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ABSTRACT
Merging galaxy systems provide observational evidence of the existence of dark matter and
constraints on its properties. Therefore, statistically uniform samples of merging systems
would be a powerful tool for several studies. In this paper, we present a new methodology
for the identification of merging systems and the results of its application to galaxy redshift
surveys. We use as a starting point a mock catalogue of galaxy systems, identified using friends-
of-friends algorithms, that have experienced a major merger, as indicated by its merger tree.
By applying machine learning techniques in this training sample, and using several features
computed from the observable properties of galaxy members, it is possible to select galaxy
groups that have a high probability of having experienced a major merger. Next, we apply a
mixture of Gaussian techniques on galaxy members in order to reconstruct the properties of
the haloes involved in such mergers. This methodology provides a highly reliable sample of
merging systems with low contamination and precisely recovered properties. We apply our
techniques to samples of galaxy systems obtained from the Sloan Digital Sky Survey Data
Release 7, the Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and the Hectospec Cluster
Survey (HeCS). Our results recover previously known merging systems and provide several
new candidates. We present their measured properties and discuss future analysis on current
and forthcoming samples.

Key words: galaxies: clusters: general – galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

Merging galaxy systems, such as the Bullet Cluster (Clowe et al.
2006), Abell 520 (Mahdavi et al. 2007; Jee et al. 2012; Clowe et al.
2012; Jee et al. 2014), Baby Bullet (Bradac et al. 2008), Pandora
(Merten et al. 2011), Musket Ball (Dawson et al. 2012), El Gordo
(Menanteau et al. 2012; Ng et al. 2015; Molnar & Broadhurst 2015),
Abell 1758 (Durret, Lima Neto & Forman 2005) and Abell 3716
(Andrade-Santos et al. 2015), have provided observational evidence
for the existence of dark matter. Most of them have been used to
test the cold dark matter (CDM) paradigm itself (Markevitch et al.
2004; Hayashi & White 2006; Farrar & Rosen 2007; Milosavljevic
et al. 2007; Springel & Farrar 2007; Randall et al. 2008; Mas-
tropietro & Burkert 2008; Lee & Komatsu 2010; Forero-Romero,
Gottlober & Yepes 2010; Thompson & Nagamine 2012; Watson
et al. 2014; Thompson, Davé & Nagamine 2015). Several statistical
techniques have been proposed to measure dark matter properties
using merging systems (such as the self-interaction cross-section;
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Massey, Kitching & Nagai 2011; Harvey et al. 2014; Kahlhoefer
et al. 2014; Harvey et al. 2015). However, the lack of a complete
and uniformly selected sample of merging systems prevents efforts
to derive robust constraints. In order to overcome this limitation,
different approaches have been proposed: the Merging Cluster Col-
laboration uses radio emission due to induced shocks in the intr-
acluster medium (ICM; Feretti et al. 2012) to obtain high-redshift
merging system candidates. These systems have been studied us-
ing pan-chromatic observations and detailed merging kinematic
Bayesian reconstructions (Dawson 2013). X-ray imaging, spectra
and Sunyaev–Zeldovich (SZ) effect observations have been used
to identify unrelaxed clusters of galaxies (Mann & Ebeling 2012),
cluster mergers (Harvey et al. 2014), substructures and any depar-
tures from hydrostatic equilibrium, mainly for the most massive
galaxy clusters.

Galaxy redshift surveys are very useful to trace the dynamical
state of galaxy systems and to search for substructures (Dressler
& Shectman 1988). To this end, some methods look for departures
in the global Gaussian redshift distribution of system members
(Solanes, Salvador-Solé & González-Casado 1999; Hou, Parker
& Harris 2014; Yu et al. 2015). Even though all these methods
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Merging systems identification 227

aim to identify the substructures and recover their properties, they
suffer from false identifications and incompleteness, at least to some
extent.

In this paper, we develop a uniform identification algorithm of
merging systems based on galaxy redshift catalogues. These meth-
ods can be applied to low-mass systems and should increase the
number of merging systems, such as the bullet group recently identi-
fied by Gastaldello et al. (2014). This paper is organized as follows.
In Section 2, we apply machine learning techniques to a num-
ber of observable features and present its calibration based on the
result of simulations. We also introduce techniques to recover prop-
erties of merging dark matter haloes. In Section 3, we apply our tech-
niques to samples of galaxy systems identified from low-redshift
galaxy surveys such as the Sloan Digital Sky Survey Data Re-
lease 7 (SDSS-DR7), the Wide-Field Nearby Galaxy-Cluster Sur-
vey (WINGS) and the Hectospec Cluster Survey (HeCS).

Finally, in Section 4, we summarize the main results of this
work and discuss the uses of this new sample of merging sys-
tems. We adopt the standard cosmological model used in the Mil-
lennium Simulation (Springel et al. 2005) when necessary (H0 =
73 km s−1 Mpc−1, �m = 0.25 and �� = 0.75).

2 M E T H O D O L O G Y

2.1 Mock galaxy and halo catalogues

From the point of view of the current theory of galaxy formation,
the most direct route for defining galaxy systems is via its host dark
matter halo (Mo, Van den Bosch & White 2010).

The Millennium Simulation (Springel et al. 2005), used in this
work, provides a catalogue of dark matter (sub)haloes constructed
using a traditional three-dimensional friends-of-friends algorithm
(FoF) that percolates nearby particles. The German Astrophysical
Virtual Observatory (GAVO) Millennium data base also provides
merger trees for each halo (Roukema, Quinn & Peterson 1993).
Therefore, given all the haloes belonging to a FoF group, it is
possible to infer its merger tree. We compute for each FoF group a
parent list of FoF progenitors (identified in previous snapshots) that
have contributed with at least one subhalo to the current FoF group.
We define a major merger of FoF groups as the merger between
two groups where the total mass of the involved haloes represents at
least 20 per cent of the mass after the merger. It is worth noting that
this condition imposes a minimal value of 0.25 for the mass ratio
of the interacting systems. We construct mock catalogues of the
SDSS-DR7 redshift survey based on the results of a semi-analytical
model (Guo et al. 2011) and we use it to calibrate our identification
method for merging systems. This process has been extensively
described in previous works (Lares, Lambas & Domı́nguez 2011;
Domı́nguez Romero, Garcı́a Lambas & Muriel 2012).

We define a recent major merger as the major merger of two FoF
groups, where its principal haloes are still present as different haloes
in the final FoF group. With these selection criteria, the mean of
the look-back merger time is around 3 Gyr, consistent with other
work (Pinkney et al. 1996). The FoF groups identified as recent
major mergers and their member galaxies identified in the mock
catalogues are used to train different machine learning methods.

2.2 Identification technique of merging systems

Galaxy systems were identified in the mock catalogue reproducing
the FoF process as applied to real redshift catalogues (Merchán &
Zandivarez 2002, 2005). Using the properties of the galaxies in these

FoF systems, we compute several features relevant to the problem,
as follows.

(i) The DS test developed by Dressler & Shectman (1988) uses
the deviation of the local radial velocity, defined as the mean radial
velocity of the closest n galaxies to each galaxy, from the global
radial velocity in order to find substructures in clusters of galaxies.
A global cluster value of the DS test is then obtained by summing up
individual galaxy values. Following Pinkney et al. (1996), we select
those systems of galaxies with an occupancy Ngal > 30 galaxy
members in order to have a better identification. We performed the
DS test for n = 10 and n = √

Ngal, and used global and individual
DS values as features.

(ii) Well-known tests measuring the departures from a nor-
mal Gaussian distribution include the Anderson–Darling test, the
Cramer–von Mises test, the Kolmogorov–Smirnov test, the Pearson
chi-square test, the Shapiro–Francia test (provided by the package
NORTEST; Gross & Ligges 2015) and the Shapiro–Wilk test (provided
by the STATS package).

(iii) Astrophysical properties of galaxies and clusters include
SDSS magnitudes, g − r colour index and occupancy of clusters.

With this set of features, we test different machine learning al-
gorithms such as the logistic regression (Davison & Hinkley 1997;
Canty & Ripley 2015), support vector machines (Cortes & Vapnik
1995; Meyer et al. 2014) and random forest (hereafter RF; Breiman
2001; Liaw & Wiener 2002), provided by the R statistical program-
ming language, with the aim of finding merging systems in the
complete sample of galaxy clusters in our simulated catalogues.

In order to measure its performance, we run a standard cross-
validation test in eight folds; that is, we divide the total sample into
eight individual and independent subsets and train each machine
learning algorithm with seven of them in order to predict the dy-
namical status of the clusters of the remaining fold. As we know
both the underlying and predicted dynamical status, we are able to
compute the true positive rate (TPR), defined as the ratio between
the number of merging clusters found in the final sample and the
total number of merging clusters that were in the test fold. In the
same way, we are able to compute the false positive rate (FPR), de-
fined as the number of relaxed clusters classified as merging clusters
divided by the number of relaxed clusters that the studied fold has.
This information allows us to construct the receiver operating char-
acteristic (ROC) curve shown in Fig. 1(a) in which it can be seen
that the best performance is obtained by the RF algorithm.

For each cluster, the RF computes a statistic that is related to
the probability that the cluster is undergoing a merger, by building
many decision trees from bootstrap training data, where the final
classification is based on the average assignation of the ensemble
of decision trees. Each tree is grown using randomly selected fea-
tures from the training data set previously described. We impose a
threshold to the RF statistic of each cluster in order to classify the
sample of merging clusters. In order to select an optimal thresh-
old, we study in Fig. 1(b) the impact of different values on several
statistics of the sample of merging systems, namely the TPR, the
FPR, the effectiveness (number of identified true mergers divided
by the total number of identified mergers) and the normalized length
(number of identified mergers divided by the maximum number of
identified mergers of the different thresholds). As can be seen, the
classification threshold affects the performance of the RF classifier.
Consequently, we select a threshold value of 0.3. This selection cri-
terion guarantees a low false positive detection (high effectiveness)
in the selected merging systems, but it should be recalled that we are
only detecting just a fraction of the overall merging systems in the
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228 M. de los Rios et al.

Figure 1. (a) ROC curve for logistic regression (red crosses), support vector machines (blue diamonds) and RF (black dots) classifiers evaluated using the
eight-fold cross-validation test on the SDSS mock training catalogues. (b) Effectiveness (black dots), true positive rate (red crosses), false positive rate (blue
asterisks) and normalized length (green diamonds) as a function of the threshold imposed to the RF statistic (see text). The vertical line indicates the selected
threshold value. (c) Effectiveness (black dots) and true positive rate (red crosses) as a function of the number of galaxy systems for the RF model, with the
values at the selected threshold indicated by continuous lines. (d) Normalized projected distances rnorm and velocity difference vnorm of the merging cluster
haloes recovered by our methodology (black points). False positive merging clusters are indicated by magenta squares. Merging clusters with misidentified
substructures are indicated by red crosses. The vertical line indicates the selection cut introduced in order to avoid LOS contamination.

simulated catalogue, as can be seen in Fig. 1(c). Note that Fig. 1(d)
is analysed later in Section 2.3.

The RF implementation also allows us to assess the relative im-
portance of the features as described in Ehrlinger (2015). In our case,
the most important features are the number of galaxy members, the
p-value of the Shapiro–Wilk test and the Dressler–Shectman test.
Nevertheless, it is worth noting that all the previously described
features are used in our RF implementation.

2.3 Measured properties of the merging haloes

The RF algorithm gives us a list of galaxies with high probability
of belonging to the merging system. However, this method does
not provide information about galaxy membership to the individual
substructures. Using a mixture of Gaussian algorithms (R package
MCLUST; Fraley et al. 2012), it is possible to cluster these member
galaxies into the two merging substructures. Assigning galaxies,
we are able to compute the centre position (angular and redshift)
of the substructures, their velocity dispersion (Gapper estimator)
and virial radius, and therefore to measure a dynamical mass. In
order to estimate the associated errors, we implemented a bootstrap
technique. As shown in Figs 2(a) and (b) the individual masses and
the mass ratios are well recovered.

The recovered geometries of the merging systems can be seen in
Fig. 1(d) in terms of the separation of the components in the line of
sight (LOS) and in the plane of the sky. Specifically, on the x-axis,
we compute the normalized projected distance rnorm = d1,2/(rvir 1

+ rvir 2), where d1,2 is the angular separation between both compo-
nents of the merging system and rvir 1 and rvir 2 are the corresponding

virial radii. On the y-axis, we show the velocity difference vnorm =
|v1,2|/(σ 1 + σ 2), where v1,2 is the velocity distance between com-
ponents and σ 1 and σ 2 are the corresponding velocity dispersions
of the substructures. Using this identification method, we found
three different cases: relaxed clusters, which we classify as merging
clusters (indicated by magenta squares); merging clusters in which
we are unable to recover the real substructures (indicated by red
crosses); and merging clusters in which we do recover the true sub-
structures that are undergoing a merger (indicated by black dots).
As can be seen, the FPR cases (FPR ∼15 per cent), indicated by
magenta squares, are evenly distributed as a function of the rnorm

parameter. The merging systems where we are not able to recover
the real substructures are concentrated below a value of rnorm =
0.22. Such a selection cut will be used in order to report the prop-
erties of the substructures. Although we are able to find spatially
coincident merging systems (rnorm < 0.22; i.e. systems merging
along the LOS or systems with a small projected angular separa-
tion), we are not able to recover well the intervening substructures.
Using this methodology, we are able to define samples of merging
systems with high levels of purity, low contamination and almost
exact computation of the centre position of each component, as
can be seen in Figs 2(c) and (d). In Fig. 2(c), we show the angu-
lar separation θ between the actual and the recovered positions of
each component, normalized to the actual virial radius. Similarly, in
Fig. 2(d), we show the differences �v between actual and measured
radial velocities, divided by the real velocity dispersion. It should
be recalled that our machine learning method is able to recover the
correct substructures that belong to the major merger, as identified
using the merger tree.
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Merging systems identification 229

Figure 2. Recovered properties of merging galaxy systems identified in the simulated mock catalogue. The subscripts 1 and 2 refer to the main and the merging
subhaloes, respectively. Panel (a) shows the estimated mass bias (Mobs/Mreal − 1) for the main and merging substructure; the colour scale represents different
mass ratios. Panel (b) shows the probability distribution function for the real and observed mass ratio (M2/M1). Panel (c) displays the cluster centre separation
on the sky plane (real and recovered) normalized to the real virial radius. Panel (d) shows the absolute value of the velocity separation (real and recovered)
normalized to the real velocity dispersion. See text for further explanations.

Table 1. Here we present the low-redshift merging cluster sample, including the properties of the two main substructures identified by our algorithm.
In column (1), we present the name of the cluster. Columns (2)–(5) give the estimated mass and the position of the main substructures. Columns (6)–(9)
give the estimated mass and the position of the other substructure. Finally, Column (10) lists previous work on each cluster. Clusters that have been
previously reported as merging systems are indicated with

√
. References: 2, Wen & Han (2013), 3, Einasto et al. (2012), 4, Cohen et al. (2014), 6,

Abdullah et al. (2011), 7, Rines & Diaferio (2006), 8, Rhee, van Haarlem & Katgert (1991), 9, Parekh et al. (2015), 16, Ramella et al. (2007), 21, Wang
et al. (2010), 22, Johnston-Hollitt et al. (2008), 23, Boschin et al. (2012), 26, Ragozzine et al. (2012b), 27, Durret, Laganá & Haider (2011), 29, Smith
& Taylor (2008), 30, Korngut et al. (2011). A full version of the table is available as supporting information in the online version.

Name M1 (1014 M�) RA1 (◦) Dec.1 (◦) z1 M2 (1014 M�) RA2 (◦) Dec.2 (◦) z2 References
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Abell 1424 4.9 179.38 5.08 0.0760 5.1 179.19 5.01 0.0746 3,6.7,8
±2.3 ±0.09 ±0.02 ±0.0004 ±1.4 ±0.1 ±0.04 ±0.0005

Abell 2142 18.3 239.61 27.23 0.0901 11.3 239.33 27.5 0.0893 2√ ±0.6 ±0.005 ±0.005 ±0.0004 ±1.8 ±0.005 ±0.005 ±0.0001
Abell 3158 37.24 55.75 −53.63 0.0633 4.6 55.37 −53.48 0.0622 4,9,16,21,22√ ±1.5 ±0.07 ±0.004 ±0.0001 ±0.2 ±0.007 ±0.001 ±0.0001
Abell 2382 77.7 327.90 −15.66 0.0676 6.12 328.167 −15.62 0.0642

±10.2 ±0.006 ±0.006 ±0.0003 ±1.1 ±0.003 ±0.01 ±0.0002
Abell 1758N 59.3 203.07 50.59 0.2768 29.1 203.25 50.57 0.2783 2,23,26,27√ ±9 ±0.02 ±0.01 ±0.0002 ±15.8 ±0.02 ±0.03 ±0.0007
Abell 1835 105 210.25 2.87 0.2516 17 210.29 2.75 0.2479 2,29,30

±14 ±0.01 ±0.01 ±0.0006 ±25 ±0.09 ±0.04 ±0.002

3 A PPLICATION TO LOW-REDSHIFT
CLUSTERS

After testing our algorithm on simulated data, we applied our iden-
tification algorithms to galaxy systems with more than 30 galaxy
members identified in the updated Merchán & Zandivarez (2002)
catalogue, based on SDSS-DR7 (Abazajian et al. 2009) data and two
samples of galaxy cluster measurements: WINGS (Cava et al. 2009)
and HeCS (Rines et al. 2013). For the WINGS clusters, we compute
the g − r colour of the individual galaxies based on the observed

b − v colour, applying the formulae presented by the 2df Collab-
oration based on the results of Fukugita, Shimasaku & Ichikawa
(1995). We report the following clusters as spatially coincident
merging systems candidates: A2593, A2199

√
, A2048

√
, A3266

√
,

A3497, A667, A1201
√

, A267
√

, Zw8197, A697
√

, A750, Zw2701,
Zw3146, A1246, A1302, A1413, A1682

√
, A1763

√
, A1902,

A1918, A1930, A2009, A2034
√

, A2069
√

, A2111
√

, A2219
√

,
A2050, A2259 and RXC 1504. Note that we do not provide the sub-
structure properties due to the LOS projection effect (as discussed
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230 M. de los Rios et al.

Figure 3. Galaxy angular distribution of some merging systems. From left to right we show in columns: two simulated systems, two clusters from the SDSS,
two WINGS clusters and two HeCs clusters. Member galaxies of both substructures are shown as red and blue dots while the black lines plot the iso-density
contours. The ellipses indicate the 1σ , 2σ and 3σ errors of the identified substructure (on blue or red colours depending on the component), with solid, dashed
and dotted lines, respectively. For comparison, green dots show the angular positions of the X-ray sources, and magenta dots show the angular positions of the
substructures identified by other authors. For the simulated merging systems, we also show as a dashed line the iso-density of the true substructures that are
colliding and as red and blue lines the iso-density contours for the identified substructures.

in Section 2.3), and therefore minor mergers could be included in
this sample (Ma et al. 2012). We display in Table 1 the properties of
the two interacting structures of the merging clusters identified us-
ing our machine learning (RF) classification techniques. The errors
for each property are the standard deviation computed on a hundred
measurements obtained from the RF and the clustering realiza-
tions. Many of them are well-known merging systems (indicated
by

√
in the table); however, it is important to emphasize that our

method was able to find several new candidates and also to measure
their properties. It should be noted that the decomposition of these
structures is only indicative, because galaxy velocities are strongly
affected by the gravitational attraction of the two haloes. Therefore,
a tomographic reconstruction is necessary (including lensing and
X-ray/SZ data) to recover the substructures accurately.

3.1 Case of multiple major mergers

It is well known that there are some clusters that are the result of
the merging of more than two systems, although these represent
only a small fraction of the total sample (27 of 132 in eight SDSS
mock catalogues). In order to recover all the merging substructures,
we performed a mixture of more than two Gaussians. We found
that our algorithm is only able to recover, with reliable properties,
the two more important substructures. Hence, the remaining struc-
tures may appear as contamination, or not appear at all. We discuss
an individual analysis of Abell 1758 as an example of the multi-
ple major merger case. This cluster is known as a merger of four
substructures, two in the north and two in the south (Ragozzine
et al. 2012a). At a first iteration, our algorithm classified correctly
Abell 1758 as a merging cluster, but failed to properly reconstruct
the merging substructures. Considering this extra information, we

separate the cluster into north and south components and perform a
new analysis of each separately. We find that our algorithm is able
to classify both as merging clusters and well recovers the merging
substructure properties of both components (north and south).

4 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, we have introduced a method aimed at detecting merg-
ing systems of galaxies in redshift surveys. We select a RF algorithm
between other machine learning algorithms, and use as features the
quantities derived from the galaxy redshift space information and
from photometry (e.g. colours). Our detection method was trained
and calibrated using a sample of merging systems extracted from
mock catalogues. By studying the merger trees, we check that we
do find the two substructures that experienced a major merger and
we recover their fundamental properties (positions and masses). We
apply our techniques to a sample of systems of galaxies identified
in SDSS-DR7, WINGS and HeCS.

The resulting merging system sample, in which we are able to
recover the merging substructures, comprises 12, 4 and 16 systems,
respectively. Additionally, we report 29 spatially coincident merg-
ing system candidates. Several of these systems were previously
reported by other authors as interacting systems of galaxies. We
also report for the first time 40 new nearby candidates as merging
systems, which were previously overlooked.

We emphasize that our method detects in a reliable way the merg-
ing system candidates and substructure properties, but we also wish
to note that, in the case of multiple mergers, some merging substruc-
tures may be joined by our algorithm and hence are reported as one
component, causing a possible bias in some measured properties.
The kinematical reconstructions (see Fig. 3 and Table 1) will be
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Merging systems identification 231

corroborated using tomographic techniques including X-ray and
weak lensing information (Gonzalez et al. 2015) in forthcoming pa-
pers. We also plan in further works to train our algorithm with light
cone mocks in order to apply our technique to high-redshift cata-
logues, such as CLASH-VLT (Biviano et al. 2013), FRONTIERs
(Ebeling, Ma & Barrett 2014), EDiCs (Milvang-Jensen et al. 2008),
DESI, etc., and to study any environmental dependence of galaxy
properties (e.g. star formation rate, stellar mass, morphology) at
different stages in the merging process.

Diverse studies could be performed with a sample of merging sys-
tems such as the ones presented in this paper. Using the Bayesian
reconstruction techniques presented by Dawson (2013), it is pos-
sible to recover the three-dimensional information of the merger.
In a forthcoming paper, we will use such information in order to
explore the implications for the properties of the DM particle. A
web interface implementing these methods (the MeSsI Algorithm)
is freely available at http://200.16.29.98/martin/merclust.
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