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Abstract

In this paper, we present two new approximants for the Error Function. The starting point for

obtaining them, is to use two alternative integral representations involving improper integrals.

Both integrands include the )exp( 2x function. Therefore, by replacing )exp( 2x by its

truncated Taylor's expansion, we obtain a rational approximant for )exp( 2x which

converges, for each x, to that function. Since these Taylor polynomials have simple roots, the

improper integrals can be evaluated with the residues technique of integration in the complex

plane, by using an appropriate contour of integration. By just using the roots of the

polynomials, we get two new analytical expressions for the Error Function in terms of

elementary functions. We show the behaviour of their corresponding errors by giving

practical bounds for the absolute and relative errors, respectively.
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1. Introduction

The Error function [1] page 722
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has the following alternative integral representation [2]
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The Complimentary Error function )(1)( xerfxerfc  , also has the following alternative

integral representation [2]
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With the aim of carrying out their evaluations, we observe that the representations (2) and (3)

offer the possibility of replacing the function )exp( 2x by a rational approximant [4, 5]; for

evaluations in the literature see [3].

Here, we propose the use of the Taylor Polynomial of )exp( 2x to get the following rational

approximating function
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for )exp( 2u . Now, by replacing )exp( 2u by ),( NuA in equations (2) and (3), we obtain

the following approximants for the Error function and the Complimentary Error function,

respectively
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Since for each N, A(x, N) has simple poles, which are, in fact, the roots of the corresponding

approximating Taylor polynomials of )exp( 2x , the structure of poles of the integrand in

equations (5) and (6) is completely known. This fact allows for the analytical resolution of

these integrations by using well-known integration techniques in the complex plane.

In the following sections, we give the details of the scheme of approximations proposed, i.e.

properties of A(x,N), properties of the relative errors involved together with some graphical

examples, the corresponding practical bounds of the relative and absolute errors respectively.

We end with some concluding remarks.

2. Properties of the A(x,N) function

A(x, N) depends on a polynomial whose terms are all even in the variable “x” with positive

coefficients. We point out that this polynomial has only conjugated complex roots with

multiplicity one. Moreover, given a complex root, its opposite complex number is also a root

of the polynomial. This implies that A(x, N) has only single poles.

Graphically, the Figure 1 shows the roots in the complex plane for some representative

examples.

Figure 1

The curves correspond to the roots of the Taylor polynomial of degree 2N, for the A(x, N)

approximant, calculated using the MATHEMATICA software.
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We also point out that, for any u>0, A(u, N) converges to )exp( 2u as N growth towards

infinite, as follows from the next inequalities (see [5])

),()1,()exp( 2 NuANuAu  (7)

for u>0.

3. Properties of the relative error and, some graphical results.

Let






 x

xx

udu

uduNuAdu
Nxre

0

2

0

2

0

)exp(

)exp(),(
),( .
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Proposition 1: re(x,N) is a monotonous non decreasing function of x, bounded by
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Proof. The corresponding derivative with respect to x is
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We claim that ),( Nxre is a monotone non-decreasing function of x. To prove this, we will

show that, for each N,
x
Nxer


 ),( is a non-negative function. In fact, this claim is equivalent

to prove that the following
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is, for each x, greater or equal to one. But this follows easily by noting that, for each x, the

denominator ),( Nxh in (12) is always an average of )(.,Nh , with respect to the

nonnegative weight function

 


x

udu

u

0

2

2

)exp(

)exp( on the interval  x,0 , and due the fact that that

)(.,Nh is a non-decreasing function on that interval.

Consequently, and because re(x,N) is a continuous function of x, its limit value at infinite

provides an upper bound for it, namely,
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Some results concerning to the relative errors of the approximants for )(xerf are appreciated

in the Figures 2, 3 and 4, as the parameter N is increased.
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Figure 2.

The relative errors for erf(x): er(x,N) corresponds to equation (8), er5(x,N) corresponds to

equations (2) and (5) and, er6(x,N) corresponds to equation (3) and (6).
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Figure 3.

The relative errors for erf(x): er(x,N) corresponds to equation (8), er5(x,N) corresponds to

equations (2) and (5) and, er6(x,N) corresponds to equation (3) and (6).
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Figure 4.

The relative errors for erf(x): er(x,N) corresponds to equation (8), er5(x,N) corresponds to

equations (2) and (5) and, er6(x,N) corresponds to equation (3) and (6).

From Figures 2, 3 and 4, we observe the following property:

),0(5),( NerNer  i.e. �uli ���䩈� �uh� ���� �th �u䩈� ����corresponding to N=5,10 and

20,respectively. According to equation (14), we get a practical bound theoretically sounded.

Also, we have that er6(0,N) = luhh ����� �u�� ���h �th 䩈u� ���l corresponding to N = 5,

10 and 20, respectively; defining a better bound for this case.

4. Another upper bound for the error associated to erf(x)

The alternative expression (2) for the Error function allows us to perform another error study.

Let us call by a.e.(x,N) the absolute error ).(),()2(2 xerfNuAuxduxSinc 
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The equation (15) shows a bound of the absolute error, which is a decreasing function of N.

5. An upper bound of the absolute error of erfca(x,N)

Now, let us call by a.e.c(x,N) the absolute error
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The equation (16) shows a bound of the absolute error, which is a decreasing function of N.

6. An analytical expression for erfa(x,N)
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Using the contour shown in Figure 5 to the integral in equation (5), we get the following

expression for approximating the error function
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Here 0u denotes the simple poles that the integrand has in the upper half of the complex plane.

Figure 5.

This contour encloses all the simple poles that the integrand has in the upper half of the

complex plane, see Figure 1, and incorporates the simple pole at z = 0 as usual, when

 Rand0 , respectively. See reference [4].

7. Concluding remarks

The decreasing trend of the relative errors er5(x,N) and er6(x,N) shown in Figures (2), (3)

and (4), together with the existence of bounds, as N grows, are important properties of the

approximants proposed in this work. In all cases, the bound given in equation (14) acts as a

kind of reference value. However, the er6(x,N) seems to be superior to er5(x,N) because it

has a better behaviour near x=0 and it does not oscillate.

Relative errors of about 710  and better are already obtained with N = 20, as it is shown at the

end of section 4.

Notably, the approximants given by equations (5) and (6) give the proper behaviour for large

values of x.
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A direct perspective of the present work is the possibility of getting an analytical

representation for the Boys function )(xFm [6], which is useful in Molecular Physics. A

particular application [7, 8] involves only the simplest one, i.e. 5.0

5.05.0

0 2
)()(

x
xerfxF 

 .
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