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29Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et

Paris 7, CNRS-IN2P3, France
30Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-
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54Università di Napoli “Federico II“, Dipartimento di Fisica “Ettore Pancini“, Italy
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69University of  Lódź, Faculty of High-Energy Astrophysics, Poland
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Abstract. We present a combined fit of a simple astrophysical model of UHECR sources
to both the energy spectrum and mass composition data measured by the Pierre Auger
Observatory. The fit has been performed for energies above 5 · 1018 eV, i.e. the region of
the all-particle spectrum above the so-called “ankle” feature. The astrophysical model we
adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei
are accelerated through a rigidity-dependent mechanism. The fit results suggest sources
characterized by relatively low maximum injection energies, hard spectra and heavy chemical
composition. We also show that uncertainties about physical quantities relevant to UHECR
propagation and shower development have a non-negligible impact on the fit results.
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1 Introduction

Cosmic rays have been detected up to particle energies around 1020 eV and are the highest
energy particles in the present Universe. In spite of a reasonable number of events already
collected by large experiments around the world, their origin is still largely unknown. It is
widely believed that the particles of energy above a few times 1018 eV (Ultra High Energy
Cosmic Rays, UHECRs) are of extragalactic origin, since galactic magnetic fields cannot
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confine them, and the distribution of their arrival directions appears to be nearly isotropic
[1, 2].
With the aim of investigating the physical properties of UHECR sources, we here use cosmic
ray measurements performed at the Pierre Auger Observatory, whose design, structure and
operation are presented in detail in [3]. The observables we use are the energy spectrum
[4], which is mainly provided by the surface detector (SD), and the shower depth (Xmax)
distribution, provided by the fluorescence detector (FD) [5], which gives information about
the nuclear mass of the cosmic particle hitting the Earth’s atmosphere.
The observed energy spectrum of UHECRs is close to a power law with index γ ≈ 3 [4, 6],
but there are two important features: the so-called ankle at E ≈ 5 · 1018 eV where the spec-
trum becomes flatter (the spectral index decreasing from about 3.3 to 2.6) and a suppression
above 4 · 1019 eV after which the flux sharply decreases. The ankle can be interpreted to
reflect e.g. the transition from a galactic to an extragalactic origin of cosmic rays, or the
e+ e− pair-production dip resulting from cosmic ray proton interactions with the cosmic mi-
crowave background. The decrease at the highest energies, observed at a high degree of
significance, can be ascribed to interactions with background radiation [7, 8] and/or to a
maximum energy of cosmic rays at the sources.
Concerning the mass composition, the average Xmax measured at the Pierre Auger Obser-
vatory (as discussed in [5, 9, 10]) indicates that UHECRs become heavier with increasing
energy above 2 ·1018 eV. Moreover, the measured fluctuations of Xmax indicate a small mass-
dispersion at energies above the ankle. The average Xmax has also been measured by the
Telescope Array collaboration [11]. Within the uncertainties this measurement is consistent
with a variety of primary compositions and it agrees very well with the Auger results [12].
In this paper we investigate the constraining power of the Auger measurements of spectrum
and composition with respect to source properties. Therefore we compare our data with
simulations that are performed starting from rather simple astrophysical scenarios featuring
only a small number of free parameters. We then constrain these astrophysical parameters
taking into account experimental uncertainties on the measurements. To do so, we perform
a detailed analysis of the possible processes that determine the experimental measurements
from the sources to the detector (section 2).
We assume as a working hypothesis that the sources are of extragalactic origin. The sources
inject nuclei, accelerated in electromagnetic processes, and therefore with a rigidity (R =
E/Z) dependent cutoff (section 2.1).
Injected nuclei propagate in extragalactic space and experience interactions with cosmic
photon backgrounds. Their interaction rates depend on the cross sections of various nuclear
processes and on the spectral density of background photons. We use two different publicly
available Monte Carlo codes to simulate the UHECR propagation, CRPropa [13–15] and
SimProp [16–18], together with different choices of photo-disintegration cross sections and
models for extragalactic radiation (section 2.2).
After propagation, nuclei interact with the atmosphere to produce the observed flux. These
interactions happen at energies larger than those experienced at accelerators, and are mod-
elled by several interaction codes. The interactions in the atmosphere are discussed in section
2.3.
In section 3, we describe the data we use in the fit and the simulations we compare them to,
and in section 4 we describe the fitting procedures we used. The results we obtain (section 5)
are in line with those already presented by several authors [19, 20] and in [21, 22] using a sim-
ilar analysis approach to that of this work. The Auger composition data indicate relatively
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narrow Xmax distributions which imply little mixing of elemental fluxes and therefore limited
production of secondaries. This in turn implies low maximum rigidities at the sources, and
hard injection fluxes to reproduce the experimental all-particle spectrum [10].
The novelty of the present paper is that we discuss in detail the effects of theoretical uncer-
tainties on propagation and interactions in the atmosphere of UHECRs and we generally find
that they are much larger than the statistical errors on fit parameters (which only depend on
experimental errors). These uncertainties are the feature that limit the ability to constrain
source models, as will be discussed in the conclusions. Moreover, we investigate the depen-
dence of the fit parameters on the experimental systematic uncertainties.
We present some modifications of the basic astrophysical model, in particular with respect
to the homogeneity of the sources, in section 6.1.
In this paper we are mainly interested in the physics above 5 ·1018 eV. However in section 6.2
we briefly discuss how our fits can be extended below the ankle, where additional components
(e.g. different astrophysical sources) would be required.
In section 7 we present a general discussion of our results and their implications.
Finally appendix A contains some details on the simulations used in this paper and appendix
B on the forward folding procedure used in the fits.

2 UHECRs from their sources to Earth

2.1 Acceleration in astrophysical sources

The hypotheses of the origin of UHECRs can be broadly classified into two distinct scenarios,
the “bottom-up” scenario and the “top-down” one. The “top-down” source models generally
assume the decay of super-heavy particles; they are disfavoured as the source of the bulk of
UHECRs below 1020 eV by upper limits on photon [23–25] and neutrino [26–29] fluxes that
should be copiously produced at the highest energies, and will not be considered any further
in this work. In the “bottom-up” processes charged particles are accelerated in astrophysical
environments, generally via electromagnetic processes.
The distribution of UHECR sources and the underlying acceleration mechanisms are still
subject of ongoing research. In particular the non-thermal processes relevant for acceleration
to the highest energies constitute an important part of the theory of relativistic plasmas.
Various acceleration mechanisms discussed in the literature include first order Fermi shock
acceleration with and without back-reaction of the accelerated particles on the magnetized
plasma [30], plasma wakefield acceleration [31] and reconnection [32]. Sufficiently below the
maximal energy these mechanisms typically give rise to power-law spectra dN/dE ∝ E−γ ,
with γ ≃ 2.2 for relativistic shocks, and γ ranging from ≃ 2.0 to ≃ 1.0 for the other cases.
Other processes can even result in ‘inverted’ spectra, with γ < 0 [33–36].
A common representation of the maximal energy of the sources makes use of an exponential
cutoff; yet not all of these scenarios predict power law particle spectra with an exponential
cut-off [37]. Reconnection, in particular, can give rise to hard spectra up to some charac-
teristic maximal energy. This is also the case if cosmic rays are accelerated in an unipolar
inductor that can arise in the polar caps of rotating magnetized neutron stars [33, 38, 39], or
black holes [40]. If interactions in the magnetospheres can be neglected this also gives rise to
γ ≈ 1. Also, second order Fermi acceleration has been proposed to give rise to even harder
spectra [36]. Close to the maximal energy, where interactions can become significant, the
species dependent interaction rates can give rise to complex all-particle spectra and individ-
ual spectra whose maximal energies are not simply proportional to the charge Z [34].
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On the other hand, individual sources will have different characteristics and integrating over
them can result in an effective spectrum that can differ significantly from a single source
spectrum. For example, integrating over sources with power law acceleration spectra of dif-
ferent maximal energies or rigidities can result in an effective power law spectrum that is
steeper than that of any of the individual sources [41, 42].
Taking into account all these possibilities would render the fit unmanageable. In this work,
the baseline astrophysical model we use assumes identical extragalactic UHECR sources
uniform in comoving volume and isotropically distributed; source evolution effects are not
considered. We also neglect possible effects of extragalactic magnetic fields and therefore the
propagation is considered one-dimensional. This model, although widely used, is certainly
over-simplified. We briefly discuss some possible extensions in section 6.
A description of the spectrum in terms of elementary fluxes injected from astrophysical
sources, all the way from log10(E/eV) ≈ 18 up to the highest energies, with a single com-
ponent, is only possible if UHECRs are protons, since protons naturally exhibit the ankle
feature as the electron-positron production dip; however this option is at strong variance
with Auger composition measurements [10, 43] and, to a lesser extent, with the measured
HE neutrino fluxes [44–46]. On the other hand, the ankle can also be interpreted as the tran-
sition between two (or more) different populations of sources. In this paper we will assume
this to be the case; for this reason, we will generally present results of fits for energies above
log10(E/eV) = 18.7. An attempt to extend the analysis in the whole energy range is dis-
cussed in section 6.2. Recently there have been attempts [47, 48] to unify the description of
the spectrum down to energies of a fraction of EeV, below which galactic CRs are presumed
to dominate, by considering the effects of the interactions of nuclei with photon fields in or
surrounding the sources. We do not follow this strategy here, but concentrate only on the
highest energies.
We assume that sources accelerate different amounts of nuclei; in principle all nuclei can
be accelerated, however it is reasonable to assume that considering only a representative
subset of injected masses still produces approximately correct results. We therefore assume
that sources inject five representative stable nuclei: Hydrogen (1H), Helium (4He), Nitrogen
(14N), Silicon (28Si) and Iron (56Fe). Of course particles other than those injected can be
produced by photonuclear interactions during propagation. These nuclei are injected with a
power law of energy (E = ZR) up to some maximum rigidity Rcut, reflecting the idea that
acceleration is electromagnetic in origin:

dNA

dE
= JA(E) = fAJ0

(

E

1018 eV

)−γ

× fcut(E,ZARcut), (2.1)

where fA is defined as the fraction of the injected nucleus A over the total. This fraction is
defined, in our procedure, at fixed energy E0 = 1018 eV, below the minimum cutoff energy for
protons. The power law spectrum is modified by the cutoff function, which describes physical
properties of the sources near the maximum acceleration energy. Here we (arbitrarily) adopt
a purely instrumental point of view and use a broken exponential cutoff function

fcut(E,ZARcut) =

{

1 (E < ZARcut)

exp
(

1 − E
ZARcut

)

(E > ZARcut)
(2.2)

in order to improve the sensitivity to γ in the rather limited range from the lowest energy in
the fit to the cutoff. The effect of this choice will be further discussed in section 5.3.2.
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The free parameters of the fit are then the injection spectral index γ, the cutoff rigidity Rcut,
the spectrum normalization J0 and four of the mass fractions fA, the fifth being fixed by
∑

A fA = 1.

2.2 The propagation in the Universe

At the UHECR energies, accelerated particles travel through the extragalactic environment
and interact with photon backgrounds, changing their energy and, in the case of nuclei, possi-
bly splitting into daughter ones. The influence of these processes is discussed in detail in [49].
In the energy range we are interested in, the photon energy spectrum includes the cosmic
microwave background radiation (CMB), and the infrared, optical and ultra-violet photons
(hereafter named extragalactic background light, EBL). The CMB has been extremely well
characterized and has been shown to be a very isotropic pure black-body spectrum, at least
to the accuracy relevant for UHECR propagation. The EBL, which comprises the radiation
produced in the Universe since the formation of the first stars, is relatively less known: sev-
eral models of EBL have been proposed [50–56], among which there are sizeable differences,
especially in the far infrared and at high redshifts.
Concerning the interactions of protons and nuclei in the extragalactic environment, the loss
mechanisms and their relevance for the propagation were predicted by Greisen [7] and in-
dependently by Zatsepin and Kuzmin [8] soon after the discovery of the CMB. First, all
particles produced at cosmological distances lose energy adiabatically by the expansion of
the Universe, with an energy loss length c/H0 ∼ 4 Gpc. This is the dominant energy loss
mechanism for protons with E . 2 · 1018 eV and nuclei with E/A . 0.5 · 1018 eV. At higher
energies, the main energy loss mechanisms are electron-positron pair production mainly due
to CMB photons and, in the case of nuclei, photo-disintegration in which a nucleus is stripped
by one or more nucleons or (more rarely) α particles, for which interactions both on the EBL
and the CMB have a sizeable impact. At even higher energies (E/A & 6 · 1019 eV), the
dominant process is the photo-meson production on CMB photons.
The cross sections for pair production can be analytically computed via the Bethe-Heitler
formula, and those for photo-meson production have been precisely measured in accelerator-
based experiments and have been accurately modelled by codes such as SOPHIA [57]. On
the other hand, the cross sections for photo-disintegration of nuclei, especially for exclusive
channels in which charged fragments are ejected, have only been measured in a few cases;
there are several phenomenological models that can be used to estimate them, but they are
not always in agreement with the few experimental data available or with each other [49].
In order to interpret UHECR data within astrophysical scenarios some modelling of the extra-
galactic propagation is needed. Several approaches have been used to follow the interactions
in the extragalactic environment, both analytically and using Monte Carlo codes. In this
paper simulations based on CRPropa [13–15] and SimProp [16–18] will be used, along with
the Gilmore [53] and Domı́nguez (fiducial) [54] models of EBL and the Puget, Stecker and
Bredekamp (PSB) [58, 59], TALYS [49, 60–62] and Geant4 [63] models of photo-disintegration
in various combinations.
A comparison between the Monte Carlo codes used here is beyond the scope of this paper,
and has been discussed in [49].

2.3 Extensive air showers and their detection

Once a nucleus reaches the Earth it produces an extensive air shower by interacting with
the atmosphere. Such a shower can be detected by surface detectors (SD) and, during dark
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moonless nights, by fluorescence detectors (FD) [3]. The FD measures the shower profile,
i.e. the energy deposited by the shower per unit atmospheric depth. The integral of the
profile gives a measurement of the calorimetric energy of the shower, while the position of the
maximum Xmax provides information about the primary nucleus which initiated the cascade.
The SD measures the density of shower particles at ground level, which can be used to
estimate the shower energy, using the events simultaneously detected by both the SD and the
FD for calibration. There are several models available to simulate the hadronic interactions
involved in the shower development. They can be used to estimate the distribution of Xmax

for showers with a given primary mass number A and total energy E. In this work, we use the
Auger SD data for the energy spectrum and the Auger FD data for the Xmax distributions.
The simulated mass compositions from the propagation simulations are converted to Xmax

distributions assuming EPOS-LHC [64], QGSJetII-04 [65] and Sibyll 2.1 [66] as the hadronic
interaction models.

3 The data set and the simulations

The data we fit in this work consist of the SD event distribution in 15 bins of 0.1 of
log10(E/eV), (18.7 ≤ log10(E/eV) ≤ 20.2) and Xmax distributions [5] (in bins of 20 g/cm2)
in the same bins of energy up to log10(E/eV) = 19.5 and a final bin from 19.5 to 20.0, for a
total of 110 non zero data points. In total, we have 47767 events in the part of the spectrum
we use in the fit and 1446 in the Xmax distributions.
In the Auger data the energy spectrum and the Xmax distributions are independent measure-
ments and the model likelihood is therefore given by L = LJ · LXmax . The goodness-of-fit is
assessed with a generalized χ2, (the deviance, D), defined as the negative log-likelihood ratio
of a given model and the saturated model that perfectly describes the data:

D = D(J) + D(Xmax) = −2 ln L
Lsat = −2 ln LJ

Lsat
J

− 2 ln
LXmax

Lsat
Xmax

(3.1)

Details on the simulations used are given in appendix A.

3.1 Spectrum

Measurements of UHECR energies are affected by uncertainties of the order of 10%, due to
both shower-to-shower fluctuations and detector effects. These can cause detected events to
be reconstructed in the wrong energy bin. As a consequence of the true spectrum being a
decreasing function of energy, more of the events with a given reconstructed energy Erec have
a true energy Etrue < Erec than Etrue > Erec. The net effect of this is that the reconstructed
spectrum is shifted to higher energies and smoothed compared to the true spectrum.
In ref. [4], we adopted an unfolding procedure to correct the measured spectrum for these
effects, consisting in assuming a phenomenological “true” spectrum Jmod

unf , convolving it by the
detector response function to obtain a folded spectrum Jmod

fold , computing the correction factors
c(E) = Jmod

unf (E)/Jmod
fold (E), and obtaining a corrected measured spectrum as Jobs

unf (E) =
c(E)Jobs

fold(E), where Jobs
fold(E) is the raw event count in a reconstructed energy bin divided by

the bin width and the detector exposure. This procedure is an approximation which does not
take into account the dependence of the correction factors on the assumed shape of Jmod

unf ,
thereby potentially underestimating the total uncertainties on Jobs

unf .
To avoid this problem, in this work we apply a forward-folding procedure to the simulated
true spectrum J(E) obtained from each source model (spectral index, maximum rigidity and
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composition at the sources, section 2.1) in order to compute the expected event count in each
energy bin, and directly compare them to the observed counts, so that the likelihood can be
correctly modelled as Poissonian, without approximations, resulting in the deviance (in each
bin m of log10(E/eV))

D = −2
∑

m

(

µm − nm + nm ln

(

nm

µm

))

(3.2)

where nm is the experimental count in the m-th (logarithmic) energy bin, and µm are the
corresponding expected numbers of events. The details of the forward folding procedure,
together with the experimental resolutions used, are described in appendix B.
We decided to use only the experimental measurements from the surface detector since in
the energy range we are interested in (above ≈ 5 · 1018 eV), the contribution of the other
Auger detectors is negligible and the SD detector efficiency is saturated [67]. The spectrum
reconstructed from the SD detector is produced differently depending on the zenith angle
of primary particles, namely vertical (θZ < 60◦), and inclined (60◦ < θZ < 80◦) events, θZ
being the shower zenith angle [68]. For the present analysis, the vertical and inclined SD
spectra are combined (i.e. µm = µvert

m + µincl
m , nm = nvert

m + nincl
m ) with the exposures rescaled

as described in [4].

3.2 Composition

The Xmax distribution at a given energy can be obtained using standard shower propagation
codes. The distributions depend on the mass of the nucleus entering the atmosphere and the
model of hadronic interactions. In this work we adopted a parametric model for the Xmax

distribution, which takes the form of a generalized Gumbel distribution g(Xmax|E,A) [69].
The Gumbel parameters have been determined with CONEX [70] shower simulations using
different hadronic interaction models: we use here the parameterizations for EPOS-LHC [64],
QGSJetII-04 [65] and Sibyll 2.1 [66]. The Gumbel parameterization provides a reasonable
description of the Xmax distribution in a wide energy range with the resulting 〈Xmax〉 and
σ(Xmax) differing by less than a few g cm−2 from the CONEX simulated value [69]. The
advantage of using this parametric function is that it allows us to evaluate the model Xmax

distribution for any mixture of nuclei without the need to simulate showers for each primary.
In this analysis the distributions of mass numbers A = 1 − 56 are considered.
To compare with the measured Xmax distributions, the Gumbel distributions are corrected for
detection effects to give the expected model probability (Gmodel

m ), evaluated at the logarithmic
average of the energies of the observed events in the bin m, for a given mass distribution at
detection (see appendix B). The last energy bin of the measured Xmax distribution combines
the energies log10(E/eV) ≥ 19.5, having 〈log10(E/eV)〉 = 19.62. We, therefore, combine
the same bins in the simulated Xrec

max distribution (B.9). In the Xmax measurement [5] the
total number of events nm per energy bin m is fixed, as the information about the spectral
flux is already captured by the spectrum likelihood. The probability of observing a Xmax

distribution ~km = (km1, km2...) then follows a multinomial distribution.

LXmax =
∏

m

nm!
∏

x

1

kmx!
(Gmodel

mx )kmx (3.3)

where Gmodel
mx is the probability to observe an event in the Xmax bin x given by Eq. B.9.

The reason for using the full Xmax distributions rather than just their first two moments
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〈Xmax〉, σ(Xmax) is that the former contain information not found in the latter, i.e. two
different compositions can result in the same Xmax average and variance, but different dis-
tributions [9].

4 Fitting procedures

In order to derive the value of fitted parameters (and the associated errors) and cross-check
the results, we follow two independent fitting procedures that are described below.
We use four parameters for the mass composition at injection, assuming that the sources
inject only Hydrogen, Helium, Nitrogen, Silicon and Iron. We do this because not including
Silicon among the possible injected elements would result in a much worse fit to the measured
spectrum (D(J) = 41.7 instead of 13.3 in the reference scenario), due to a gap in the simulated
spectrum between the disintegration cutoffs of Nitrogen and Iron not present in the data,
whereas including more elements would only marginally improve the goodness of fit. In either
case, there are no sizeable changes in the best-fit values of γ, Rcut, or D(Xmax). In all the
cases considered below, the best fit Iron fraction is zero.1

4.1 Likelihood scanning

In this approach a uniform scan over (γ, log10(Rcut)) binned pairs is performed and for each
pair the deviance is minimized as a function of the fractions (fA) of masses ejected at the
source. The Minuit [71] package is used; since

∑

fA = 1, the number of parameters n in the
minimization is equal to the number of masses at source minus one. The elemental fractions
are taken as the (squared) direction cosines in n dimensions. The scan is performed in the
γ = −1.5 ÷ 2.5, log10(Rcut/V) = 17.5 ÷ 20.5 intervals, on a grid with 0.01 spacing in γ and
log10(Rcut). This range contains the predictions for Fermi acceleration (γ ∼ 2− 2.2), as well
as possible alternative source models (see section 2.1).
The best fit solution found after the scan procedure is used for evaluating errors on fit
parameters. In order to do so nmock simulated data sets are generated from the best solution
found in the fit, with statistics equal to the real data set. With nmock = 104 we found
stability in the outcomes. The procedure is similar to the one described in [9]. The quality
of the fit, “p-value”, is calculated as the fraction of mock datasets with Dmin worse than
that obtained from the real data. The best fit solution corresponding to each mock data
set is found and the mean value of the distribution of each fit parameter is evaluated. One
standard deviation statistical uncertainties are calculated within the limits containing 68% of
the area of the corresponding distribution of (γ,Rcut, fA). Concerning γ and Rcut we found
that the errors so obtained are well approximated by those evaluated considering the intervals
where D ≤ Dmin + 1 (the profile likelihood method [72]) so in order to compute parameter
uncertainties in most cases we only used the latter method, which is computationally much
faster.

4.2 Posterior sampling

In the second approach we apply a fit constraining all the parameters, (γ,Rcut and the four
mass fractions) simultaneously, taking into account the statistical and correlated systematic
uncertainties of the measured data. For this we use the Bayesian formalism where the

1In practice, after we noticed that the best-fit Iron fraction was zero in both the reference scenario and in
a few other cases, we only used Hydrogen, Helium, Nitrogen and Silicon (three parameters) in the remaining
fits, in order to have a faster, more reliable minimization.
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posterior probability of the astrophysical model parameters in light of the data is denoted
as P (model|data). It is calculated from P (model|data) ∝ L(data|model)P (model), where
L(data|model) is the likelihood function, i.e. probability of the data to follow from the model,
and P (model) is a prior probability. In this phenomenological work, we do not assign prior
probabilities P (model) based on astrophysical plausibility, but we use a uniform prior for γ
ranging from −3 to 3 and for log10(Rcut/eV) ranging from 17.9 to 20.5. As for the elemental
fractions we use uniform priors for the (n − 1) dimensional region given by

∑

A fA = 1
(employing the method described in [73]). For the experimental systematic uncertainties we
use Gaussian priors with mean 0 and standard deviation corresponding to the systematic
uncertainty of the measurements.
The posterior probability is sampled using a Markov chain Monte Carlo (MCMC) algorithm
[74]. For each fit, we run the MCMC algorithm from multiple random starting positions in
the parameter space, and require that the Gelman-Rubin statistic R̂ [75] be less than 1.04
for all parameters in order to assess the convergence of the fit.
To include the experimental systematic uncertainties the fit performs continuous shifts of the
energy scale and shower maximum with a technique called template morphing [76]. This is
done by interpolating between template distributions corresponding to discrete systematic
shifts. The nuisance parameters representing these shifts are fitted simultaneously with the
parameters of the astrophysical model. For each parameter we report the posterior mean
and the shortest interval containing 68% of the posterior probability, as well as the best fit
solution.

4.3 Systematic uncertainties

The most important sources of experimental systematic uncertainties in the present analysis
are on the energy scale and on Xmax . The systematic uncertainties can be treated as nuisance
parameters to be determined simultaneously in the fitting procedure, starting from Gaussian
prior distributions. We use this approach when performing the posterior sampling method
of section 4.2. Alternatively, all measured energy and/or Xmax values can be shifted by a
fixed amount corresponding to one systematic standard deviation in each direction; this is
the approach used when performing the likelihood scanning method of section 4.1.

5 The fit results

In this section, we first present the fit results in a “reference” scenario; then we study the
effect on the fit results of variations of this scenario, using different propagation simulations,
air interaction models, shapes of the injection cutoff functions, or shifting all the measured
energy or Xmax data within their systematic uncertainty.

5.1 The reference fit

We describe now the results of the fit, taking as reference SimProp propagation with PSB
cross sections, and using the Gilmore EBL model (SPG). The hadronic interaction model
used to describe UHECR-air interactions for this fit is EPOS-LHC [64]. The choice of this
particular set of models will be discussed in section 5.3.3. The best fit parameters for this
model are reported in table 1; errors are calculated as described in section 4.1.
In figure 1 we show the value of the pseudo standard deviation

√
D −Dmin as a function of

(γ,Rcut). In the inset we show the behaviour of the deviance along the valley line connecting
(γ, log10(Rcut/V )) minima (dashed line in the figure), corresponding in each point to the best
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Figure 1. Deviance
√
D −Dmin, as function of γ and log

10
(Rcut/V). The dot indicates the position

of the best minimum, while the dashed line connects the relative minima of D (valley line). In the
inset, the distribution of Dmin in function of γ along this line.

fit of the other parameters (J0 and fA).
From the figure we see that there is a very definite correlation between γ and Rcut: this cor-
relation is a quite general feature of the combined fit, appearing in all the different variations
of the reference fit discussed below. Considering the deviance distribution it is immediate
to note that there are two regions of local minima: one, which contains the best minimum,
corresponds to a low value of Rcut and a spectral index γ ≈ 1; this minimum region is quite
extended towards smaller values of γ at a slowly decreasing Rcut. In figure 2 we present the
spectrum data we actually fit and the Xmax distributions together with the fitted functions,
while in figure 3 the fit results are compared for reference to the all-particle spectrum and
Xmax momenta. The essential features of such a model have been discussed elsewhere [19, 20]
and, using a similar approach to that of this work, in [21], the general features being a low
maximum rigidity around log10(Rcut/V) = 18.5, a hard spectrum and a composition domi-
nated by Helium and heavier elements.
There is also a second relative minimum, which appears less extended, around the pair
γ = 2.04 and log10(Rcut/V) = 19.88. For nuclei injected with these parameters the effects of
interactions during propagation are dominant, as it is demonstrated by copious production
of high energy secondaries (in particular Hydrogen). This is the reason why in this region
the fit to composition is quite bad, as reported in table 1 and in figure 4, with Xmax simu-
lated distributions almost always larger than experimentally observed; this solution, in the
reference model, can be excluded at the 7.5σ level.
The low maximum rigidity Rcut ≈ 4.9 · 1018 V in the best fit minimum implies that the
maximum energy for Iron nuclei would be ≈ 1.3 · 1020 eV. This has the very important con-
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reference model main minimum 2nd minimum

(SPG – EPOS-LHC) best fit average best fit average

L0 [1044 erg Mpc−3 yr−1] 4.99 9.46∗

γ 0.96+0.08
−0.13 0.93±0.12 2.04±0.01 2.05+0.02

−0.04

log10(Rcut/V) 18.68+0.02
−0.04 18.66±0.04 19.88±0.02 19.86±0.06

fH(%) 0.0 12.5+19.4
−12.5 0.0 3.3+5.2

−3.3

fHe(%) 67.3 58.6+12.6
−13.5 0.0 3.6+6.1

−3.6

fN(%) 28.1 24.6+8.9
−9.1 79.8 72.1+9.3

−10.6

fSi(%) 4.6 4.2+1.3
−1.3 20.2 20.9+4.0

−3.9

fFe(%) 0.0 0.0

D/n 174.4/119 235.7/119

D (J), D (Xmax) 13.3, 161.1 19.5, 216.2

p 0.026 5 × 10−4

∗From Emin = 1015 eV.

Table 1. Main and second local minimum parameters for the reference model. Errors on best-fit
spectral parameters are computed from the interval D ≤ Dmin + 1; those on average values are
computed using the procedure described in 4.1.

sequence that the shape of the all particle spectrum is likely due to the concurrence of two
effects: maximum energy reached at the sources and energy losses during propagation.
The injection spectra are very hard, at strong variance with the expectation for the first
order Fermi acceleration in shocks, although alternatives are possible, as already mentioned
in 2.1. The composition at sources is mixed, and essentially He/N/Si dominated with no
contribution from Hydrogen or Iron at the best fit. The value of J0 of the best fit corre-
sponds to a total emissivity L0 =

∑

A

∫ +∞

Emin
EqA(E)dE = 4.99 × 1044 erg/Mpc3/year, where

qA(E) is the number of nuclei with mass A injected per unit energy, volume and time, and
LHe = 0.328L0, LN = 0.504L0, LSi = 0.168L0, with LA/L0 = fAZ

2−γ
A /

∑

A(fAZ
2−γ
A ).

Because of the low value of Rcut, the observed spectra are strongly sensitive to the behaviour
of accelerators near the maximum energy and therefore even large differences of injection
spectral indices have little effect on the observable quantities. This is the reason of the large
extent of the best minima region, and will be discussed below.
Given the deviance reported in table 1, the probability of getting a worse fit if the model is
correct (p-value) is p = 2.6%. Notice however that the effect of experimental systematics is
not taken into account here. A discussion of systematics is presented in section 5.2.
The errors on the parameters are computed as explained in 4.1. Those on the elemen-
tal fractions are generally large, indicating that different combinations of elemental spectra
can give rise to similar observed spectra. This fact is reflected by the presence of large
(anti)correlations among the injected nuclear spectra, as shown in table 2.

5.2 The effect of experimental systematics

The data on which the fit is performed are affected by different experimental systematic
uncertainties. In this section we analyze their effect on the fit parameters.
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Figure 2. Top: Fitted spectra, as function of reconstructed energy, compared to experimental counts.
The sum of horizontal and vertical counts has been multiplied by 10 for clarity. Bottom: The dis-
tributions of Xmax in the fitted energy bins, best fit minimum, SPG propagation model, EPOS-LHC
UHECR-air interactions. Partial distributions are grouped according to the mass number as follows:
A = 1 (red), 2 ≤ A ≤ 4 (grey), 5 ≤ A ≤ 22 (green), 23 ≤ A ≤ 38 (cyan), total (brown).

H He N Si γ

He −0.78
N −0.61 −0.01
Si −0.43 −0.08 +0.75
γ −0.26 −0.32 +0.80 +0.89
log10(Rcut/V) −0.59 +0.00 +0.93 +0.84 +0.86

Table 2. Correlation coefficients among fit parameters (SPG model, EPOS-LHC UHECR-air inter-
actions) as derived from the mock simulated sets.
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Figure 3. Top: simulated energy spectrum of UHECRs (multiplied by E3) at the top of the Earth’s
atmosphere, obtained with the best-fit parameters for the reference model using the procedure de-
scribed in section 3. Partial spectra are grouped as in figure 2. For comparison the fitted spectrum
is reported together with the spectrum in [4] (filled circles). Bottom: average and standard deviation
of the Xmax distribution as predicted (assuming EPOS-LHC UHECR-air interactions) for the model
(brown) versus pure 1H (red), 4He (grey), 14N (green) and 56Fe (blue), dashed lines. Only the energy
range where the brown lines are solid is included in the fit.

The main systematic effects derive from the energy scale in the spectrum [4], and the Xmax

scale [5]. The uncertainty on the former is assumed constant ∆E/E = 14% in the whole
energy range considered, while that on composition ∆Xmax is asymmetric and slightly energy
dependent, ranging from about 6 to 9 g/cm2. As described in section 3 two approaches are
used to take into account the experimental systematics in the fit.
Including the systematics as nuisance parameters in the fit, we obtain the results in table
3. Here the average value and uncertainty interval of the model parameters include both
statistical and systematic uncertainties of the measurement. Also shown are shifts in the
energy scale and Xmax scale of the experiment as preferred by the fit. Both remain within
one standard deviation of the given uncertainties. The effect of fixed shifts within the exper-
imental systematics are reported in table 4.
From the results one can infer that the total deviance of the fit is not strongly sensitive to
shifts in the energy scale, though the injection mass fractions are. This is because an increase
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Figure 4. Same as figure 3 at the local minimum at γ = 2.04, SPG propagation model, EPOS-LHC
UHECR-air interactions.

reference model best fit average shortest 68% int.

γ 1.22 1.27 1.20 ÷ 1.38

log10(Rcut/V) 18.72 18.73 18.69 ÷ 18.77

fH(%) 6.4 15.1 0.0 ÷ 18.9

fHe(%) 46.7 31.6 18.9 ÷ 47.8

fN(%) 37.5 42.1 30.7 ÷ 51.7

fSi(%) 9.4 11.2 5.4 ÷ 14.6

∆Xmax/σsyst −0.63 −0.69 −0.90 ÷−0.48

∆E/σsyst +0.00 +0.12 −0.57 ÷ +0.54

D/n 166.5/117

D (J), D (Xmax) 12.9, 153.5

Table 3. Best-fit parameters for the reference model, including systematic effects as nuisance param-
eters in the fitting procedure. Errors are computed as described in 4.2.
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∆Xmax ∆E/E γ log10(Rcut/V) D D(J) D(Xmax)

−14% +1.33±0.05 18.70±0.03 167.0 19.0 148.0

−1σsyst 0 +1.36±0.05 18.74+0.03
−0.04 166.7 14.7 152.0

+14% +1.39+0.03
−0.05 18.79+0.03

−0.04 169.6 13.0 156.6

−14% +0.92+0.09
−0.10 18.65±0.02 176.1 18.1 158.0

0 0 +0.96+0.08
−0.13 18.68+0.02

−0.04 174.3 13.2 161.1

+14% +0.99+0.08
−0.12 18.71+0.03

−0.04 176.3 11.7 164.4

−14% −1.50+0.08
∗ 18.22±0.01 208.1 15.3 192.8

+1σsyst 0 −1.49+0.16
∗ 18.25+0.02

−0.01 202.6 9.7 192.8

+14% −1.02+0.37
−0.44 18.35±0.05 206.4 11.3 195.1

∗This interval extends all the way down to −1.5, the lowest value of γ we considered.

Table 4. The effect of shifting the data according to the quoted systematics in energy and Xmax

scales. In this and all other tables errors are computed from the interval D ≤ Dmin + 1.
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Figure 5. The change in Dmin vs γ with respect to change in energy (left) and Xmax scale, at nominal
value of the other parameter.

(or decrease) in the observed position of the energy cutoff can be reproduced by assuming a
heavier (lighter) mass composition, as the photo-disintegration threshold energy is roughly
proportional to the mass number of the nuclei.
On the other hand, a negative 1 σ change on the Xmax scale does not change D(J) and
slightly improves D(Xmax) and moves γ towards somewhat larger values. A positive change
dramatically drives γ towards negative values outside the fitted interval and moves Rcut

towards lower values, since it implies a lighter composition at all energies, in strong disagree-
ment with the width of the Xmax distributions. Taking into account systematics as in tables
3 and 4, the p-value of the best fit becomes p ≈ 6%. In figures 5, 6 the changes of the D(γ)
and D(Rcut) relations with systematics are reported.

5.3 Effects of physical assumptions

5.3.1 Air interaction models

To derive the results reported above a specific model (EPOS-LHC) of hadronic interactions
between UHECR and nuclei in the atmosphere has been used. It is therefore interesting to

– 15 –



 150

 200

 250

 300

 350

 400

 450

 500

 18.5  19  19.5  20  20.5

D
(R

cu
t)

log10(Rcut/V)

∆E/E = +14%
∆E/E =     0   
∆E/E =  -14%

 150

 200

 250

 300

 350

 400

 450

 500

 18.5  19  19.5  20  20.5

D
(R

cu
t)

log10(Rcut/V)

∆Xmax = +1σsyst
∆Xmax =   0       
∆Xmax =  -1σsyst

Figure 6. The change in Dmin vs Rcut with respect to change in energy (left) and Xmax scale, at
nominal value of the other parameter.

model γ log10(Rcut/V) D D(J) D(Xmax)

EPOS-LHC +0.96+0.08
−0.13 18.68+0.02

−0.04 174.3 13.2 161.1

Sibyll 2.1 −1.50+0.05 18.28+0.00
−0.01 243.4 19.7 223.7

QGSJet II-04
+2.08+0.02

−0.01 19.89+0.01
−0.02 316.5 10.5 306.0

−1.50+0.02
∗ 18.28+0.01

−0.00 334.9 19.6 315.3

∗Using QGSJet II-04 the minimum at γ ≈ 2 is better than that at γ . 1,
which is at the edge of the parameters region we considered.

Table 5. Same as table 1, using propagation model SPG and various UHECR-air interaction models
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Figure 7. The effect of different hadronic interaction models, using propagation model SPG and
various UHECR-air interaction models

consider the influence of this choice on the results. For this reason, we have repeated the fit
of the SPG model using Sibyll 2.1 [66] and QGSJet II-04 [65]. The results are presented in
table 5 and in figure 7. The use of these interaction models significantly worsens the goodness
of the fit in the chosen range of fitted parameters, as shown in figure 8 and quantified by
the D(Xmax) values in table 5, pushing towards very low values of Rcut and consequently
extreme negative values of γ.
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Figure 8. Average (left) and standard deviation (right) of Xmax as predicted in the best-fit model
assuming EPOS-LHC (top) and Sibyll 2.1 (bottom). The colour code is the same as in the bottom
panels of figure 3, but the range of the vertical axis is narrower in order to highlight the differences
between the two models. When using QGSJet II-04, the agreement with the data is even worse than
with Sibyll 2.1.

cutoff function γ log10(Rcut/V) D D(J) D(Xmax)

broken exponential +0.96+0.08
−0.13 18.68+0.02

−0.04 174.3 13.2 161.1

simple exponential +0.27+0.21
−0.24 18.55+0.09

−0.06 178.3 14.4 163.9

Table 6. The effect of the choice of the cut-off function on the fitted parameters, reference model.

5.3.2 Shape of the injection cut-off

We discuss here the effect of the shape of the cut-off function we have chosen for the reference
fit. This choice has been purely instrumental and is not physically motivated. More physical
possibilities can be considered, starting from a simple exponential multiplying the power-law
flux at all energies, to more complex possibilities (see section 2.1). In table 6 we present the
effect on the fit parameters of the choice of an exponential cut-off function.
It has to be noted that the two injection models are not as different as directly comparing
the numerical values of the parameters suggests, because the simple exponential cutoff takes
over sooner than a broken exponential one with the same nominal cutoff rigidity and makes
the spectrum softer (γeff = −d lnJ/d lnE = γ + E/(ZRcut) > γ, see figure 9). In any event,
the goodness of fit is almost identical in the two cases, so our data are not sensitive to their
difference.
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Figure 9. Injection spectra corresponding to the two choices of the cutoff function (the continuous
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line is the minimum detected energy considered in the fit); 1H (red), 4He (grey), 14N (green) and 28Si
(cyan)

5.3.3 Propagation models

As a consequence of the low maximum rigidity in the best fit, interactions on the CMB are
subdominant with respect to those on the EBL, particularly for medium atomic number nu-
clei (see for instance [49]). Therefore, poorly known processes such as photo-disintegration
of medium nuclei (e.g. CNO) on EBL can strongly affect extragalactic propagation. In [49]
a detailed discussion of several such effects can be found, as well as a comparison of the two
propagation codes used. Particular importance have, for instance, the radiation intensity
peak in the far infrared region, and the partial cross sections of photo-disintegration chan-
nels in which α particles are ejected.
To study the effects of uncertainties in the simulations of UHECR propagation, we repeated
the fit using the combinations of Monte Carlo propagation code, photo-disintegration cross
sections and EBL spectrum listed in table 7. In the present analysis EBL spectra and
evolution are taken from [53] (Gilmore 2012) and [54] (Domı́nguez 2011). As for photo-
disintegration, here we use the cross sections from [50, 51] (PSB), [61] (TALYS, as described
in [49]), and Geant4 [63] total cross sections with TALYS branching ratios ([49]).
In table 8 we present the spectrum parameters of the best fit at the principal minimum, while
table 9 contains the elemental fractions. We have verified that the different fitting procedures
outlined in section 4.1, 4.2 have no influence on the fit results.
The difference among models with different physical assumptions are generally much larger
than the statistical errors on the parameters, implying that they really correspond to differ-
ent physical cases, at least in the best minimum region.
In figure 10 we show the dependence of the deviance D on γ and Rcut (with all the other pa-
rameters fixed at their best fit values) for the models we used in the fit. From the parameters
in tables 8, 9 and the behaviours in figure 10 some considerations can be drawn. Concerning
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MC code σphotodisint. EBL model

SPG SimProp PSB Gilmore 2012
STG SimProp TALYS Gilmore 2012
SPD SimProp PSB Domı́nguez 2011
CTG CRPropa TALYS Gilmore 2012
CTD CRPropa TALYS Domı́nguez 2011
CGD CRPropa Geant4 Domı́nguez 2011

Table 7. The propagation models used (see Ref. [49] and references therein for details)

model γ log10(Rcut/V) D D(J) D(Xmax)

SPG +0.96+0.08
−0.13 18.68+0.02

−0.04 174.3 13.2 161.1

STG +0.77+0.07
−0.13 18.62+0.02

−0.04 175.9 18.8 157.1

SPD −1.02+0.31
−0.26 18.19+0.04

−0.03 187.0 8.4 178.6

CTG
−1.03+0.35

−0.30 18.21+0.05
−0.04 189.7 8.3 181.4

+0.87+0.08
−0.06 18.62±0.02 191.9 29.2 162.7

CTD −1.47+0.28
∗ 18.15+0.03

−0.01 187.3 8.8 178.5

CGD −1.01+0.26
−0.28 18.21±0.03 179.5 7.9 171.6

∗This interval extends all the way down to −1.5, the lowest value of γ we considered.

Table 8. Best-fit parameters and 68% uncertainties for the various propagation models we used (see
table 7). For the CTG model we report the two main local minima, whose total deviances differ by
2.2.

model fH fHe fN fSi
LH

L0

LHe

L0

LN

L0

LSi

L0

SPG 0% 67% 28% 5% 0% 33% 50% 17%
STG 0% 7% 85% 8% 0% 1% 81% 17%
SPD 63% 37% 0.6% 0.03% 9% 45% 30% 15%
CTG (γ = −1.03) 68% 31% 1% 0.06% 7% 26% 50% 18%
CTG (γ = +0.87) 0% 0% 88% 12% 0% 0% 77% 23%
CTD 45% 52% 3% 0.06% 1% 15% 70% 14%
CGD 90% 5% 4% 0.09% 5% 2% 79% 14%

Table 9. Element fractions at injection (at E0 = 1018 eV and in terms of total emissivity) at the
best fit for the various propagation models we used.

EBL models it is clear that the Domı́nguez model of EBL, having a stronger peak in the far
infrared affects more the propagation and would result in too many low-energy secondary
protons unless the cutoff rigidity is lowered, with a resulting negative spectral index and
lighter composition.
The strength of interactions has a similar effect: PSB [58, 59] cross sections (which altogether
neglect α production) imply generally larger maximum rigidity than TALYS [61] cross sec-
tions (which largely overestimate α production), with a similar effect on spectral index and
elemental fractions at injection.
As a consequence, the reference model exhibits the lowest deviance D as a function of γ,
while the models using Domı́nguez EBL have a much less defined minimum in the region
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Figure 10. Deviance D versus γ (left) and Rcut (right) along the valley line connecting
(γ, log10(Rcut/V )) minima, in the propagation models considered.

considered in the fits.
In the local minimum at γ ≈ 2 the difference among models is greatly reduced; this reflects
the fact that here interactions happen dominantly on CMB, which is known to much higher
precision than EBL and interaction lengths are so short that almost all nuclei fully photo-
disintegrate regardless of the choice of cross sections. The larger D however in all cases
disfavours this minimum with respect to the best one.

5.3.4 Sensitivity of the fit to the source parameters

The fitting procedure has different sensitivity on the parameters that all together character-
ize the sources. The spectral index γ and the rigidity cutoff log10(Rcut/V) are well fitted in
a wide region of astrophysical interest, whereas the fractions of injected nuclei are always
poorly determined, mainly because of the sizable correlations among them, as shown in table
2 for the SPG model.2 Moreover, the detected observables, the all-particle spectrum and the
longitudinal shower profiles, are either weakly dependent on the nuclei that reach the Earth
or, as for the Xmax distributions, depend logarithmically on their mass number. For this
reason, different combinations of injected nuclear species can produce similar observables. In
figure 11 we show the (γ, log10(Rcut/V)) region considered in our fits (tables 7, 8, 9). The
valley lines of the fit, corresponding to the values of Rcut, fA and spectrum normalization
that minimize D for each value of γ, show a slightly increasing region of low spectral indexes
below γ ≈ 0.5, with a logarithmic rigidity cut between 18 and 18.5, and one with a steeply
increasing spectral index region between 2 and 2.5, and corresponding large rigidity; these
lines are a common feature of the models with small differences among them.
A noticeable fact is the variation of mean mass at injection along the valley lines. The arrows
at the bottom of figure 11 show for each propagation model the γ region where the injection
is dominated by light elements (fH + fHe > 90%). This happens when the spectral index
is below some value ranging from about −0.5 to +0.5 depending on the propagation model
used (tables 8, 9).
In figure 12 we show the injected spectra (top) as a function of the spectral index along
the valley line and the corresponding fluxes at detection (bottom) for the SPG propagation
model. It is clear that for values of the spectral index sufficiently small the form of the
overall observed spectrum loses almost every dependence on the injection spectrum of sin-

2This correlation is present in all propagation models, at least for lighter nuclei. For the CTG model, for
instance, the correlation coefficient among H and He is ≈ −1.0.
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Figure 11. The lines connecting the local minima for the six models given in table 7. The lines
and arrows at the bottom of the figure indicate the γ regions where the light elements are dominant
(fH + fHe > 90%). Symbols indicate the position of the minima of each model. Both the best fit at
γ . 1 and the second local minimum at γ ≈ 2 are shown. For the CTG model both the γ . 1 minima
reported in table 8 are presented.

gle elements; it is rather the tuning of elemental fractions that determines the final overall
injection spectrum. In the negative γ region fractions effectively substitute the spectral pa-
rameters to shape the overall flux: this is the reason why here the sensitivity to the spectral
index becomes poor.
The values of Rcut along the valley line for γ ≤ +0.5 correspond to a propagation regime
dominated by EBL photons, with energy loss lengths from hundreds of Mpc to Gpc (at
the cutoff energy). The propagation with (γ, Rcut) in this region depends strongly on the
photo-disintegration cross sections and EBL parameterization, and, in negative-γ region, the
sensitivity to the propagation details becomes so extreme to make sub-dominant channels to
play a major role [49]. This fact can explain the change of regime along the valley lines.
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Figure 12. Top: injected spectra (in arbitrary units) as function of γ along the valley line for the
reference model. Bottom: spectra (in arbitrary units) at detection as function of γ along the same
line, compared with experimental points (open circles). The partial fluxes at detection represent the
total propagated flux originating from a given primary nucleus grouping together all detected nuclei
(primary and secondaries).

source evolution γ log10(Rcut/V) D D(J) D(Xmax)

(1 + z)m

m = +3 −1.40+0.35
−0.09 18.22+0.05

−0.02 179.1 7.5 171.7

m = 0 +0.96+0.08
−0.13 18.68+0.02

−0.04 174.3 13.2 161.1

m = −3 +1.42+0.06
−0.07 18.85+0.04

−0.07 173.9 19.3 154.6

m = −6 +1.56+0.06
−0.07 18.74±0.03 182.4 19.1 163.3

m = −12 +1.79±0.06 18.73±0.03 182.1 18.1 164.0

z ≤ 0.02 +2.69±0.01 19.50+0.08
−0.07 178.6 15.3 163.3

Table 10. Best fit parameters (reference model) corresponding to different assumptions on the
evolution or spatial distribution of sources.

6 Possible extensions of the basic fit

6.1 Homogeneity of source distribution and evolution

As indicated in section 2.1 we have assumed homogeneity (and isotropy) in the distribution
of the sources. It is clear that nearby sources are not distributed homogeneously (nor isotrop-
ically). In [77] the effect of nearby sources on the description of the data has been discussed,
and, more recently [78], the effect of the evolution of the sources (with redshift).
Only particles originating from z . 0.5 are able to reach the Earth with E > 1018.7 eV,
so only the source evolution at small redshifts is relevant. At such small redshifts, most
proposed parameterizations of the evolution of the emissivity (luminosity times density) of
sources with redshift are of the form (1 + z)m [79], although more detailed dependences are
possible in selected cases.

– 22 –



(E/eV)
10

log
18 18.5 19 19.5 20 20.5

]
-1

 y
r

-1
 s

r
-2

 k
m

2
J 

[e
V

3
E

3610

3710

3810

Figure 13. Simulated energy spectrum of UHECRs (multiplied by E3) at the top of the Earth’s
atmosphere, best-fit parameters for model SPG, along with Auger data points. The dashed (yel-
lowish) line shows the sub-ankle component obtained by subtracting from the experimental data the
continuation of the all-particle spectrum (figure 3) below the fitted energy region. The composition
below the ankle is derived from the mass fractions obtained in [9] averaged in the same energy range
(see text).

In the simple case above, positive m implies more luminous and/or dense far sources, with
increased importance of interactions on the photon backgrounds, and the contrary for neg-
ative evolution. To evaluate the possible effect on the fitted parameters, we have repeated
the fit, using the reference SPG model, for several values of m, and (for m = 0) assuming
a maximal source redshift at zmax = 0.02, corresponding to a distance of ≈ 80 Mpc. The
results of the fit are summarized in table 10.
The changing of the evolution has a strong effect on the spectral index: negative m allow
values of γ nearer to the expected for the standard Fermi mechanism, and a corresponding
slight increase of Rcut. Limiting the distances has a similar effect.3 On the other hand, in
the cases considered in the table, the deviance of the best solution does not change much, so
we cannot conclude that these scenarios are required by the data.

6.2 The ankle and the need for an additional component

In section 5 we have shown the results of the combined fit of spectrum and composition data
in the energy region above the ankle. This choice was motivated by the mixed nature of
the measured composition and the impossibility to generate the ankle feature with the basic
scenario outlined in section 2.1. As a consequence, we have implicitly assumed that the flux
below the ankle has to be explained as due to the superposition of additional component(s).
This component can be originated by different sources and mechanisms. An exclusive galac-
tic origin is difficult to accomodate, up to the ankle energy, in the standard paradigm of
acceleration in SNRs. Therefore extragalactic CR sources are expected to contribute to the

3Also propagation in extragalactic magnetic fields may induce similar changes [80] since in presence of a
turbulent magnetic field the distance from which UHECRs reach detection is effectively limited.
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Figure 14. Top: simulated energy spectrum of UHECRs (multiplied by E3) at the top of the Earth’s
atmosphere, best-fit parameters for model SPG, along with Auger data points. Partial spectra are
grouped as in figure 2. The dashed (yellowish) line shows the sub-ankle component obtained as
described in the text. The dot-dashed (blue) shows the KASCADE-Grande electron-poor flux, here
assumed to be only iron. Bottom: average and standard deviation of the Xmax distribution as
predicted (assuming EPOS-LHC UHECR-air interactions). Markers and colours as in figures 2,3.

low energy component that generate the ankle feature. These sources should reasonably be-
long to a different class with respect to the one used in our fit above the ankle. The study
of the flux and composition below the ankle is beyond the scope of this paper and shall be
more effectively addressed using in the combined fit the data from the Auger detectors spe-
cially dedicated to low energy showers [3]: the Infill 750 m-spacing array and HEAT (High
Elevation Auger Telescopes) [4, 81]. Here we limit the discussion on the possible effects of a
sub-ankle component on the solutions found in the section 5, taking as a reference the best
fit solution for the reference propagation model.
For this purpose, we first obtain the flux for log10(E/eV) < 18.7 by subtracting from the ex-
perimental data the lower energy continuation of the all-particle flux fitted above this value.
We assume below the ankle the elemental fractions in [9] where they are obtained from the
same Xmax distributions used in this work, independently in each energy bin; to reduce fluc-
tuations from bin to bin we use their averages for log10(E/eV) ≤ 18.6 (for EPOS-LHC, 59%
H, 5.6% He, 32% N and 3.8% Fe). The resultant fluxes are presented in figure 13. This ap-
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proach by construction gives a description of the spectrum and composition at lower energy
fully consistent with the data, but cannot give any indication on the nature of the sources.
In order to obtain more information, we then fit the sub-ankle flux obtained as described
above, assuming UHECRs in this energy range are injected by a class of sources similar to
those described in section 2.1 (although with different physical parameters). To account for
the possible presence of a sub-dominant component of the galactic flux, we assume an iron
flux modeled as the one obtained by the KASCADE-Grande (KG) collaboration assuming
EPOS as hadronic interaction model [82].4 Under this assumption we find that a reasonable
description of the sub-ankle component is obtained for a spectral index γ = 3.6, a rigidity
cutoff log10(Rcut/V) = 18.4 and a mix of about 56% H, 35% N and 9% Si.
The two components are summed each multiplied by adjustable weight factors to account for
the superposition effects, and the spectrum errors below the ankle are increased adding in
quadrature a 3% offset to account for possible related uncertainties. The limited interaction
between the two components is reflected by the values, close to 1, of the two weight factors,
1.01 (0.97) for the sub-ankle (super-ankle) component.
The result of this procedure is shown in figure 14. The sub-ankle spectrum and composition
merge with the fitted spectrum giving rise to a comprehensive description in the whole energy
range. It has to be stressed that this does not come out from an overall minimization of a
two-component source model and therefore it simply shows that there are possible sub-ankle
components consistent with our fitted spectrum and composition.
The result of this procedure gives a similar description to that discussed above (figure 13);
moreover, the sub-ankle component used here is mixed as well as the one describing the
super-ankle region, containing elements heavier than protons, as consequence of the Xmax

behaviour below the ankle, where the mean value is close to the one generated by pure He,
but the dispersion close to that of H. This is the main reason of the excess of simulated flux
in the ankle region, since the presence of nuclei heavier than protons does not allow us to
reproduce a steep flux like the one obtained by subtraction. Although the procedure used
does not allow us to draw firm conclusions, it appears difficult that a population of sources
with a rigidity dependent cutoff can reproduce a sharp ankle as in the Auger data.
As already stated the approach followed here is partial and cannot provide a full description
of the data from the lowest energies; however it suggests that a description of the sub-ankle
data does not necessarily spoil the main features of the fit as discussed in section 5.

7 Discussion

We have presented in this paper a fit of the experimental measurements (spectrum and mass
composition) performed by the Pierre Auger Observatory at UHECRs energies above the
ankle, assuming an extragalactic origin. Although the best fit obtained depends to consid-
erable extent on the models used for propagation in the extragalactic space and interactions
in the atmosphere, we have found some general features characterizing the parameters of the
astrophysical model chosen (γ, Rcut, the elemental fractions fA and total emissivity L0).
Referring to figures 3 and 11, it is evident that the best fit solutions present a marked
correlation between γ and log10(Rcut/V), and two local minima regions:

4An exponential cutoff is applied to the KG flux with Ecut = 1018 eV, above the energy range of measured
data.
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• An elongated region at Rcut / 5×1018 V, γ / 1, where the best minimum falls. In this
region both the spectrum and the Xmax data are reproduced reasonably well, but the
precise location of the best fit strongly depends on the propagation model (i.e. Monte
Carlo code, EBL spectrum, photo-disintegration cross sections and air interaction mod-
els).

• A smaller region at Rcut ≅ 7×1019 V, γ ≅ 2, where the spectrum is well reproduced but
there are too many high-energy protons at strong variance with the Xmax data, while
the position of the local minimum does not vary much among the various propagation
models.

For large values of the maximum energy at the source, ZRcut, the observed drop of the
spectrum is a consequence of interactions during propagation in the background radiation.
However, the copious secondary production implies a very mixed composition at odds with
observations. In this region interactions occur predominantly on the CMB, and almost all
nuclei fully photo-disintegrate into nucleons, which explains the little dependence on details
of propagation.
Decreasing Rcut, the propagated fluxes start to show the effect of the cutoff at the sources
with the consequence that the maximum energy of secondary protons is pushed to low values,
which in turn produces a less mixed composition in better agreement with data. In this re-
gion the observed spectrum starts to be reproduced by the envelope of hard elemental fluxes
(γ ≈ 1), cut by a decrease that is caused by both the source cutoff (for the secondary nu-
cleons) and the photo-disintegration (for the surviving primary medium and heavy nuclei).
This is the region of parameters in which the best fit of the reference case resides. Since
the cutoff rigidity corresponds to an energy per nucleon way below the threshold for pion
production on the CMB, the resulting flux of cosmogenic neutrinos at EeV energies is neg-
ligible. Also, particles with magnetic rigidity E/Z . 5 EV can be deflected by intergalactic
and galactic magnetic fields by several tens of degrees5 even when originating from relatively
nearby sources [88], making it very hard to infer source positions.
At even lower values of Rcut interactions on EBL begin to dominate, and are in any case
relatively weak. Primary Hydrogen and Helium become then dominant in order to reproduce
composition data, and the observed spectra are the product of fine tuning of the elemental
fluxes at injection.
This interplay between astrophysical source properties and effects of propagation then ex-
plains the general trend observed in section 5: copious interactions, both depending on the
choice of background and of cross sections require a small Rcut and possibly negative γ in a
very flat minima region. This partly explains why the position of the best fit for low γ is so
strongly model-dependent and why the models with lower best-fit values of γ tend to have
larger uncertainty intervals on it (see figure 12).
The use of the hadronic interaction models Sibyll 2.1 or QGSJet II-04 in place of EPOS-LHC
worsens the fit, pushing the best fit to the lowest considered values of spectral index and
requiring lighter mass compositions. This is because the widths of measured Xmax distribu-
tions, which depend both on shower-to-shower fluctuations and the amount of superposition
of different masses, are relatively narrow. Sibyll 2.1 and QGSJet II-04 predict very broad

5Indeed, the conclusion that the highest-energy CRs include many light and medium-mass nuclei but few
protons was independently reached by other authors [83–87] from the observation of a few excesses in the
angular distribution of UHECR arrival directions in regions of ∼ 20◦ radius and the lack of excesses on
smaller scales.
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Xmax distributions which are hard to reconcile with Auger data even assuming a pure mass
composition. Therefore it is not surprising that in this situation the fit seeks to keep the
propagated energy spectra for individual mass groups as separated as possible, corresponding
to negative γ, and even then cannot reasonably reproduce Auger data.
The fit results are also somewhat dependent on the Auger energy and Xmax scales, on which
there are sizeable systematic uncertainties. The effect of shifting the energy scale is com-
pensated by a change of composition at the sources, with very small effects in the other
parameters or the overall goodness of fit. On the other hand, shifting the Xmax distributions
downwards by their systematic uncertainty requires a somewhat higher spectral index and
heavier composition and improves the fit; shifting them upwards requires a much lower spec-
tral index and lighter composition and worsens the fit.
Some departures from the simple astrophysical model used are considered in section 6.1,
where we discuss the effect of modifications of the hypothesis of constant emissivity of the
sources. We find that an evolution of source emissivity ∝ (1 + z)m with m > 0 would make
the fit worse due to the increased level of interactions that produce abundant secondary
protons, whereas with m < 0 the goodness of fit is not affected much and a higher injection
spectral index is required. Limiting the source distance has a similar effect. It has been
noted that diffusion in extragalactic magnetic fields [80] may effectively limit the distance
from which particles reach detection, and produce softer injection spectra: to better evaluate
the importance of this mechanism, three-dimensional propagation simulations are needed.
Finally, in section 6.2 we have discussed how the results obtained fitting spectrum and com-
position above the ankle can be affected by the sub-ankle flux. An additional component of
extragalactic nuclei, mostly H and N, with a generation spectrum much steeper than the one
obtained by the fit above the ankle can be introduced to provide a reasonable description of
the data in the whole energy range. The new component appears not to interfere much with
the general picture discussed above. However it appears difficult to reproduce a sharp ankle
as in the Auger data once a rigidity cutoff is assumed for the sub-ankle component. One
possible way out is to assume from the beginning a model generating the ankle feature as a
consequence of interactions in the source photon environment, such as for example [47, 48]
and compare with experimental data: we did not follow this strategy in this paper.

8 Conclusions

In this paper we have shown that, within given hypotheses on propagation and interaction at
Earth, Auger data can bind the physical parameters of the sources in the simple astrophysi-
cal model considered. However several different hypotheses (i.e. atmospheric interaction and
EBL models, choices of photo-disintegration cross sections) can be made with resulting source
parameters well outside the statistical uncertainties of the fit. Better models of UHECR-air
hadronic interactions, EBL spectrum and evolution, or photo-disintegration cross sections
and branching ratios would help reduce these uncertainties.
The results obtained show some sensitivity to experimental systematics, in particular to that
on Xmax. About that, the new operation of Auger (AugerPrime) [89] will produce more com-
position sensitive observables, in particular connected to muons in showers, in an extended
energy range, including the highest energies, and with reduced systematics. Also the planned
extended FD operation will increase the statistics of shower development measurements at
the highest energies.
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A Generation of simulated propagated spectra

In order to compute the simulated spectrum that the measured data points are compared to,
we use either SimProp [16–18] or CRPropa [13–15] simulations. Both SimProp and CRPropa
runs simulate events with a uniform distribution of log10(Einj/eV), but the injection points
are uniform in zinj in SimProp and in tinj in CRPropa. A uniform distribution of sources
per unit comoving volume corresponds to a uniform distribution of injection times for the
events arriving at Earth (if counting as one event the arrival of all the particles originat-
ing from the same primary), so in the case of SimProp each event is weighed by a factor
w(zinj) ∝ dt/dz|z=zinj

, whereas no such weighing is required for CRPropa events.

When using SimProp, we used seven redshift intervals [0, 0.01), [0.01, 0.05), [0.05, 0.10),
[0.10, 0.20), [0.20, 0.30), [0.30, 0.50), and [0.50, 2.50), simulating 5 · 105 events with
log10(Einj/eV) from 17.5 to 22.5 for each primary mass and each redshift interval, for a
total of 3.5 · 106 events per primary mass. (Each redshift interval is weighed by its width.)
When using CRPropa, we simulated 4 ·106 primary H events, 2 ·106 primary He events, 8 ·106

primary N events, 2 ·106 primary Si events, and 4 ·106 primary Fe events, with log10(Einj/eV)
from 17.5 to 21.5 + log10 Zinj and tinj from t(z = 1) to the present time t(z = 0). We verified
that these numbers of events result in squared statistical uncertainties on the simulations less
than 10% of those on the Auger data in each of the energy bin of the fit. We then bin all the
particles arriving at Earth in bins of both log10(Einj/eV) and log10(EEarth/eV) of width 0.01,
obtaining a four-dimensional matrix giving the average number of nuclei arriving at Earth
with a given mass number AEarth in a given EEarth bin for each primary injected with a given
mass number Ainj in a given Einj bin. This matrix can be multiplied by a vector representing
the injection spectrum to obtain a vector representing the true spectrum at Earth, or also
by an analogous matrix representing the detector properties (see appendix B) to obtain the
folded spectrum at Earth, which when multiplied by the detector exposure and integrated
over the energy bins results in the expected number of events µm which enters the deviance
function.

B Treatment of detector effects

The astrophysical models, combined with propagation in extragalactic photon backgrounds,
predict elemental fluxes at the top of the atmosphere. The signal generated on the detectors,
after interactions in the atmosphere, is then reconstructed in terms of physical observables
and, to do so, experimental uncertainty and biases have to be taken into account. For each
generated true flux J(Etrue) (which depends on source parameters) we have a corresponding
reconstructed (folded) flux

Jfold(Erec) =

∫ +∞

0

p(Erec|Etrue)J(Etrue) dEtrue (B.1)

where
p(Erec|Etrue) = T Gauss

(

Erec|bEtrue,
σE
E

Etrue

)

(B.2)

where T is the trigger efficiency, b the energy bias, σE

E is the SD energy resolution, which are
all functions of Etrue. In terms of these function the expected counts are:

µm =

∫

bin m
EJfold(Erec) dErec (B.3)
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where E is the exposure of the surface detector(s).
T , b, σE are obtained through detailed detector simulations or from the data themselves
(see below) and parameterized, for the vertical SD spectrum, as:

σE/E =
√

σ2
det + σ2

sh; σdet = A +
B√
Etrue

+
C

Etrue

; σsh = p0 + p1y (B.4)

where A = 1.3 × 10−3, B = 0.18 EeV1/2, C = 0.052 EeV and y = log10(Etrue/EeV),
p0 = 0.154, p1 = −0.030.
In the range of energies we are considering T = 1 and the energy bias b is (in this energy
range there is no zenith angle dependence for an isotropic UHECR distribution):

b = 1 + P0 + P1y + P2y
2; (B.5)

with P0 = 1.057, P1 = −0.072, P2 = −0.023. The folding procedure for the inclined spectrum
is fully described in [68].
It is worthwhile noting that the model fit gives a flux that is lower than the observed flux
below the energy threshold of the fit. As a consequence, the migration of events from low
energies into the fitting range is underestimated by . 3% in the first energy bin6 and negligible
at higher energies.
In each energy bin, we only fit the total number of observed SD events nm = nv

m +ni
m to the

total model prediction µm = µv
m+µi

m rather than the vertical and inclined counts separately.
It can be shown in the latter case that the total deviance

Dv + Di = −2
∑

m

(

µv
m − nv

m + nv
m ln

nv
m

µv
m

+ µi
m − ni

m + ni
m ln

ni
m

µi
m

)

(B.6)

would be equal to that computed from the summed spectra (3.2) plus a term given by

Drel = −2
∑

m

(

nv
m ln

(

nm

nv
m

µv
m

µm

)

+ ni
m ln

(

nm

ni
m

µi
m

µm

))

, (B.7)

which quantifies possible differences between the two observed spectra and only depends on
the model predictions through the ratios µv

m/µm, µi
m/µm. Since µv

m/µm (µi
m/µm) is almost7

equal to the ratio of the vertical (inclined) exposure to the total SD exposure, Drel does not
depend on the astrophysical model but only on the data, and including or excluding it makes
no difference on the best-fit parameter values or their uncertainty intervals. We chose to
exclude it from the values of D(J) we mention in this work (by using Eq. 3.2 rather than
B.6) because any difference between the observed SD vertical and inclined spectra cannot
be due to the astrophysical models. For what concerns the composition, we apply to the
Gumbel parameterization of Xmax (see section 3), the parameterization for the resolution,
R, and acceptance, A, as given in [5], in order to account for the detector response:

g(Xrec
max|E,A) = (g(Xmax|E,A) · A(Xmax|E)) ⊗R(Xrec

max|Xmax, E) (B.8)

6In the best-fit model, 34% of the events with Erec/eV in [1018.7 , 1018.8) have Etrue/eV in [1018.6, 1018.7),
and 5% have Etrue/eV in [1018.5, 1018.6). Compared to the data in ref. [4], this model underestimates the total
flux with Etrue/eV ∈ [1018.6, 1018.7) by 5% and that in [1018.5 , 1018.6) by 25%.

7Except for very small effects due to the two datasets having different p(Erec|Etrue) functions.
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The model probability Gm(Xrec
max), evaluated at the logarithmic energy bin centre m, for a

given mass distribution at detection {pA} is then given by:

Gmodel
m (Xrec

max) =
∑

A

pA · g(Xrec
max|Em, A) (B.9)

Finally, since the energy resolution of the Fluorescence Detector is narrower than the width
of the energy bins we use, its effect has been neglected in this analysis.
Not using the forward-folding procedure and directly fitting the values of J , 〈Xmax〉 and
σ(Xmax) presented in refs. [4, 5] assuming a Gaussian likelihood (so that the deviance to
be minimized is the χ2 statistic) would yield qualitatively similar results, but with slightly
lower best-fit values for γ and Rcut and somewhat larger uncertainty intervals (γ = 0.68+0.12

−0.17,

log10(Rcut/V) = 18.59+0.03
−0.04 in the reference model).

B.1 Effect of the choice of the SD energy resolution

The energy resolution of the SD, required for the forward-folding procedure, can be estimated
either from shower and detector simulations (but with possibly strongly model-dependent
results) or directly from the calibration data (but with large statistical uncertainties especially
at the highest energies). Throughout this work we used the data-based parameterization of
eq. (B.4), but in order to assess how sensitive our fit is to this choice, we also tried using the
QGSJet II-03 simulation-based parameterization

σE
E

= 0.109 + 0.435 × 10−17

(

E

eV

)−1/2

(B.10)

for the vertical SD resolution, which exceeds the data-based one by about twice the statistical
standard deviation of the latter. (We did not change the inclined SD resolution.) We found
the effects of this to be negligible, with the best fit at the same (γ, log10 Rcut) pair to within our
grid spacing (but with slightly narrower lower uncertainty intervals, 0.96+0.08

−0.11 and 18.68+0.02
−0.03),

with the same mass fractions to within 0.4%, and with the same total deviance to within
3 × 10−3 (though with higher spectrum deviance and lower Xmax deviance by about 0.5).
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NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over
land access; Australia – the Australian Research Council; Brazil – Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico (CNPq); Financiadora de Estudos e Proje-
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