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Abstract  

 

The objective of this work was to estimate the potential geographical distribution of HLB 

in South America, under historical climate records and future climate change scenarios, based 

on climatic conditions at the sites where HLB has been established in South America. Different 

spatial modeling algorithms were used. Climate change estimates of the Fifth IPCC 

Assessment Report, by the 2050s and 2070s, were considered. Results of assessed models 
differed significantly in the estimation of areas with greater climatic risk for the establishment 

of HLB in South America. According to the estimates of the fifth IPCC report, the effects of 

climate change would determine that in future, high-risk areas for HLB establishment would 

be displaced towards the southwest of the areas considered riskier nowadays. Even individual 

models do not present a clear pattern for HLB establishment and distribution, the integration 

of the results generated by different algorithms in a consensus model, can provide additional 

information for phytosanitary decision making. 

Key words: Climate Change, HLB, invasive species, Phytosanitary risk, distribution model. 
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1. Introduction  
 

Huanglongbing or HLB, is considered the most serious disease of the citruses at a global 

level, due to the losses it causes in production and the fruit quality, and a marked reduction of 

the infected plants longevity (Hall et al. 2008). It is a vascular disease, limited to the phloem, 

caused by the bacterium Candidatus Liberibacter ssp.; Trioza erytreae and Diaphorina citri 

(Hemiptera: Psyllidae) being the vectors of greater economic importance at a global level (Lee 
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et al. 2015). Not only it is important because effective methods for its control are unknown 

and it has caused serious economic damage to the countries where it was detected, but also 

due to its rapid spread in many of the citrus growing areas worldwide, especially in the 

American continent, causing big losses in short time (Gottwald, 2010). It was estimated that 

worldwide the disease caused the loss of more than 60 million trees (10 million in Brazil 

alone), causing total crop losses in countries like South Africa (Santivañez et al., 2013). 

For this reason, the Plant Health Committee of the Southern Cone (COSAVE) has 

elaborated a Regional Containment Plan of HLB, in order to avoid the spread of the pest 

towards free disease areas in the region, by strengthening of a set of national phytosanitary 

actions, locally coordinated. The elaboration of pest risk analysis protocols and specific 

surveillance is a pre-border prevention practice that is commonly adopted by National 
Organization of Phytosanitary Protection (ONPF). It is in the frame of these activities of 

official phytosanitary prevention, where the Species Potential Distribution Models (SDMs) 

could provide an efficient methodological support for the quantification of possible 

environmental risk scenarios for planting and pest under analysis, in historical scenarios as 

well as in climate change (Mateo et al., 2011). However, few spatially explicit models have 

been developed until now to assess risk for this pest in South America at orchard level 

(Gasparoto et al., 2018), whereas there are some available approximations to predict the 

potential establishment of HLB in North America (Gutierrez & Ponti, 2013; Torres-Pacheco 

et al., 2013; Narouei-Khandan et al., 2016). 

Climatic factors determine the phenology of citruses, population dynamics of HLB, and 

their vectors (Shimwela et al., 2019). However, there is a close correlation between the 
increase of infection rates of citruses with HLB and the presence of big populations of their 

vectors (Lee et al., 2015). Population dynamics of D. citri is influenced by the sprouts 

availability, the temperature conditions, and the humidity of the environment (Hall et al., 

2013). Low temperatures in winter cause a high mortality of the psyllid populations (Hall et 

al., 2011). The populations’ survival rises when the environment relative humidity increases 

but the intense rainfall can mechanically sweep nymphs increasing the population mortality 

(Patt & Sétamou, 2010; Shimwela et al., 2019). 

Despite the uncertainty about possible impacts of the climate change on the behavior of the 

agricultural pests, different authors estimate that these would be able to respond better to 

climatic changes than the agricultural plantings and the native species communities. 

Consequently, climatic change could potentially create suitable conditions for the occurrence 

of a greater number of biological invasions, as well as an increase in the severity of the 
damages caused by the agricultural pests and/or forest (Bellard et al., 2012; Pautasso et al., 

2012; Shimwela et al., 2019). 

The objective of this study is to estimate the potential geographical distribution of HLB in 

South America, based on the comparison between the climatic conditions of disease free areas 

and the historical climate records of the main areas where HLB has established in Brazil. It is 

also expected to evaluate the influence that climate change could produce as future potential 

geographical distribution of this disease.  

 

2. Materials and Methods 

 

Suitable environment for potential establishment of HLB in free disease areas in South 
America was performed by means of different Species Potential Distribution Models (SDMs), 

considering the monthly meteorological statistics of different climatic scenarios. Firstly, a 

historical climatic scenario was assessed, considering monthly meteorological data of 

maximum, minimum temperature and precipitation, and bioclimatic variables statistics from 
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the series 1950-2000 (Hijmans et al., 2005; Fick & Hijmans, 2017). Secondly, different 

scenarios of climate change proposed by the Fifth Assessment Report of Intergovernmental 

Panel on Climate Change (IPCC5), by the decades 2050 [2041-2060 average] and 2070 [2061-

2080 average], were evaluated. Three global climate models (GCMs), [GFDL-ESM2G, GISS-

E2-R and HadGEM2-ES] for two representative concentration pathways (RCPs), [2.6 and 4.5], 

were considered (Collins et al. 2011).  

The different SDMs assessed were: Generalized linear model (GLM), Maximum Entropy 

(MAXENT), Support Vector Machine (SVM), Back propagation artificial neural network 

(BP-ANN). Principal component analysis (PCA), was performed by means of Robertson's et 

al., 2001 methodology. Conceptually, it was used the conceptual approach proposed by 

Moschini & Heit (2015), who have delimited agroclimatic risk zones for D. citri in the main 
citrus regions of Argentina, by climate comparison with a site where epidemiological 

conditions for the establishment of D. citri were highly predisposing. In this study, San Pablo 

State and some districts of Paraná States and Minas Gerais in Brazil were considered as 

prediction site, due that in this area South America, the epidemiological conditions for the 

establishment and spread of HLB and D. citri were highly suitable during the past decade 

(Gasparoto et al. 2018; Lopes et al. 2009).  

From this area, 450 points from cells that had a Normalized Difference Vegetation Index 

greater to 0.3 in all the months of the year were randomly obtained (Heit et al., 2013; Nasa, 

2018). Average and standard deviation values of climatic variables associated prediction 

dataset were obtained, in order to standardize with this set of variables the twelve future 

climate scenarios. Since the use of high number of components can result in overadjustment 
of the output models, and the consequently a loss of generalization Mateo et al. (2011), 

principal component analysis was used as a pre-analytical technique for modeling the species 

potential distribution. Principal component analyses with a time series orientation by mean 

monthly maximum temperature, mean monthly minimum temperature, and mean monthly 

precipitation were made. Over 19 bioclimatic variables, PCA were performed with a spatial 

orientation. In T-mode, every image of the series is considered as a variable and the analysis 

searches spatial patterns recurrent in time. In S-mode, every pixel is considered as a variable 

and the analysis searches temporary patterns recurrent on the space. T-mode PCA input 

variables were tested independently of bioclimatic variables. The resolution of climatic 

variables used as input of the models was 4 km and cartographic projection South America 

Albers Equal Area Conic was used. 

For those SDMs that required pseudo-absences data a mask was created to delimit those 
areas where, climatic risk of the establishment of HLB, could be considered a priori, as low. 

Citeria suggested by Zhu in 2006, who proposed that a mean monthly minimum temperature 

of 6.4º can be used as a limiting factor of the geographical distribution of D. citri. was used. 

The classes of land cover of bare soil of the Global Land Cover Map for 2009 (Arino et al., 

2012) were selected in order to create a mask of those areas where neither the citrus plants nor 

the alternate hosts of the D. citri could develop. From these masks 400 random points were 

generated, which were incorporated to the analysis as pseudo-absences (Tognelli et al., 2009). 

Kappa statistics of the resulting layers were calculated against a matrix of the areas with 

presence of HLB and D. citri in Brazil. 

For each SDM, pixels of each category, between 0 and 1, were counted. Analysis of 

variance and Tuckey test of the surfaces with climatic similarity index higher than 0.5 or 0.9 
were performed (α: 0.05).  Agreement output model resulting of combination of SDMs, RCPs 

and input variables to SDMs was estimated based on fuzzy classification of pixel values with 

climatic similarity index higher than 0.9, in each of the assessed models (Narouei-Khandan et 

al., 2016). Thus, the Agreement Risk Index (AgRI) has values that range from 0: low risk and 
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lack of repeatability among scenarios, to 1: maximum risk and similarity among scenarios 

estimations. For the information management, software QGIS 2.12, IDRISI Selva and Infostat 

were used. 

 

3. Results  

 

Five potential distribution models assessed: Principal component analysis (PCA), 

Generalized linear model (GLM), Maximum Entropy (MAX-ETP), Support Vector Machine 

(SVM) and Back propagation artificial neural network (BP-ANN), estimated different climatic 

risk areas in relation to the spatial pattern, in surface estimated by category and in the spatial 

distribution itself (See Table 1 and 2).  
 

3.1. Risk index RI > 0.9 

 

Considering the estimations made, using the rcp2.6 projections and the Bioclimatic 

variables as inputs to the MDEs, no statistically significant differences were observed in the 

HLB risk area estimated by the different SDMs (F: 0.60, p: 0.6650). Significant differences 

were observed in the area between future climate scenarios estimated by IPCC (F: 6.17, p: 

0.022), showing an average increase of 748,000 km2, with respect to the estimated areas 

considering historical scenarios. For the 2070s, a reduction of 181,000 km2 of the surface is 

expected, compared to the historical scenario. No interactions were observed between SDMs 

and IPCC scenarios (F: 0.34, p: 0.8495). See figure 1. 

 
 

Notes: IPCC Global Climate models (GFDL-ESM2G, GISS-E2-R, HadGEM2-ES); representative 

concentration pathways (RCP: 2.6 and 4.5); Species distribution models: Generalized linear model 

(GLM), Maximum Entropy (MAXENT), Support Vector Machine (SVM), Back propagation 
artificial neural network (BP-ANN). Principal component analysis (PCA). 

 

Figure 1 Comparison of the Relative Climatic Risk Surfaces Estimated by Different 

Bioclimatic Variables and Models. 
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A no statistically significant increase to the risk area (year 2050) was estimated using the 

same input variables with a representative concentration pathway 4.5 (f: 1.05, p: 0.4071). By 

the 2070s, a reduction in the risk area of 452000 km2, is estimated (F: 11.80, p: 0.0026). There 

were no interactions between SDMs and IPCC scenarios (F: 0.80, p: 0.5415). 

Figure 2 present differences in risk area considering representative concentration pathways 

2.6 and Principal component as input variables. No differences in the surface were observed 

among SDMs (F: 2.30, p: 0.0945), nor between IPCC scenarios (F: 1.35; p:  0,258).  

 

 
Notes: IPCC Global Climate models (GFDL-ESM2G, GISS-E2-R, HadGEM2-ES); representative 

concentration pathways (RCP: 2.6 and 4.5); Species distribution models: Generalized linear model 

(GLM), Maximum Entropy (MAXENT), Support Vector Machine (SVM), Back propagation 
artificial neural network (BP-ANN). Principal component analysis (PCA). 

 

Figure 2 Comparison of The Relative Climatic Risk Surfaces Estimated by PCA 

Input Variable. 

 

Taking into account representative concentration pathways 4.5 and Principal component as 

input variables, statistically significant differences were observed between IPCC scenarios 

(F: 4.90, p:  0.0386) and among SDMs (F: 3.05, p: 0.0410). There were no interactions 

between SDMs and IPCC scenarios (F: 1.7, p: 0.1904). 

Mean risk area was estimated on 687790 km2 (year 2050) and a reduction in the risk area 

of 478,860 km2 compared to the estimated, by historical scenarios, by the 2070s. The biggest 

risk area, was estimated by the Maximum Entropy algorithm (average ∆1202850 km2), which 

differed significantly from the Back propagation artificial neural network algorithm (average 

∆ -1661890 km2). 

 

3.2. Risk index RI>0.5  

 

Considering RI>0.5 estimations using the representative concentration pathway 2.6 

projections and Bioclimatic variables as inputs to the MDEs, no statistically significant 
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differences were observed in the HLB risk area estimated by different IPCC scenarios (F: 0.36, 

p: 0.557), but statistically significant differences in HLB risk area among SDMs were found 

(F: 8.6, p: 0.0003). See figure 3.  

 

 
Notes: IPCC Global Climate models (GFDL-ESM2G, GISS-E2-R, HadGEM2-ES); representative 

concentration pathways (RCP: 2.6 and 4.5); Species distribution models: Generalized linear model 
(GLM), Maximum Entropy (MAXENT), Support Vector Machine (SVM), Back propagation 

artificial neural network (BP-ANN). Principal component analysis (PCA). 
 

Figure 3 Comparison of The Relative Climatic Risk Surfaces Greater Than 0.5 (Km2), 

Estimated by Bioclimatic Input Variables. 

 

The lowest risk area higher than 0.5, was estimated by the Principal component analysis 

and Maximum Entropy algorithm (average ∆ -1645760 to -3054910 km2), which differed 

significantly from Support Vector Machine. There were no interactions between SDMs and 

IPCC scenarios (F: 0.38, p: 0.82). In the same way, using representative concentration pathway 

4.5 significant differences in area classified with relative climatic risk index (RI)> 0.5 were 

observed among SDMs (F: 17.49, p: 0,0001), and no significant differences in output area 
higher than 0,5 between IPCC scenarios were found (F: 0.61; p: 0,445). The biggest risk area 

higher than 0.5, was estimated by the Generalized linear model algorithm (average ∆1101940 

km2), which differed significantly from Maximum Entropy algorithm (average ∆ -909860 km2) 

and PCA algorithm (average ∆ -2207590 km2). 

No differences in the surface, classified with relative climatic risk index (RI)> 0.5, were 

observed among SDMs (F: 2.33, p: 0.0909), nor between IPCC scenarios (F: 0.05; p:  0,832) 

when estimations were done using the representative concentration pathway 2.6 projections 

and Principal component variables as inputs to the MDEs (Figure 4). Similarly results were 

obtained when pathway 4.5 projections was used among SDMs (F: 2.3, p: 0.0946), nor 

between IPCC scenarios (F: 0.67; p:  0,424). 
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Notes: IPCC Global Climate models (GFDL-ESM2G, GISS-E2-R, HadGEM2-ES); representative 

concentration pathways (RCP: 2.6 and 4.5); Species distribution models: Generalized linear model 
(GLM), Maximum Entropy (MAXENT), Support Vector Machine (SVM), Back propagation 

artificial neural network (BP-ANN). Principal component analysis (PCA). 

 

Figure 4 Comparison of the Relative Climatic Risk Surfaces Greater Than 0.5 (Km2), 

Estimated by Principal Component Input Variables. 

 

3.3. Agreement Model Output 

 

Polling all data output and considering the representative concentration pathways 2.6, no 

differences in the surface classified with relative climatic risk index (RI)> 0.9 were observed 
among SDMs (F: 1.96, p: 0.114), among global circulation models (F: 0.84, p: 0.437), neither 

input variables to SDMs (F: 3.51; p: 0.066). No interactions among these variables and climate 

scenario were observed (p> 0.05), in any case considered. However, area categorized with a 

relative climatic risk index higher than 0.9 was significantly lower in the scenarios proposed 

by IPCC for the decade of 2050 than for those proposed by IPCC for 2070 (F: 5.67, p: 0.0207).  

Considering the representative concentration pathways 4.5, no differences in the surface 

classified with relative bioclimatic risk index (RI)> 0.9 were observed among SDMs (F: 0.02; 

p: 0.97), among global circulation models (F: 0.84, p: 0.43), neither input variables to SDMs 

(F: 0.04; p: 0.84). No interactions among these variables and climate scenario were observed 

(p> 0.05), in any case considered. However, difference in area categorized with a relative 

bioclimatic risk index higher than 0.9, between historic and IPCC 2050 scenario was 
significantly lower than for those proposed by IPCC for 2070 (F: 5.67, p: 0.0207). 

Figure 5 present the consensus model built, considering climatic similarity indexes higher 

than 0.9 in the five SDMs, in relation to the historical climatic statistics of South America. 

Darker greys represent areas expected by a greater number of algorithms and, in consequence, 

have higher relative values than those areas where there were no consensus between algorithm 

results.  
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Figure 5 Agreement Output Models Estimate of Climatic Risk of HLB 

Establishment, Based on Historical Climatic Statistics. 

 

In that sense, higher climatic risk areas would be distributed in southern Brazil, eastern 

Paraguay, Northeastern Region and eastern area of the Northwestern Region of Argentina, and 

central and southeastern Bolivia. Central Chile, Uruguay, valleys of central and northwestern 

Peru, southwestern Ecuador, and northern Venezuela can also be underlined. 

        It can be observed that, IPCC 2050/2070 distribution model (Fig. 6 to 9, black) areas 

would be reduced compared with areas estimated form historical climatic data (Fig. 6 to 9, 

grey). 
Representative Concentration Pathway 2.6 scenario for 2050 and 2070 agreement surface 

with relative climatic risk for HLB >0.9 would be reduced about 420560 km2 by decade (R²: 

0.98) (Fig 6 & 7).  

Figure 7 shows Representative Concentration Pathway 4.5 scenario for 2050 and 2070 

agreement surface with relative climatic risk for HLB >0.9 would be reduced -333304 km2 by 

decade (R²: 0.791). 

SDMs achieved moderate to substantial levels of agreement when historical scenarios were 

considered (Fauvel et al. 2013), and moderate agreement for IPCC scenarios. No statistically 

significant differences were observed among SDMs Kappa in future climate scenarios 

(p>0.05). 
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Figure 6 & 7. Variation on Agreement Output Model of Relative Climatic Risk for 

HLB Establishment, Based on Representative Concentration Pathway 2.6 Scenario For 

2050 and 2070. 

 

         
 

Figure 8 & 9. Variations on Agreement Output Model of Relative Climatic Risk for HLB 

establishment, Based on Representative Concentration Pathway 4.5 Scenario for 2050 and 2070. 
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4. Discussion 

 

The Species Potential Distribution Models have been used to estimate the potential 

distribution of a pest in the first phase of the biological invasion process, and its results can be 

useful to support the planning tasks for preventive monitoring or delimiting the free areas and 

the application of quarantine pest eradication measures (Heit et al., 2014; Aurambout et al., 

2009). 

The results found in this study match the potential distribution of HLB obtained by means 

the algorithms of maximum entropy (MAXENT) by Narouei-Khandan et al. (2016), but they 

differ significantly from the estimated by Support Vector Machines (SVM), which estimated 

areas of high risk in an important portion of the Amazonas basin.  
The delimitation of citrus areas in Argentina, with conditions for HLB establishment, are 

considerably similar to those determined by Moschini & Heit (2015). This author delimited 

areas of agroclimatic risk, for presence and abundance of D. citri, using an agroclimatic risk 

index [AIR] that employs daily records of temperature, relative humidity, and precipitation, 

and compare them to the records in Campinas [Brazil]. Both methodologies identified a greater 

climatic risk for the development of D. citri and HLB establishment, in the central and 

northeastern portion of Argentinean Mesopotamia and also Northwestern Argentina. Marginal 

citrus zones of Southern Mesopotamia and north Pampean region are the areas with lower 

relative climatic risk. Although the climate change scenarios proposed by IPCC5 estimate a 

gradual rise of the climatic risk of these zones in next decades. Austin (2007) states that 

different methods, modeling the species potential distribution, can generate different results 
among themselves, even producing contradictory results. Even when it is not possible to 

confirm that a specific method has a better performance for all situations, the comparison of 

the different approaches in the same case, can provide complementary information for 

phytosanitary decision making (Hirzel & Lay, 2008). 

The incorporation of the PCA, as a pre-processed predictor, into the models resulted in the 

introduction of a variable with no autocorrelation (Al-Kandari & Jolliffe, 2012). In addition, 

the distribution models generated by the gross environmental predictors, generally predict a 

smaller surface of activity (over adjusted) (Elith & Graham, 2009).  

Temperature increase will affect the development of D. citri in a direct way, due to the 

temperature impact on its development rate and, in an indirect way, through the temperature 

impact over the host plant sprouting cycles. Hotter conditions would have a higher relative 

impact on the plantation areas of the mild regions, due to the thermal tolerance that the pests 
present for its development and growth, greatly limited by the occurrence of extreme 

temperatures, whether cold or hot weather, or in the duration of the adverse term, for example 

the drought or cold in winter (Jactel et al., 2012). In this way, winter seasons which are more 

benign, could not only increase the survival of the diapause forms, but also it creates longer 

seasons of growth, thus significantly increasing  the potential reproduction of this pest species 

(Ammunét et al., 2012). 

Aurambout et al. (2009) showed that the seasonal variations in temperature expected before 

varied climate change scenarios will affect the speed of the development and survival of D. 

citri, simultaneously with a citric host species, Valencia Orange Tree. However, these authors 

argued that the temperature increase forecasted for the varied scenarios of global warming, 

would have complex results and especially heterogeneous about the population dynamics and 
the D. citri survival and as a consequence the potential establishment and spread of HLB. For 

example, the temperature increase during the citruses growing season, would reduce the time 

[in calendar days], in which D. citri would complete its development. This could determine 

that this pest has a greater number of annual potential generations. In addition, the climate 
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change will have a significant impact on the date of occurrence of citrus sprouting and its 

duration. Climate change could also shorten the time needed to lignify sprouts soft tissues, 

what would reduce the available time for the D. citri to reproduce in them, affecting in a 

significant way the development of the populations of nymphs of this species (Torres-Pacheco 

et al., 2013). Even Shimwela et al. (2019) found no spatial relationship between vector 

populations and HLB-infected trees, they found a tentatively positively correlated with 

monthly rainfall data and, in a lesser extent, with average minimum temperature as possible 

divers of HLB distribution. 

The development of trade between regions and countries is an increasingly important 

characteristic of modern agriculture, but along with a great deal of benefits trade carries with 

it the risk to import exotic plant diseases. Since HLB was found in Florida (United States), 
citrus production has decreased by 74% (USDA, 2019). From 2004 to 2012, Brazil eradicated 

around 18 million citrus trees and nowadays, costs related to the HBL vector management is 

approximately 15% of the cost of citrus production (Adami et al., 2014). The potential 

establishment of HLB in the citrus-producing regions of Argentina would threaten the assets 

of 5,300 producers, approximately 120,000 direct jobs, the supply of 529 packing plants and 

20 citrus industries (SENASA, 2009). In order to prevent the danger of introducing exotic pets, 

which can seriously threat social-economic welfare, quarantine activities have generally 

provided first barrier protection, and since pest eradication programs are often ineffective in 

practice and highly costly to governments. 

In South America, the Plant Health Committee of the Southern Cone (COSAVE) has not 

developed, until now, any quantitative analysis for the estimation of areas with establishment 
risk for quarantine pests. The analysis of pest risk performed by the National Organization of 

Phytosanitary Protection (ONPF), is based on qualitative risk analysis, in which tools derived 

from geomatics are not used for spatial characterization of the establishment risk of the exotic 

pests. The nature of the existing interactions among the host plant, HLB, D. citri, and the 

weather is complex and heterogeneous, for this reason the assessment proposed in this study 

should be considered as a quantitative approach for the estimate of the potential impacts of the 

climate change on the distribution of quarantine pests at a regional level. 

 

5. Conclusions 

 

By means of different methodological approaches we have identified areas of South 

America with a climatic risk similar to those where HLB has been established and dispersed 
rapidly in recent years.  

Considering the estimates of the Fifth report of IPCC, the effects of the climate change in 

the next decades will have complex consequences and especially heterogeneous on the 

potential establishment and spread of HLB in the free disease areas in South America, 

however, it would be expected a movement to the areas of greater climatic risk towards 

southwestern areas with climatic risk nowadays. 

The results of the different algorithms used differed among them and as, a consequence, it 

is not possible to confirm only one method to be the most appropriate to estimate the current 

and future phytosanitary risk for HLB. However, the integration of the different algorithms in 

one consensus model can provide complementary information for phytosanitary decision 

making from the different National Institutions of Plant Protection in South America. 
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