2001

Dlx2 Survival and differentiation Involved in survival of zebrafish cranial NCCs and
differentiation of sensory ganglia

Sperber et al., 2008

Endothelin-1 and endothelin A
receptor

Induction, migration, maintenance of specification, and
target invasion

Required for early development and migration into or within
the PA 1-4, also in PA D-V patterning

Clouthier et al., 2000, 2003; Abe et al., 2007;
Bonano et al., 2008

EphA4, EphB1, and Ephrin-B2 Migration Prevent intermingling of third and second arch Xenopus
NCCs

Smith et al., 1997

Ephs and Ephrins Migration Restricts avian and murine NCCs into streams by inhibiting
migration into NCC-free zones

Adams et al., 2001; Davy et al., 2004; Mellott
and Burke, 2008

ErbB2, ErbB3, Neuregulin Migration Defects in proximal cranial sensory ganglia derived from
trigeminal otic placodes and from NCCs; defects in
sympathetic neuron migration

Lee K.F. et al., 1995; Meyer and Birchmeier,
1995; Erickson et al., 1997

ErbB4 Migration Maintains the r3-adjacent NCC-free zone Golding et al., 2000, 2004

FGF2 Proliferation and differentiation Depending on the concentration of FGF2, either
proliferation is enhanced or cartilage differentiation is
induced

Sarkar et al., 2001

FGFR1 Target invasion Provides a permissive environment for NCC migration into
branchial arch 2

Trokovic et al., 2005

Gbx2 Induction and patterning Establishes regional identity and patterning Steventon and Mayor, 2012

Hand2 Specification Neural precursor specification Hendershot et al., 2007, 2008

Hippo/Yap Specification, and migration, Interaction between Hippo/YAP and retinoic acid Hindley et al., 2016

Hox genes Specification, migration and differentiation Maintain segmental identity of cranial NCCs through
unknown mechanism

Hunt et al., 1991; Trainor and Krumlauf, 2000,
2001; Gavalas et al., 2001; Parker et al., 2018

Indian and Sonic Hedgehog Specification, migration, differentiation and Survival Reduction in Sonic hedgehog signaling leads to increased
neural tube and NCC death

Ahlgren and Bronner-Fraser, 1999; Jeong et al.,
2004; Aguero et al., 2012;
Cerrizuela et al., 2018

(Continued)
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TABLE 2 | Continued

Molecule (in alphabetical
order)

Participation in neural crest development Proposed role References

Kreisler (Mafb) Patterning, precursors cells specification Hindbrain patterning McKay et al., 1997; Manzanares et al., 1999

Krox20 (Erg2) Patterning, precursors cells specification Hindbrain patterning Schneider-Maunoury et al., 1993, 1997;
Swiatek and Gridley, 1993; Nieto et al., 1995

Msx1/Msx2 Specification, survival and proliferation Mouse mutants display impaired cranial NCC patterning,
survival and proliferation

Han et al., 2003; Tribulo et al., 2003; Tribulo
et al., 2004; Ishii et al., 2005

Neurogenin 1 Neuronal differentiation Loss of proximal cranial sensory neurons derived from
trigeminal otic placodes and from NCC

Ma et al., 1998

Neuropilin-1 and
Semaphorin-3A, -3F

Migration Avian and murine cranial NCCs express neuropilin-1 and
are repelled by semaphorin-3A

Eickholt et al., 1999; Osborne et al., 2005;
Gammill et al., 2006; Schwarz et al., 2008

Neuropilin-1a, -1b, -2a, -2b
and Semaphorin-3Fa, -3Ga

Migration Restricts zebrafish NCCs into streams by inhibiting
migration into NCC-free zones

Yu and Moens, 2005

Neuropilin-1 and VEGF Target invasion VEGF attracts Neuropilin-1 expressing NCCs into branchial
arch 2

McLennan and Kulesa, 2007;
McLennan et al., 2010

Neuropilin-2 and
Semaphorin-3F

Trigeminal ganglion formation Mice with null mutations in either molecule display
improperly formed ganglia

Gammill et al., 2006

Notch/Hes Induction, specification, migration, proliferation and
differentiation

Ectodermal cell fate decision Noisa et al., 2014; Vega-López et al., 2015

Otx2 Induction and patterning Establishes regional identity and patterning Hoch et al., 2015

Phox2b Specification, differentiation Neuronal phenotype decision Pattyn et al., 1999

PTK7 Migration Versatile co-receptor in Wnt signaling Podleschny et al., 2015

Retinoic Acid Induction, migration Mediates the segmental migration of cranial NCCs Lee Y.M. et al., 1995; Menegola et al., 2004;
Dupé and Pellerin, 2009; Simkin et al., 2013A-P patterning

Sox Induction, migration and differentiation -Sox9 and Sox10: induction and NC development

-Sox22 is expressed in CNV to CNX and might play a role
during the human NC differentiation

Hong and Saint-Jeannet, 2005; Chew and
Gallo, 2009
Jay et al., 1997

Zic2 Induction Ectodermal cell fate decision Elms et al., 2003

Abbreviations: A-P, antero-posterior; CN, Cranial Nerve; D-V, dorso-ventral; NCC, neural crest cell; PA, pharyngeal (branchial) arch; r, rhombomere.
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the expression of pro-neural genes such as Mash1, Neurogenin-
2 (OMIM 606624) and Math. Mice deficient for Hes1 show a
severe neural hypoplasia due to accelerated neural differentiation
and the consequent depletion of neural precursor cells (Ishibashi
et al., 1995). In agreement with the above, Hatakeyama and
co-workers demonstrated that the absence of Hes1 and Hes5
caused severe alterations in the size, shape and cytoarchitecture
of the mouse CNS. They also found that in Hes1;Hes5 double-
mutant mice, the cranial and spinal nerve systems were also
severely disorganized, pointing to dysregulation of these NC
derivatives (Hatakeyama et al., 2006). These results indicate that
Hes1 and Hes5 play an important role in the formation of both
CN and spinal nerves.

Id Proteins
Id proteins are inhibitors of DNA binding and cell differentiation;
four members of this family have been described, Id1-
Id4. They are negative regulators of bHLH transcriptional
factors that are involved in various processes such as
neurogenesis, hematopoiesis, myeloid differentiation, and
bone morphogenesis, among others. It has been reported that
gene expression of Id is present in undifferentiated cells, highly
proliferating cells, embryonic cells and cancer cells (Roschger
and Cabrele, 2017). One of the Id proteins, Id2 (OMIM 600386),
directs the ectodermal precursors to NC commitment and
neuronal differentiation. It is expressed in the trunk and in
cranial folds, and therefore also in cranial NCCs. The ectopic
expression of Id2 in chick promoted a switch of ectodermal
cells to NC fate. Overexpression of Id2 increases growth and
causes premature neurogenesis in the dorsal region of the
NT (Martinsen and Bronner-Fraser, 1998). Conversely, loss
of Id2 in mice caused a decrease in newborn neurons while
increasing the number of astrocytes (Havrda et al., 2008).
It was recently shown that Id2a expression decreased in the
forebrain, midbrain and hindbrain as a consequence of blocking
Mecp2 expression with a morpholino oligonucleotide. This
was consistent with the activation of Notch signaling in such
morphants. Mechanistically, in Mecp2 morphants, her2 (the
zebrafish ortholog of mammalian Hes5), was upregulated in an
Id1-dependent manner (Gao et al., 2015).

Neurogenins
In avian and mammalian embryos, the proneural transcription
factors Ngn1 and Ngn2 are expressed in NCCs during migration
previous to their neuronal differentiation into sensory neurons.
In mouse embryos, the functional inactivation of both Ngn genes
led to a total absence of neurons of the DRG (Ma et al., 1999;
Perez et al., 1999). In zebrafish, blocking with a morpholino for
Ngn1 leads to a complete loss of neurons in the cranial ganglia
and DRG neurons (Andermann et al., 2002; Cornell and Eisen,
2002). Recently, McGraw et al. (2008) demonstrated in zebrafish
that, in the absence of Ngn1, the sensory neuron-restricted lineage
of NC gives rise only to glial cells.

Homeodomain Family
Hox Transcription Factors and Their Regulators
Hox genes play a central role in NC patterning, particularly
in the cranial region (Figure 3C). These genes are essential

for specifying segmental identity in the developing brain in
several vertebrate species. The mechanism responsible for
Hox genes expression at higher relative levels in specific
rhombomeres is independent of the process that establishes
the axial expression patterns found in the neural tube.
Hox genes are organized into four distinct clusters (Hoxa-
Hoxd) located on different chromosomes in higher vertebrates
(McGinnis and Krumlauf, 1992).

It has been long proposed that the Hox “collinear expression”
is the result of a unidirectional chromatin opening from 3′
to 5′ during development (Lewis, 1978; Duboule and Dollé,
1989; Graham et al., 1989). As a result of collinearity, Hox
genes expressed in the hindbrain are from paralog groups 1–
4. Members from groups 5 to 13 have anterior boundaries of
expression which map to the spinal cord (Nolte and Krumlauf,
2007). Hox paralog group 1 genes have been suggested to
influence early cranial NC development through NCC precursors
by interacting with factors in the neural plate border or NC
specification modules, although direct gene interactions remain
to be determined. The expression of Hox paralog groups 2–4
genes in mouse cranial NCCs is modified by Hox auto- or cross-
regulation in addition to other inputs from NC transcription
factors such as AP-2 in the case of Hoxa2 (Parker et al., 2018).

Hoxa1 (OMIM 142955) mouse null mutants die at birth
from anoxia and exhibit marked reductions in the sizes of r4
and r5, hypoplasia of the inner ear and specifically in CNIII.
The embryonic phenotype is characterized by the absence of
facial nerve and abducens motor nerve (Lufkin et al., 1991;
Chisaka et al., 1992). In agreement, a homozygous truncating
mutation of HOXA1 in humans causes severe congenital
cardiovascular malformation, craniofacial and inner-ear defects,
as well as brainstem abnormalities (Tischfield et al., 2005;
Bosley et al., 2008).

Hoxb1 (OMIM 142968) loss-of-function mouse mutants
exhibit alterations in the molecular markers associated with
r4 identity, although no overt changes in the anatomy of
the developing hindbrain are present (Goddard et al., 1996;
Studer et al., 1996). These and previous results demonstrate that
Hoxb1 has a normal role in regulating rhombomere identity,
and also participates in controlling migratory properties of
motor neurons in the hindbrain. In Hoxb1 mutant animals,
the facial branchiomotor neurons (CNVII) and contralateral
vestibular acoustic efferent (CNVIII), which are specific to
r4, are incorrectly specified (Goddard et al., 1996; Studer
et al., 1996). Hoxb1 deficiency in mouse also results in facial
paralysis due to developmental defects in CNVII, originating
from r4 (Figure 3C). In mouse lacking both Hoxa1 and Hoxb1
expression, the migration and development of NCCs derived
from r4 fail, causing the loss of all second arch derivatives (Rossel
and Capecchi, 1999; Arenkiel et al., 2004). These Hoxa1/Hoxb1
double mutants exhibit a wide range of phenotypes, which are
not present in each of individual mutants, demonstrating that
specification of r4 cell precursors and patterning of the CN VII-
XI strongly requires cooperation between these 2 genes (Gavalas
et al., 1998; Studer et al., 1998).

Hoxa2 (OMIM 604685) is the only member of the Hox
family expressed in r2; this fact explains why Hoxa2 null
mutations in mouse result in homeotic changes transforming
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second arch elements of NC origin into first arch derivatives,
which was correlated with perinatal lethality. Patterning of the
hindbrain rostral region also depends on Hoxa2 activity for
the establishment of r2 identity and influencing the migration
of trigeminal motor axons (CN V) originated from r2/3. In
mutant embryos, this CN V, normally derived from r2/3, migrates
caudally to exit the hindbrain from r4, the normal site for facial
nerve (CN VII), rather than from r2. Hoxa2 is required for the
maintenance of EphA4 (OMIM 602188) as its expression results
selectively abolished in Hoxa2 mutants (Rijli et al., 1993). The loss
of Hoxb2 (OMIM 142967) in mouse embryos results in impaired
development of the facial nerve, CN VII, affecting its somatic
motor component (Bailey et al., 1997).

Hoxa3 (OMIM 142954) null mutant mice show mesenchymal
NCCs defects in the formation of CN IX and also fusions
between CN IX and X. In addition, Hoxa3−/− mouse are
athymic, aparathyroid, and have malformations in cartilage of the
throat (Chisaka and Capecchi, 1991; Manley and Capecchi, 1995,
1997). Hoxb3−/− (OMIM 142966) embryos revealed similar
cranial ganglia defects, but at a lower penetrance than in the
Hoxa3 mutants (Manley and Capecchi, 1997). Hoxb3/Hoxd3
(OMIM 142980) double mutants have a clear increase in the
presence of aberrant ganglionic phenotypes in CN IX compared
to those reported in the Hoxb3 single mutant, even though
the Hoxd3−/− does not show defects in these structures
(Manley and Capecchi, 1998).

In conclusion, Hox patterning genes are crucial for NC
development by interacting with signaling pathways that induce
NC, but also to regulate expression of several genes involved in
these essential cell and developmental processes. Some studies
have shown that Polycomb group proteins are decisive in
epigenetic silencing Hox genes by promoting changes in the
chromatin structure. Dynamic patterns of histone modifications
and 3D chromatin organization are also relevant regulators
of Hox gene expression and function (Boyer et al., 2006;
Bracken et al., 2006; Lee et al., 2006; Noordermeer et al., 2011).
The transcription factors Krox20 (OMIM 129010) and Kreisler
(OMIM 608968), as well as the vitamin A derivative RA are the
three main upstream regulators of Hox gene expression during
hindbrain development.

The transcription factor Krox20 binds to specific DNA
sequences located at 5′ flanking region of Hoxa2, Hoxb2,
Hoxb3, and EphA4 genes, to directly control their expression
(Lemaire et al., 1988; Nardelli et al., 1991). Targeted mutation
of Krox20 in mouse embryos causes perinatal death and fusions
of the trigeminal ganglia with facial and vestibular ganglia
as a consequence of alterations on hindbrain patterning and
morphogenesis. Krox20 is expressed in r3 and r5 at E8.0 in mouse
embryos (Wilkinson et al., 1989; Schneider-Maunoury et al.,
1993, 1997; Swiatek and Gridley, 1993; Nieto et al., 1995).

Kreisler expression, first detected at E8.5 in the prospective r5
region and later located in r5 and r6, is sharply downregulated
afterward in these rhombomeres (Cordes and Barsh, 1994). Gene
expression analyses in Kreisler mutant embryos and regulatory
regions strongly pointed that this transcription factor could
directly control the expression of genes required for inner ear
and hindbrain development, in particular Hoxa3 and Hoxb3,

which increase its expression in r5 and r6 (McKay et al., 1997;
Manzanares et al., 1999). The primary defect in Kreisler mutant
mouse embryos is an alteration in segmentation at the otic
region of the hindbrain, resulting in defective rhombomeres since
the borders that normally separate r4, r5, and r6 disappear.
Consequently, in r6 important alterations are detected: the
normal expression domains of FGF3 and CRABP1 (OMIM
180230) are lost, and Hoxa3 is not upregulated (Frohman et al.,
1993). Although Krox20 expression in the prospective r3 is
conserved, it is absent in r5. Similarly, the expression of Hoxb2,
Hoxb3, and Hoxb4 in r5 are completely abolished. The expression
pattern analysis of EphA7 and EphrinB2 indicates that only a
single region that would correspond to r5 is absent. Thus, loss-
of-function of Kreisler causes a segmentation defect which results
in the precise loss of r5 patterning; furthermore, although the r6
territory forms, it fails to mature (Manzanares et al., 1999).

RA is a morphogen derived from Vitamin A (retinol) that
reaches the cell nucleus after diffusing through cell membranes
to act on histone acetylation and mediates transcriptional
activation of target genes. RA is another important regulator of
NC development. As mentioned earlier, Hox gene expression
patterns specify AP identity in the hindbrain and this is
transferred to NC migration (Briscoe and Wilkinson, 2004;
Simkin et al., 2013). The “collinear pattern” of Hox gene
expression in the hindbrain is partially dependent on RA
control. Cellular retinoid-binding proteins (CRBPs) participate
in controlling RA concentration locally, and hence facilitate
its function. CRBPs might sequester RA and thus limit its
availability to bind nuclear RA receptors (RARs and RXRs)
that recognize a particular element on target genes, the RARE
sequence (Mangelsdorf et al., 1992; Mangelsdorf and Evans,
1995). Members of the Hox family that harbor RAREs include
Hoxa1, Hoxb1, Hoxa4 (OMIM 142953), Hoxb4 (OMIM 142965),
Hoxd4 (OMIM 142981), and Hoxb5 (OMIM 142960) (Kesseland
and Gruss, 1991; Langston and Gudas, 1992; Marshall et al., 1992,
1994; Studer et al., 1994; Dupé et al., 1997; Gould et al., 1998;
Packer et al., 1998; Pera et al., 1999; Power et al., 1999).

Vitamin A-deficient pregnant rats were produced by feeding
dams with low levels of all-trans RA. Such embryos presented
loss of CN IX, X, XI, and XII and the associated sensory ganglia
IX and X, as well as perturbations in hindbrain segmentation
and otic vesicle development (White et al., 2000). These
embryos have Hoxb1 protein in the NT, but caudal to the
r3/r4 border at a time when its expression should be present
only in r4, suggesting that RA is essential for neurogenesis,
patterning, and segmentation in the posterior hindbrain. Neuron
navigator 2 (Nav2) was first identified as an RA-responsive
gene required for RA-mediated neurite outgrowth or survival of
CN IX and X (McNeill et al., 2010). Nav2−/− mouse embryos
showed an overall reduction in neurofilament density in the
region of CN V to XII.

It was recently found that YAP (a Hippo signaling
transcriptional co-activator, see above) regulates the expression
of Hoxa1 and Hoxc13 in mouse oral and dental epithelial
tissues as well as in embryonic and adult epidermal tissue
(human keratinocytes) (Liu et al., 2015). Since Yap transcript
was detected in the rhombencephalon and dorsal NT and also
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in NCCs that migrate from the dorsal region of the NT to the
pharyngeal arches, Yap could regulate the activity of the Hoxa1
gene expression in the hindbrain.

Msx Family
The muscle segment-related homeobox (Msx) genes belong to
the homeodomain family. These genes code for transcriptional
factors with repressor activity. Proteins with homeodomains
have various functions during embryonic development, from
the formation of expression patterns to more specific functions
such as differentiation toward a specific cell type (Catron et al.,
1995). Msx genes are expressed in a range of vertebrate-specific
tissues including NC, cranial sensory placodes, bones, and teeth
(Davidson, 1995).

In vertebrates, there are three members of this family, Msx1-3;
Msx1, and Msx2 being the best characterized ones with respect
to their expression pattern and biochemical properties (Bendall
and Abate-Shen, 2000). Msx1 and Msx2 are expressed in various
regions of the mouse embryo such as the NT, in the primordial
limbs and in derivatives of the cranial NC (Catron et al., 1996).
The expression of Msx1 and Msx2 marks the area from which
the cranial NC will migrate. Msx genes participate in the early
specification of NCCs and in the control of apoptotic process
under the control of BMP signaling (Tribulo et al., 2003, Tribulo
et al., 2004; Ishii et al., 2005).

Pax Family
Pax genes, which encode transcription factors that contain
a highly conserved DNA binding domain called PD, can be
considered as the broad regulators of gene expression since they
can repress pluripotency genes such as Oct4, Nanog and Myc, or
induce the expression of genes involved in the differentiation of
NC such as Snail1 and FoxD3. There are nine Pax genes (Pax1-
Pax9), which have been characterized in mammals. There is a
great diversity of studies on Pax genes in the early specification of
cell fate and in the morphogenesis of various tissues and organs.
The important participation of Pax genes in NC induction is
discussed next. Pax3 participates in the early ontogenesis of
the NT and NC; it is expressed in pre-migratory NCCs. The
loss of Pax3 generates severe defects in embryonic development,
leading to embryonic death (Goulding et al., 1991). A study
in mouse evaluated the participation of the Wnt signaling
pathway in the regulation of Pax3. It was demonstrated that
the Wnt pathway induces expression of Pax3 indirectly, using
Cdx1 as an intermediary that binds the PD domain of Pax3
(Sanchez-Ferras et al., 2012).

On the other hand, transcriptional enhancers are primary
determinants of the specific gene expression of a cell type.
Recently, an NC enhancer-2 (NCE2) in the 5′ region of Pax3
was identified as a cis regulatory element that is dependent on
Cdx as a cofactor. Pax3 and Zic2 are expressed in the dorsal
region of the NT when it closes. Therefore, the inductive Cdx-
Zic2 interaction is integrated by NCE2, allowing the specific
binding of the neural transcription factor Sox2 (Buecker and
Wysocka, 2012; Sanchez-Ferras et al., 2014). This shows that not
only NCE2, but also the transcription factor Zic 2 participate in
the regulation of Pax3. Such data suggests that Zic2 is involved

in NC induction as an activator of Pax3-NCE2 and as a Cdx
co-factor. Mouse Pax3 mutants (Sp and Spd alleles) additionally
exhibit malformations of ganglia of the PNS. The importance
of Pax3 in the development of NC-derived structures has been
shown, especially with respect to cranial ganglia and nerves. In
the homozygous state, Sp and Spd alleles impair the development
of the trigeminal (CN V), superior (CN IX), and jugular (CN X)
ganglia, suggesting that the function of Pax3 is crucial for NC
migration and proliferation, as well as for its differentiation into
neurons capable of sending out axons (Tremblay et al., 1995). In
Xenopus and zebrafish embryos, Pax3 has been proposed as a key
player in the gene regulatory network as a neural plate border
specifier controlling early specification of NCC (Hong and Saint-
Jeannet, 2007; Minchin and Hughes, 2008; Milet et al., 2013).

Another crucial Pax gene in NC formation is Pax7, which has
been described as necessary for NC development in birds. Pax7
is required for the expression of NC markers such as Sox9, Snai2,
HNK1 and Sox10 (Basch and Bronner-Fraser, 2006). In human
embryos, Pax7 is expressed in the dorsal NT and in cells of the
migratory NC at early stages. In mouse, Pax7 is expressed in the
rostral region, which includes a subpopulation of presumptive
NC precursors. Pax7 contributes more to the formation of cranial
lineages than to the cardiac or trunk regions. The expression
of Pax7 is extensive, since it is detected in mesencephalon,
rhombencephalon, dorsal NT, fronto-nasal region and NCCs that
migrate from the dorsal region of the NT to the pharyngeal
arches (Betters et al., 2010; Murdoch et al., 2012). A mutation
of Pax7 (isoform 3) was recently found in patients, causing
a phenotype of neurodevelopmental delay during development
and promoting microcephaly, irritability and self-mutilation
among others symptoms (Proskorovski-Ohayon et al., 2017).
Therefore, Pax7 is a crucial gene in the induction of NC and
in its migration.

Phox2b
Paired-like Homeobox 2b (Phox2b, OMIM 603851) is a
transcription factor known to play a key role in the development
of the autonomic nervous system. Phox2b is expressed in
differentiating neurons of the mouse central and PNS as well as
in motor nuclei of the hindbrain. Phox2a (OMIM 602753) and
Phox2b are co-expressed at multiple sites, suggesting a broader
role for Phox2 genes in the specification of autonomic neurons
and cranial motor nuclei. The co-expression of these Phox
proteins at various sites suggested positive crosstalk (Pattyn et al.,
1997). Mash1 has been demonstrated to control the expression of
Phox2a (but not of Phox2b) in autonomic ganglionic precursors
and NC-stem cells (Lo et al., 1998), while Phox2b is required for
the maintenance but not for the induction of Mash1 expression
(Pattyn et al., 1999). Epistatic analyses have shown that, in
cranial ganglia development, Phox2b is a downstream effector
of Phox2a (Pattyn et al., 1999). The mutant Phox2bLacZ/LacZ

mouse showed atrophic cranial ganglia formation that correlated
with increased apoptotic cell death and decreased Ret and DBH
expression in ganglionic anlages (Pattyn et al., 1999). The effect
of the Phox2b null mutation on cranial ganglia cells was a
phenotypical change on their molecular transcriptional signature
to Tlx3+/Islet+/Phox2b−/Phox2a−/Brn3a+ profile, which means
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that the sensory neurons present in the cranial nerves VII,
IX, and X change to a somatic sensory neuron-like, thus
highlighting the role of Phox2b as a molecular switch that
commands the somatic-to-visceral phenotype in the cranial
sensory genetic cascade (D’Autréaux et al., 2011). Many
cranial nerve-associated NCCs co-expressed the pan-autonomic
determinant Phox2b and markers of Schwann cell precursors.
Such cranial NCC precursors are the source of parasympathetic
neurons during normal development (Espinosa-Medina et al.,
2014). In humans, PHOX2B over-expression has been linked
to the formation of tumors arising from the sympathetic
nervous system such as neuroblastomas. Heterozygous PHOX2B
mutations cause Congenital Central Hypoventilation Syndrome,
a life-threatening neurocristopathy characterized by the defective
autonomic control of breathing and involving altered CO2/H+
chemosensivity (Cardani et al., 2018; Vega-Lopez et al., 2018).

Otx Genes
Otx1 and Otx2 genes are the mouse cognates of the Drosophila
head gap genes. Orthologs have also been identified in human,
chick, Xenopus and zebrafish. Otx2 may act as a key head
organizer during the primitive streak stage. At subsequent
neurula to pharyngula stages, those genes participate in the
patterning of the forebrain and midbrain. The haplo-insufficiency
mutation of Otx2 in the mouse affects the mandible and
pre-mandibular skull elements, as well as the ophthalmic
branch of the trigeminal nerve, and the differentiation of
mesencephalic trigeminal neurons, all of which correspond to
derivatives originated from mesencephalic NC (Puelles and
Rubenstein, 1993; Matsuo et al., 1995). In chick and Xenopus
embryos, Otx2 establishes cross-regulatory interactions with
Gbx2 during the early specification of placodal precursors; by
mutual repression, both genes pattern the territory, segregating
trigeminal progenitors (Steventon et al., 2012). Additionally,
Gbx2 is expressed early in the preplacodal region of Xenopus
embryos and is required for NCCs formation as an effector of
Wnt signaling (Li et al., 2009).

Sox Family
The proteins encoded by the Sox genes belong to the superfamily
of the High Mobility Group transcriptional factors that bind
to the DNA sequence (A/T)(A/T)CAA(A/T)G. They have a
DNA binding domain of 80 amino acids. Based on phylogenetic
analyses of their domains, Sox genes are divided into subgroups
A-H in mouse (Bowles et al., 2000). Some are transcriptional
activators, others are repressors, and a third group lacks the
transactivation domain.

The subgroup of SoxE genes (Sox8, Sox9 and Sox10) has
a prominent participation in NC differentiation. In mouse,
Sox9 and Sox10 are among the first expressed genes in the
NC progenitors overlapping with FoxD3 (Hong and Saint-
Jeannet, 2005). A study showed that the defects in the
expression of this subgroup affects many lineages of the NC,
so these genes are important regulators in the formation of
this multipotent population (Kelsh, 2006). However, it is not
known if SoxE genes are also involved in NC induction in
the mouse. Knock-out mice for Sox9 show expression of Snai1
in the NC; nevertheless, these cells undergo apoptosis either

before or immediately after migrating, which suggests that Sox9
participates in the epithelial-mesenchymal transition, before
delamination (Cheung et al., 2005).

Sox10 is a protein that participates in maintaining
multipotency in NCCs; it also contributes to proliferation
and inhibits differentiation, so this transcriptional factor is
expressed in the pre-migratory progenitor cells of the NC and
its expression decreases at the beginning of the differentiation
process (Kim et al., 2003). Several studies have shown that
Sox10 controls the fate of the NC by activating critical genes for
the differentiation of different cell types such as melanocytes,
Schwann cells, autonomic and sensory neurons in different
species (Mitfa, ErbB3, Phox2b, Mash1, and Ngn1, respectively)
(Britsch et al., 2001; Elworthy, 2003; Kim et al., 2003; Elworthy
et al., 2005; Kelsh, 2006). Sox10 is regulated by post-translational
modifications. For example, changes in the state of SUMOylation
affect its function, because it regulates interactions with different
proteins and promotes the activation of different genes. Sox10
expression can be regulated by multiple enhancer elements such
as U3, known as MCS4. The stimulation of the U3 enhancer
activity promoted Sox10 transcription, which had a synergistic
activity with other transcriptional factors involved in NC
development, including Pax3, FoxD3, AP-2α, Krox20, and Sox2
(Taylor and LaBonne, 2005). Sox10 can be self-regulated as well
as regulated by synergistic interactions during NC development
(Wahlbuhl et al., 2012).

Zic Family
Zic genes are transcription factors with zinc fingers that
contribute to different processes during embryonic development
(Aruga et al., 1998). It has been proposed that Zic1-3
participate in lateral segmentation, NC induction and inhibition
of neurogenesis (Nagai et al., 1997; Nakata et al., 1997).
This gene family consists of five members, Zic1-Zic5 in
the mouse. Zic genes are co-expressed in some cells during
embryonic development, which gives the opportunity for
heterogeneous protein-protein interactions and/or functional
redundancy among family members. Zic2 (OMIM 603073) is
expressed in the cells of the inner mass of the blastocyst
and is required for the synchronization of neurulation. Zic2
mutants showed delayed production and decreased numbers
of NCCs. Zic2 is also necessary for the formation of r3
and r5 and participates in the normal pattern of the mouse
rhombencephalon (Elms et al., 2003).

Mouse homozygous mutants of Zic1 exhibit ataxia during
development and die within the first month after birth. These
mutants also show a hypoblastic cerebellum and absence of the
anterior lobe (Elms et al., 2003). In Zic mutants, the expression
of Msx1 in the region of the dorsal NT was not altered; however,
its expression was lost in this region when the NT was closing,
suggesting that signals from the floor plate are required for the
maintenance of dorsal expression (Sanchez-Ferras et al., 2014).
Zic5 (OMIM 617896) is expressed in the dorsal part of the NT and
its mutation in humans produces holoprosencephalia, a severe
brain malformation. A decrease in Zic5 promotes insufficient NT
closure in the rostral-most part, which was also observed with
Zic2 (Inoue et al., 2004). Zic2 mutant embryos showed affected
CN V, VII and VII (Elms et al., 2003).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 August 2020 | Volume 8 | Article 635

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00635 August 7, 2020 Time: 10:45 # 18

Méndez-Maldonado et al. Neural Crest-Derived Cranial Nerves

Deficient Zic5 mice show malformations of the facial bones
derived from the NC, mainly the mandible, due to decreased
generation of NCCs. During embryonic stages, there were also
delays in the development of the first branchial arch and
extension of the trigeminal and facial nerves. On the other hand,
deletion of Zic2 promotes congenital malformation of the brain
and digits in humans (Inoue et al., 2004). Cranial NCCs are
also known to contribute to the development of the PNS. In
both mutants, a reduction in the axonal projections from the
trigeminal and facial ganglions was reported. These findings
suggest that cephalic NC derivatives are selectively affected in
these mutants (Inoue et al., 2004).

CONCLUSION

Some of the most relevant pathways and genes involved in
CN formation are represented in Figure 3 and Table 2. Gene
regulation during embryonic development as well as during
induction, specification, delamination, migration, survival and
differentiation of the NC is a very complex process that leads
to a strict expression of genetic information. A remarkable
conservation of many genes, signals and mechanisms between
different vertebrate organisms, but also its repeated use at
different places and times in NC development and cranial
nerve/ganglia formation, contributes to the complexity of these
processes. Adequate transduction of the signals is equally
important for the development and differentiation of each of the
cell types derived from the NC. The integration of knowledge
from the various studies on such signaling pathways and the
different types of proteins that participate in the sequential
processes as well as their post-translational modifications will
lead to a better understanding of neurogenesis and cranial nerve
formation. The microenvironment in which these cells develop
is of great importance in order to understand the mechanisms
involved in proper NC induction and CN development.
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