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ABSTRACT

The formation of massive black hole binaries (MBHBSs) is an unavoidable outcome of galaxy
evolution via successive mergers. However, the mechanism that drives their orbital evolution
from parsec separations down to the gravitational wave dominated regime is poorly understood,
and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent
environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such
as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations,
we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB
accreting infalling molecular clouds. We investigate different orbital configurations, modelling
a total of 13 systems to explore different possible impact parameters and relative inclinations
of the cloud-binary encounter. We focus our study on the prompt, transient phase during the
first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution
is dominated by the exchange of angular momentum through gas capture by the individual
black holes and accretion. Building on these results, we construct a simple model for evolving
an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable
populations with different levels of anisotropy in their angular momenta distributions. We
show that the binary efficiently evolves down to the gravitational wave emission regime within
a few hundred million years, overcoming the ‘final parsec’ problem regardless of the stellar
distribution.

Key words: accretion, accretion discs —black hole physics —hydrodynamics — galaxies: evo-
lution — galaxies: nuclei.

to the host galaxy (Kormendy & Ho 2013, and references therein).

1 INTRODUCTION Since the majority of massive galaxies harbour an MBH at their

The important role of massive black holes (MBHs) in galaxy evo-
lution has been established over the past decades. Hypothesized in
the sixties to be the central engine of the then-discovered quasars
(Lynden-Bell 1969), a growing body of evidence confirmed the
existence of MBHs in virtually every massive galaxy in the local
Universe during the nineties (Kormendy & Richstone 1995). The
discovery of the tight correlations between the MBH masses and key
properties of their host galaxies (Magorrian et al. 1998; Ferrarese
& Merritt 2000; Gebhardt et al. 2000) points towards a coevolution
scenario, based on an interplay of gas accretion on to the MBH
from the host, releasing a large amount of energy feeding back on
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nucleus, and since in the hierarchical model of structure formation
galaxy mergers are frequent throughout cosmic history (White &
Rees 1978), massive black hole binaries (MBHBs) are expected to
be a common outcome of the galaxy evolution process (Begelman,
Blandford & Rees 1980). Therefore, understanding their forma-
tion and dynamical evolution is of paramount importance in recon-
structing the puzzle of the hierarchical growth of structures in the
Universe.

Despite the fairly solid theoretical predictions, observational ev-
idence of MBHB existence is sparse, although several candidates
have been proposed in the literature (see Dotti, Sesana & Decarli
2012, for a review). Unfortunately, direct imaging of these ob-
jects is currently impossible, as the small scales required to resolve
them are beyond current capabilities on galactic nuclei beyond the
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Local Group. An exception to this is high-frequency radio interfer-
ometry, that enables the resolution of parsec scales in low-redshift
galaxies. In fact, the most compelling MBHB candidate to date is a
peculiar double radio core (Rodriguez et al. 2006). Many more can-
didates have been proposed based on distinctive spectroscopic fea-
tures (see e.g. Tsalmantza et al. 2011; Eracleous etal. 2012). Most of
the times, however, those observed signatures can be explained by
alternative scenarios that do not require an MBHB (Dotti, Sesana &
Decarli 2012; Bogdanovi¢ 2015; Liu, Eracleous & Halpern 2016).

From a theoretical perspective, the evolution of MBH pairs after
a galaxy merger will be dominated by different processes depending
on their separation, and on the content and distribution of both gas
and stars in the merger product (e.g. Begelman et al. 1980; Dotti
et al. 2007; Sesana 2010; Khan et al. 2013; Holley-Bockelmann
& Khan 2015). At large separations, both MBHs sink towards
the galactic nucleus on short time-scales due to dynamical fric-
tion against the surrounding background of dark matter, gas and
stars (Chandrasekhar 1943; Milosavljevi¢ & Merritt 2001). This
process becomes inefficient when the mass enclosed in the orbit
of the two MBHEs is of the order of their total mass. At this point,
when the pair forms a gravitationally bound binary, the relative
velocity of the two black holes becomes larger than the velocity
dispersion of the background medium, and the efficiency of dynam-
ical friction drops sharply. In a gas-poor environment, the binary
will continue shrinking by ejecting single stars via three-body en-
counters. Only once the separation is sufficiently low (<1073 pc)
gravitational radiation will efficiently extract angular momentum
and energy from the binary and rapidly lead it to coalescence
(Begelman et al. 1980). Early dynamical studies found that at parsec
separations there are too few MBHB—star scattering events to reach
the coalescence within a Hubble time; an issue called the ‘final
parsec problem’ (see e.g. Milosavljevi¢ & Merritt 2001; Yu 2002).
However, in the past decade, several semi-analytical and numerical
works have shown that in the non-relaxed, triaxial rotating rem-
nant of a galaxy merger, the supply of stars to the MBHB should
be large enough to lead to a final coalescence on a Gyr time-scale
(Berczik et al. 2006; Sesana 2010; Khan, Just & Merritt 2011; Preto
et al. 2011; Khan et al. 2013; Holley-Bockelmann & Khan 2015;
Sesana & Khan 2015; Vasiliev, Antonini & Merritt 2015).

The picture can be quite different for MBH pairs within gas-
rich environments. In this case, interaction with gas can be very
efficient in absorbing and transporting outwards the angular mo-
mentum of the pair, leading to a more rapid evolution and eventual
coalescence. Different numerical studies have shown an orbital de-
cay, driven by global disc torques, on time-scales of only ~107 yr
within the massive gaseous nuclear disc that forms after a gas-
rich galaxy merger (Escala et al. 2004, 2005; Mayer et al. 2007;
Fiacconi et al. 2013; Roskar et al. 2015; del Valle et al. 2015).
Once the MBHs form a compact enough, bound binary, its torque
will open up a cavity in the gas distribution (e.g. Artymowicz &
Lubow 1994; del Valle & Escala 2012, 2014). Many theoretical
and numerical studies have focused on this phase of a sub-parsec
binary surrounded by a gaseous circumbinary disc (e.g. Ivanov,
Papaloizou & Polnarev 1999; Armitage & Natarajan 2005; Cuadra
et al. 2009; Haiman, Kocsis & Menou 2009; Lodato et al. 2009;
Nixon et al. 2011a; Roedig et al. 2011, 2012; Kocsis, Haiman
& Loeb 2012; Amaro-Seoane, Brem & Cuadra 2013; Roedig &
Sesana 2014; Dunhill, Cuadra & Dougados 2015), typically finding
a much slower orbital evolution. However, most of these studies
assume the existence of an extended, stable circumbinary disc, gen-
erally corotating with the binary. Notable exceptions are Roedig &
Sesana (2014) and the work of Nixon and collaborators (see e.g.
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Nixon et al. 2011a; Nixon, King & Price 2013) that extensively in-
vestigated the interaction with misaligned or counter-rotating (with
respect to the MBHB angular momentum) discs. However, also in
this case, relaxed steady discs are assumed as initial condition. In
all the aforementioned studies, the evolution of the MBHB is ‘de-
coupled’ from the host galaxy, in the sense that there is no attempt
to model the formation of the circumbinary disc structure, nor to
link it to the fuelling mechanisms that transport gas from galactic
scales down to the binary.

In the aftermath of a galaxy merger, gas is efficiently fuelled
to the centre of the remnant (Barnes & Hernquist 1996), and the
formation of massive circumnuclear discs is observed on a scale
of hundreds of parsec (Mayer et al. 2007), consistent with observa-
tions of ultraluminous infrared galaxies (Sanders et al. 1988). Those
discs however are extremely thick compared to the size of a putative
sub-parsec binary. Turbulence and gravitational instabilities in this
large-scale disc can trigger the formation of gas clumps, which will
be the seeds for molecular clouds (Agertz et al. 2009). These clouds
can travel through the interstellar medium almost unaffected by
hydrodynamical drag, and might produce discrete accretion events
on to a central MBH (Hobbs et al. 2011), possibly coming with a
wide range of angular momenta directions with respect to that of
the binary orbit. In the context of MBHBs, the recent studies of
Dunhill et al. (2014) and Goicovic et al. (2016, hereafter Paper I)
have explored the hypothesis of infalling clouds as the source of gas
for MBHBs, investigating the formation of discs, either around the
binary or each individual MBH, for a wide range of orbital configu-
rations. In particular, Paper I modelled the interaction of near-radial
infall on to equal-mass MBHBs with 12 different configurations,
exploring different inclinations and impact parameters.

Based on the simulations performed in Paper I, we model here
the dynamical effects that the interaction with these clouds have on
the MBHB orbit. We focus on the angular momentum transfer and
on the evolution of the binary orbital elements, paying particular
attention to the early phases of the interaction, when most of the
angular momentum transfer occurs. The paper is organized as fol-
lows. In Section 2 we briefly describe our numerical model, explain-
ing the modifications with respect to the simulations presented in
Paper 1. In Section 3 we present the evolution of the binary angular
momentum and orbital parameters measured with our simulations.
In Section 4 we present a simple model where the evolution of
the MBHBs is driven only by the exchange of angular momentum
with the accreted material, and show that it roughly captures the
behaviour observed in the simulations. We explore the implication
of this model for the long-term evolution of MBHBs in Section 5,
and summarize our findings in Section 6.

2 THE NUMERICAL MODEL

We model the interaction between the gas clouds and the MBHBs
using the smoothed particle hydrodynamics (SPH) technique, as
described in Paper 1. The binary consists of two sink particles,
initially having equal masses and a circular orbit. On the other hand,
the cloud is initially spherical with uniform density, a turbulent
velocity field and a total mass 100 times smaller than the binary.
By changing the initial orbit of the cloud, we model a total of
13 systems. The first 12 systems are the same described in Paper I,
which correspond to the combination of four different orientations
relative to the binary orbit (A: aligned, CA: counter-aligned, PE:
perpendicular edge-on and PF: perpendicular face-on) and three
pericentre distances (r, = 0.7, 1.5, 3Ryin, where Ry, = 0.5a is the
initial binary radius). We model an additional impact parameter
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(rp = 6Ry;n) for the aligned configuration, needed to obtain a distri-
bution of changes of both the accreted mass and binary orbit (more
details on this choice are given in Section 5.1). Throughout the pa-
per we refer to our different models using the letters that indicate the
orbit orientation and the number that gives the pericentre distance
in Rbin~

As described in Paper I, we modified the standard version of
GADGET-3 (see Springel 2005) to include a deterministic accretion
recipe, where the sink particles representing the MBHs accrete
all bound SPH particles within a fixed radius (rgox = 0.1ap), as
implemented by Cuadra et al. (2006). Additionally, we treat the
thermodynamics of the gas using a barotropic equation of state (i.e.
pressure is a function of density only) with two regimes: for densities
below a critical value, the gas evolves isothermally, while for higher
densities the gas is adiabatic. This prescription captures the expected
temperature dependence with density of the gas without an explicit
implementation of cooling, and has the effect of halting the collapse
of the densest gas regions, avoiding excessively small time-steps
that would stall the simulations.

Additionally, we made two extra changes to the set-up from
Paper I in order to follow properly the evolution of the binary
orbit. We first set a fixed time-step for the MBHs equal to 107#P,,
where Py is the initial binary orbital period. We also decreased the
Courant factor from 0.1 to 0.03. This factor determines the size of
the hydrodynamical time-step for each gas particle. With these two
changes, we can measure the small changes in the binary orbit that
are produced by the interaction with the gas clouds. We are thus
able to disentangle the binary evolution from the numerical noise
(Section 3.1) without the need to remove the MBHs from the tree
calculation of the gravitational forces (cf. Cuadra et al. 2009, for
GADGET-2 models).

3 DYNAMICAL EVOLUTION OF THE SYSTEM

3.1 Angular momentum conservation

We aim to measure the small changes in the binary orbit caused
by the interaction with a much less massive cloud. Therefore, we
first need to establish whether our simulations have the accuracy to
resolve these effects. With that aim, we study the conservation of
angular momentum L in our different models in Fig. 1. The upper
plots on each panel show the evolution of the angular momen-
tum of the binary and that of the whole system. The latter should
be constant, but due to numerical issues we see it does vary in
the models. Nevertheless, the total change in angular momentum
experienced by the binary during the interaction is always notice-
ably larger than the change in the total angular momentum of the
system, which means the binary evolution obtained in the simula-
tions is still meaningful. The lower panels of the figure allow us to
quantify until when we can trust the binary evolution, as explained
below.

Notice that due to the finite size of the sink radius, we do ex-
pect some loss of angular momentum throughout the binary evo-
lution as the gas is accreted by each MBH. However, we estimate
that the cumulative effect of this loss is at most of the order of
107*Ly, which is significantly smaller that the changes we ob-
serve for the total angular momentum of the system in Fig. 1.
Therefore, these deviations are due to numerical inaccuracies of the
code.

The Lagrangian formulation used by SPH codes to solve the
hydrodynamical equations conserve angular momentum exactly.
However, the numerical integration of these equations, using indi-
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vidual particle time-steps, breaks the time symmetry of the model,
preventing exact conservation. More importantly, the approximation
of gravitational forces through a tree algorithm introduces numerical
noise on the accelerations computed by the code, which translates
in oscillations in the angular momentum (for a discussion of these
two issues, see Springel 2005). Given these inaccuracies, we can
trust our simulations only up to the point where the numerical noise
starts to dominate the evolution of the system. This corresponds to
the time at which the fluctuations of the total angular momentum
are of the order of the binary angular momentum changes. More
precisely, we compute the amplitude of the fluctuations in AL/L for
both the entire system and the binary in chunks of half binary orbital
periods, and show them in the lower plots of each panel of Fig. 1.
When the ratio of the former to the latter becomes larger than 1/2,
we discard the subsequent binary evolution. That point is indicated
in Fig. 1 by the dashed vertical lines, and it always happens at T 2>
8Py, being Py the initial binary period. Note that most, if not all, the
evolution of Ly;, occurs at T < 8Py, corresponding to the phase in
which most of the mass is accreted by the MBHB (as shown in Pa-
per I). For the PE and PF simulations, this period is actually longer
because of the more prolonged accretion, but angular momentum
fluctuations are correspondingly smaller. This indicates that sig-
nificant ALy, is driven by torques exerted by accreting particles,
closely interacting with the MBHB. When accretion stops, also the
binary evolution is dumped to a level consistent with the numerical
accuracy of the code. This is because the cloud is light, and gas that
does not interact strongly with the binary hardly modifies its dynam-
ics. A robust measurement of the secular evolution of the system
would require refining some parameters of the simulations (e.g. the
opening angle of the gravity-tree nodes), which translates in con-
siderable longer computing times not affordable for our standard
configuration.

3.2 Binary evolution

We present the results of the transient evolution of the binary or-
bital components and mass in Figs 2 and 3. We observe that the
bulk of accretion occurs during the first few orbits (~4-8), which
correspond to the first passage of the cloud, as discussed in Paper I.
This is the same period where we observe a significant change of
the orbital parameters, especially the semimajor axis, which implies
that the dynamical evolution of the binary is intimately related to the
accretion. The eccentricity evolution for every system is extremely
small, typically less than 1 percent, which means that the binary
remains roughly circular during the transient interaction with the
gas cloud. For this reason, we restrict our analysis to the semimajor
axis evolution. Finally, we summarize the total change of the binary
angular momentum, mass and semimajor axis for every configu-
ration in Table 1, up to the time where we trust the numerics, as
described in the previous section.

4 ANGULAR MOMENTUM EXCHANGE

In order to link the evolution of the binary angular momentum to
that of the semimajor axis and mass, we write the magnitude of
the angular momentum as a combination of the binary properties,
similar to what is shown in Roedig et al. (2012). However, instead of
writing it as a function of the total binary mass M and the reduced
mass i, we consider M and the mass ratio g. This way, we can
separate better the effect of total accretion (changing M) from that
of differential accretion on to the two masses (changing ¢).
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Figure 1. Evolution of the angular momentum of the entire system (blue) and the binary (red) for 12 of our models. The upper plots of each panel show the
total magnitude of the angular momentum vector normalized by the binary initial value, while the lower plots show the relative change between successive
snapshots. We increase the impact parameter from left to right, and each row represents a different inclination, as indicated in the legends. The vertical dashed
line indicates the time when the fluctuations of the total angular momentum are larger than half of the changes of the binary angular momentum. Note the

different vertical scales in each panel.

The magnitude of the binary angular momentum is

Lo = —L  M*?\/Ga(l — &), (1)

T (+qy

where G is the gravitational constant. Differentiating with respect
to all the parameters we get

+1Aa e A )
—— — ——Ae.
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ALpin 1—gq

B 3AM
Lin q(1+q)

2 M

In all of our models, the binary remains approximately equal-
mass and circular, (1 — ¢) < 1 and e <« 1 (see Figs 2 and 3).
This means that the factors in front of Ag and Ae in equation (2)
are negligible compared to the 3/2 and 1/2 in front of AM/M and
Aa/a, respectively. We can therefore calculate approximately the
total change in angular momentum based on the change in a and M
only,

ALy, _3AM

1 Aa
Lon 2 M

+27. 3)
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Figure 2. Evolution of the binary semimajor axis (upper panels), eccen-
tricity (middle panels) and accreted mass (lower panels) for the A and CA
models. The different lines in each panel represent the different pericentre
distances, as indicated in the legend.

This approximation is confirmed by the upper panels of Fig. 4,
where we show the decomposition of the binary total angular mo-
mentum into its individual components. Here we observe that the
contributions due to the evolution in mass ratio (dotted red lines)
and eccentricity (long dashed cyan lines) are negligible compared
to those due to the change in total mass (dotted—dashed green lines)
and semimajor axis (dashed blue lines). The solid lines in each

MNRAS 472, 514-531 (2017)

1.005 T T T T T T T T
1.0001
0.995f
0.990F

0985 b€ models
0.980} 0.7
—— 15
0.975¢| —-— 30
0.970 : : : - : - :

0.010 T T T T T T T T

semimajor axis [a,]

0.008f

0.006

0.004F

eccentricity

0.002f

0.000
0.8 T T T T T T T
0.7f
0.6
0.5r
0.4}
0.31
0.2
0.1}
0.0p

-0.1 y L . L . L - s

AM,;, 1072 M,]

1.005 T T T T T T T
1.000F

0.995f
0.990F

0985 ™ bk models
0.7

0.980 :
—— 15
0975 —.— 3
0.970 ‘ - ‘ ; ‘ - ‘ :
0.008 ‘ : ‘ : ‘ . ;
0.007}
0.006}
0.005}
0.004}
0.003f
0.002}
0.001f
0.000
0.6

0.5r

semimajor axis [q,]

eccentricity

0.4}
0.3
0.2
0.11

AM,;, 1072 M)

0.0f

-0.1

Figure 3. Same as Fig. 2, but for the perpendicular simulations (PE and PF
models).

panel represent the binary angular momentum, black is the value
measured directly from the simulations, while red is the one re-
covered by integrating the individual components of equation (2).
Note that the black and red solid lines are indistinguishable from
each other on this scale. In order to establish the resolution of our
simulations, we compute the difference between these two lines,
shown in the lower panels of Fig. 4. The differences displayed here
are usually within the range ~107> to 10~*L, which implies that
our the binary orbital elements are related to the angular momentum
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Table 1. Total change of the binary angular momentum (AL), mass
(AM) and semimajor axis (Aa) for the different orbits modelled,
from the beginning of the simulation up to fcons, Which is the time
where we no longer disentangle the physical interaction from the
numerical noise.

Model teonf AL AM Aa
(Po) (Lo) (Mo) (ao)
A0.7 8.1 0.01380 0.00754 0.00545
Al5 8.1 0.01058 0.00453 0.00829
A3.0 8.9 0.00864 0.00278 0.00982
A6.0 8.8 0.00137 0.00058 0.00160
CAO0.7 11.1 —0.02456 0.00862 —0.07312
CAlS5 13.5 —0.02532 0.00678 —0.06988
CA3.0 11.3 —0.00529 0.00132 —0.01521
PEO0.7 8.7 —0.00335 0.00695 —0.02707
PE1.5 12.8 —0.00790 0.00334 —0.02547
PE3.0 22.0 —0.00265 0.00080 —0.00764
PF0.7 10.4 —0.00399 0.00542 —0.02389
PF1.5 13.5 —0.00600 0.00281 —0.02013
PF3.0 21.8 —0.00283 0.00076 —0.00796

through first order expansion (equation 2) very accurately. These
results, together with what we show in Fig. 1, confirm that the
evolution of our systems is dominated by the physical interaction
with the gas rather than numerical noise, at least during the prompt
accretion phase.

4.1 Analytical estimate of the binary evolution

In order to estimate the expected evolution of L and a, we develop
a simple analytical model based on the exchange of angular mo-
mentum through accretion only (i.e. ignoring the non-accreted gas).
The initial angular momentum of the gas is determined by the initial
conditions that we impose for the cloud, described in detail in Pa-
per L. Then, the average angular momentum of a portion of gas with
mass M, is

Lgas = dMgas Vini SiN Oy, (4)

where d = 15a is the initial distance of the cloud, vy, =
0.25/GM a is its initial orbital velocity, and 6., is the angle
between its velocity vector and the binary plane. Replacing the
different values we obtain

Lyas = aMyvVGMa, (®)]
where

15 .
ozz151n9%1%0.7,1.1,1.4,1.8 (6)

for increasing impact parameter. Expressed in terms of the initial
angular momentum of the binary Ly = u~/GMa
L gas M, gas M, gas

=a—— =4a

L ” ik @)

In order to check if this approximation is correct we compute
the equivalent « of the cloud as a whole at the beginning of the
simulation. We obtain

asm = 0.73, 1.14, 1.55, 1.9, ®)

which are very close to the values derived from the initial conditions,
as expected. The small differences are due to the initial random
turbulent velocity field.
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4.1.1 Angular momentum evolution

We take the simple assumption that each accreted gas particle brings
its initial angular momentum to the MBHB. For the aligned (A) and
counter-aligned (CA) cases, where the majority of the accretion
occurs on the same plane to that of the binary, we simply add or
subtract the angular momentum estimated using equation (7) by
considering the appropriate M, (i.e. the total mass accreted in
each case, see Table 1). The values obtained using this approxima-
tion and the comparison with the actual values measured from the
simulations are shown in Table 2.

Comparing to the observed L evolution, those numbers are a
factor of <3 too large in the A cases and a <40 per cent overestimate
in the CA cases. The first source for this discrepancy could be the
non-accreted material, which interacts with the MBHB taking away
some extra angular momentum. This remaining gas is clearly seen in
the form of minidiscs and circumbinary discs (see fig. 3 in Paper I).
In order to compute the amount of angular momentum acquired by
the non-accreted gas, we identify directly from the simulations the
remaining particles after the first passage of the cloud. Only for
these particles we then compute the angular momentum difference
respect to the initial state, which comes from the interaction with
the binary. For the A models, we obtain

AL()U
<7[> ~ (0.0021, 0.0024, 0.0011, 0.0016, ©)]
Ly )4
for increasing impact parameters. Similarly, for the CA models,
ALgy
— ~ 0.0029, 0.0036, 0.0031. (10)
Lo CA

These values are around one order of magnitude too small to explain
our overestimate of the angular momentum evolution.

The second effect that could account for these differences is that
the accreted particles might have in average less angular momen-
tum than their non-accreted counterparts. In order to compute this,
we estimate the average o of the accreted particles, which is an
indication of their angular momentum budget. For the A models,
we obtain

acera = 0.55,0.76, 1.04, 1.25 (11)
while for the CA models,
acer,CA — 061, 083, 0.98. (12)

All these values are smaller than the ones we use based on the initial
conditions (equation 6), which implies that we are overestimating
the average angular momentum of the gas accreted by the binary.
This is because the gas with larger angular momentum will typically
have orbits with a periapsis further away from the MBHB, avoiding
being captured.

We estimate again the angular momentum change using a mod-
ified version of equation (7), where we implement the corrections
we previously described as follows:
ALbin AM _ ALoul

= “Qaccr

Lo M Lo

13)

The values obtained with this equation are shown in Table 2. These
numbers are now in remarkable agreement with the actual binary
evolution. The largest difference we obtain with this approxima-
tion is 20 per cent for the A3.0 model — for all the other cases the
discrepancies are not larger than 7 per cent.

In the case of the perpendicular configurations, the main effect
of the accreted gas will be to tilt the binary in the direction of the
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Figure 4. Upper plots: Decomposition of the binary total angular momentum following equation (2) (non-solid lines), the sum of all components (solid red
line) and the angular momentum of the binary computed directly from the snapshots (solid black line). We increase the impact parameter from left to right,
while the different inclinations are shown from top to bottom, as indicated on each legend. Notice that the Ag and Ae components of the angular momentum
are indistinguishable from unity in these plots. Lower plots: Difference between the momentum measured from the snapshots and the value recovered from

the contribution of all components.

orbital angular momentum of the cloud, because the typical gas
velocity will be perpendicular to that of the MBHB. This is clearly
seen in Fig. 5, where we show the time evolution of the angular
momentum inclination angle respect to its initial orientation. We
can quantify the tilt angle A6 by applying the same approximation
as before:

. ALy, AM
sin(Af) = —— =4da——. (14)
Lyin M
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The values estimated using this expression are shown in Table 3,
and are an overestimate of the measured ones. Similar as the other
configurations, this is due to the mean o« value of the accreted
particles. For the PE models those are

®acer,pe = 0.51,0.71, 0.98, (15)
while for the PF models we get

Cacer,pr = 0.44,0.71, 0.98, (16)
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Table 2. Total evolution of the angular momentum magnitude (AL) and semimajor axis (Aa) for the A and CA models. The subscript
‘est’ corresponds to a value estimated using our initial simple model, while ‘corr’ is the corrected estimation using the appropriate o and
including the slingshot, and ‘meas’ means that is measured directly from the simulations.

Model ALmeas ALest AALL‘:LSL ALcorr %;‘Z; Admeas Adest % Adcorr AA!Z;Z‘;
(Lo) (Lo) (Lo) (ao) (ao) (ao)
A0.7 0.0138 0.0211 1.53 0.0145 1.06 0.0053 0.0196 3.70 0.0064 1.20
Al.S5 0.0106 0.0199 1.88 0.0114 1.06 0.0085 0.0263 3.09 0.0092 1.08
A3.0 0.0086 0.0156 1.81 0.0105 1.21 0.0098 0.0228 2.33 0.0127 1.29
A6.0 0.0014 0.0042 2.98 0.0013 0.93 0.0016 0.0066 4.13 0.0019 1.19
CA0.7 —0.0246 —0.0241 0.98 —0.0239 0.97 —0.0731 —0.0741 1.01 —0.0737 1.01
CAl.5 —0.0253 —0.0298 1.18 —0.0261 1.03 —0.0699 —0.0800 1.14 —0.0725 1.04
CA3.0 —0.0053 —0.0071 1.34 —0.0052 0.98 —0.0148 —0.0180 1.22 —0.0144 0.97
1.0 ‘ during the near-radial infall of gaseous clouds is dominated by the
_ PE models accretion on to the MBHB.
8 0.8 0.7
Z o6 —— 15 e —]
3 oafL == 30 ——’/_’—-—_
B —— 4.1.2 Semimajor axis evolution
£ 02
E ool e T T T T T T T We can now use equation (3) to estimate, in the same manner, the
02 evolution of the binary semimajor axis, and compare it to what it is
0.7 . found in the simulation.
5 o T m°de57 We start with the prograde and retrograde cases. If we equate the
I | o RHS of equation (3) to the RHS of equation (7), and we keep in
5 2;‘ | — 3.0 - — mind that we should add the latter to the L budget in the A case and
‘§ 0.2 ’_/_/_/'/ subtract it in the CA case, we get
g vo| L e (Aa> = 8(3¢a> AM an
_0'13 4 5 6 7 8 é 10 11 12 a ACA 8 M
time [P >

Figure 5. Evolution of the binary inclination with respect to its initial
orientation for the perpendicular models, edge-on (upper panel) and face-
on (lower panel). The colours represent the different impact parameters, as
indicated in the legend.

which appear to be consistent with the overestimations for
both configurations. We estimate the inclination angles with
equation (14), but using the values of o, and present them in
Table 3 (A8, ). With this correction, we obtain values much closer
to the measured ones, especially for the PF configurations. For the
PE models, the corrected values are only a slight underestimate of
the simulated ones.

In summary, using a simple analytical model based only on the
angular momentum exchange between the accreted material and the
binary, we are able to reproduce all the trends for the total evolution
of the angular momentum vector (either magnitude or inclination).
This confirms our hypothesis that the transient evolution of a binary

where the ‘—’ sign corresponds to the A case and the ‘+’ to the
CA case. Comparing these estimates with what was measured in
the simulation (Table 3), we see that we overestimate the binary
shrinking in the corotating case, but we get close to the observed
values in the retrograde case. All the discrepancies are consistent
with the overestimation of the angular momentum change. If we
compute Aa using an appropriate angular momentum change (i.e.
AL from equation 13), we obtain values much closer to the
measured ones, typically within a few per cent. These values are
presented in Table 2 denoted with Adco.

We can apply the same reasoning to the PE and PF simulations,
assuming now that the L,,, brought by the accreted gas is perpen-
dicular to Ly,, and so it does not change its magnitude but only its
direction. We therefore have

0~ 3AM 1Aa (18)
T2M T2a

simply meaning

A AM

24 _ 320 19)
a M

Table 3. Total evolution of the angular momentum inclination angle (A@), semimajor axis (Aa) for the perpendicular models. The

definition of the subscripts is the same as Table 2.

Model Abmeas Abest Abcorr Admeas Adest Admeas/ Almeas Adcorr Adcorr/ Admeas
(deg) (deg) (deg) (ao) (ao) (ao)
PE0.7 0.88 1.11 0.81 —0.0271 —0.0208 0.77 —0.0276 1.02
PEL.S 0.67 0.84 0.54 —0.0255 —0.0101 0.40 —0.0258 1.01
PE3.0 0.23 0.26 0.18 —0.0076 —0.0024 0.32 —0.0077 1.01
PF0.7 0.53 0.87 0.53 —0.0239 —0.0162 0.68 —0.0242 1.01
PF1.5 0.49 0.71 0.46 —0.0201 —0.0084 0.42 —0.0204 1.02
PF3.0 0.15 0.24 0.17 —0.0080 —0.0028 0.28 —0.0079 0.99
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regardless of the impact parameter. The estimations for the semima-
jor axis evolution in the perpendicular models are shown in Table 3.
These numbers show that with our simple model we underestimate
the evolution. A likely reason is that the binary slingshots away
some of the non-accreted material, preferentially in its direction of
motion. The gas therefore takes away further angular momentum
from the binary increasing the shrinking that is not included with
our simplifications. This effect increases with the impact parameter,
as less mass is accreted and much of it is subject to this slingshot.
To compute the angular momentum taken away by the remaining
gas, we use the fact that the angular momentum magnitude does
change in the perpendicular configurations (see Fig. 1). We assume
that this total change comes from the slingshot. Similar to what we
did in the A and CA models, we include this AL, in the LHS of
equation (18) to estimate the corrected semimajor axis evolution.
We show these estimations in Table 3. Note the remarkable accu-
racy with what we can now reproduce the measured values from the
simulations, with differences no larger than 2 per cent.

In summary, as for the angular momentum evolution, with our
analytical model considering only the accreted particles we are
able to reproduce the trends of the semimajor axis evolution for
all configurations. All the discrepancies found with respect to the
simulated values are consistent with the simplifications we impose.
When we implement the effect of the non-accreted material and the
appropriate angular momentum budget of the accreted counterparts,
we can reproduce the values with much better accuracy.

4.1.3 Caveat: outflows

The peak accretion rates found in our simulations, when scaled to
physical units, are usually highly super-Eddington. In Paper I, we
found that the accretion rates vary between ~1 and 50 Medd for a
10° M binary during the prompt accretion phase. Naturally this
will depend on the orbital configuration, with the smaller impact
parameters having the highest peaks, but typically the accretion
rates will be super-Eddington during the first few orbits. Certainly
the material could be accreted through a slim disc (e.g. Abramowicz
et al. 1988). However, if we take the conservative approach that
accretion is capped to the Eddington rate, the rest of the material will
likely be ejected by radiation-pressure-driven outflows (e.g. King &
Pounds 2003). Therefore, part (possibly most) of the material which
is accreted in our simulation, will be instead ejected in an outflow,
making our description of the dynamics inaccurate. To estimate how
much this can affect the MBHB dynamics we take for simplicity
the (reasonable) working hypothesis of an isotropic outflow in each
of the BHs’ reference frame. It is easy to show that if a mass AM,
is ejected, the angular momentum loss for the binary (assumed to
be equal mass, circular) is ALqy = (AMoy/4)v/GMa, that can
be also written as ALyy/L = AMyy, /M. This is the same as in
equation (7), with @ = 0.25. So even if all the captured mass is
ejected in an outflow instead of being accreted, this amounts to
including a factor 0.25 into the parenthesis of equation (17), which
does not change the evolution significantly. For the PE and PF cases,
equation (19) becomes Aa/a = —2AM/M, i.e. the shrinkage of a
is 33 per cent less. Hence, even if all the captured mass is ejected in
an outflow instead of being accreted, the evolution of the semimajor
axis is only mildly affected. This is confirmed by the results shown
in Appendix, where we re-simulate the A0.7 model with different
accretion radii. By shrinking the accretion radius by a factor of
eight, the mass accretion decreases by about 25 per cent; however,
there seems to be no correlation with the semimajor axis evolution.
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Figure 6. Total change of the binary semimajor axis as a function of the
cloud’s pericentre distance. The filled circles are the values measured from
the simulations, while the lines are the linear interpolation/extrapolation of
those points. The extrapolation after the largest impact parameters defines
the maximum value of the pericentre distance for the different inclinations,
where the evolution of the semimajor axis is zero (dotted black line). For
smaller values than 0.35a, we assume that the relative change of semimajor
axis per event remains constant.

This is particularly true for all runs with rg < 0.1, for which the
binary evolution is essentially identical. This is because the relevant
exchange of angular momentum occurred during the capture of the
material, which we can resolve quite well, instead of the accretion
itself.

Finally, radiation driven outflows could also affect the dynamics
of the rest of the infalling cloud, inhibiting further accretion, but we
cannot quantify this possible effect with our current approach.

5 APPLICATION: LONG-TERM EVOLUTION
OF BINARIES VIA ACCRETION OF DISCRETE
GAS CLOUDS

We explore in this section the implications of our results for an
evolutionary scenario in which an MBHB interacts with a sequence
of gas clouds. In Fig. 6 we show the total change of the binary
semimajor axis as a function of the cloud’s pericentre distance.
From this figure, we observe the different behaviour of Aa for the
aligned orientation, still increasing for 7, = 1.5a, in contrast to
the other inclinations for which the total shrinkage is approaching
zero at that point. This stems from the larger capture cross-section
of each MBH in corotating encounters due to the smaller velocity
relative to the gas particles. This is the reason why we run an
additional simulation (A6.0) in the aligned case, as mentioned in
Section 2.

Using the information shown in Fig. 6, we construct a simple
model for the evolution of an MBHB accreting clouds from dif-
ferent directions and with different impact parameters. If we as-
sume a distribution of similar clouds, as the MBHB semimajor axis
changes, the relative size of the cloud increases with respect to the
MBHB. Therefore, our extrapolation is based on the ansatz that the
important quantity is the total angular momentum of the cloud (i.e.
its impact parameter) and not the spread around the mean (i.e. the
relative size of the cloud). This is not necessarily true when the
binary becomes more compact and then the size of the cloud with
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Figure 7. Map of the four zones we define in the angular momentum
direction distribution to determine the relative inclination of the cloud orbit
with respect to the binary.

respect to it becomes bigger. However, this approximation is more
accurate when the gravitational focusing of the gas is important,
e.g. when the cooling is efficient.

5.1 Monte Carlo evolution

In order to compute the evolution of a binary, we need to determine
the orbital parameters of the approaching clouds. For a uniform
number density, clouds approach the MBHB with an impact param-
eter b following a distribution with a probability density given by
P(b) x bdb, i.e. increasing with the geometrical cross-section. We
can use gravitational focusing to link the impact parameter with the
pericentre distance () as follows:

_ v e (20)
C2GM.

where we used the fact that the binary is significantly more mas-
sive than the individual clouds (M. <« M). Differentiating this
expression we obtain dr, oc bdb, or simply P(r,) o drp, which
means that the pericentre distance is distributed uniformly be-
tween zero and some maximum value. We compute this max-
imum value for each inclination using the extrapolation shown
in Fig. 6.

The impact parameter defines only the magnitude of the cloud
angular momentum, not its direction. The cloud angular momentum
(L) will point in some direction in the 2D sphere. We need to map
this sphere into the four relative orientations we modelled (A, CA,
PE and PF). We do so by dividing the 2D sphere in four different
zones, each assigned to one of the orientations of our simulations
(Fig. 7). If 0 is the angle between L. and L (being L the MBHB
angular momentum), we assign to the aligned encounters the 2D
region enclosed in 45° < 6 < 90°. Similarly, counter-aligned events
correspond to the region defined by —45° > 6 > —90°. The rest of
the sphere maps into perpendicular encounters. In order to separate
between edge-on and face-on, we note that by fixing L. we are still
free to rotate the orbit by an azimuthal angle. Let O be the origin of
our coordinate system (corresponding to the binary CoM) and % a
unit vector along the two planes defined by the MBHB and the cloud
orbits. If r;, is the periapsis of the cloud orbit, the angle ¢ defined by
X — O — rp can be used to discriminate between edge-on (PE) and
face-on (PF) encounters. If 45° < ¢ < 135° or 225° < ¢ < 315°,
then the encounter is PF, otherwise it is PE. This translates into
perpendicular encounters being evenly distributed between PE and
PF, as we schematically represent in Fig. 7. Furthermore, Fig. 6

p

Figure 8. Realizations of cloud angular momenta distributions for the dif-
ferent adopted values of F, as indicated at the top of each projection. The
number F represents the probability of having events in the ‘Southern hemi-
sphere’. The model F = 0.5 is usually referred to as ‘chaotic accretion’,
where portions of gas are accreted from uniformly distributed directions
around an MBH, while for F = 0.0 all accretion events are prograde, and
for F = 1.0 they are retrograde. Figure adapted from Dotti et al. (2013).

shows that the difference between PE and PF is minimal in terms
of semimajor axis evolution. In practice, with this procedure we are
assigning a fixed probability to each of the four inclinations. This
will be given by the fraction of the solid angle that zone subtends
in the sky of the binary.

With the mapping in hand, we just need to determine the distribu-
tion of L.. We set the z axis suchas L = (0, 0, L,), with L, > 0, and
define F to be the fraction of events with L. , < 0. Therefore, follow-
ing Dotti et al. (2013), F represents the probability of having clouds
coming from the Southern hemisphere, where the Northern hemi-
sphere is defined by the direction of the z axis (see Fig. 8). Besides
the constraint imposed by F, the events are assumed to be isotropic.
Therefore, when F = 0.5 the events are uniformly distributed over
the whole sphere around the binary (known as ‘chaotic accretion’,
King & Pringle 2006), while for F = 0.0 and F' = 1.0 the events are
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uniformly distributed over the northern and Southern hemisphere,
respectively. Note, however, that these latter cases are different from
coherent aligned/anti-aligned accretion, which would imply all L.
along the z axis. Sesana et al. (2014) linked these distributions to
the morphological and kinematical properties of the host galaxies
in order to explain the spin measurements of MBHs. Disc galaxies,
where the gas dynamics is dominated by rotational velocity, will
produce mainly coherent accretion events (prograde or retrograde
depending on the binary orientation); while bulge galaxies, domi-
nated by velocity dispersion, will tend to produce more uniformly
distributed events.

Finally, using the distributions described above, we gener-
ate Monte Carlo populations of clouds with different levels of
anisotropy (i.e. different F values) interacting with the binary and
evolving its semimajor axis according to their pericentre distance
and relative orientation, as given by the curves shown in Fig. 6. The
results of these models are shown in Fig. 9. In order to suppress the
stochasticity of a single run, each line is the average of 1000 Monte
Carlo realizations. On the left-hand panel, we show the evolution of
the semimajor axis as a function of the number of encounters for the
different distributions. To translate this into a temporal evolution,
we set an initial rate (I'y) at which we expect the clouds will interact
with the binary. As the binary shrinks, the encounters will be less
frequent because of the decrease on the binary cross-section. This
effect can be simulated by adapting the time-scale at each encounter
as

AT =Ty (%) @1)

which becomes longer as the semimajor axis decreases. Using this
characteristic time-scale, we draw the cloud arrival times from a
Poisson distribution. On the right-hand panels of Fig. 9, we show
the results obtained for the evolution of the semimajor axis as a
function of time for the different distributions.

So far, we have not included in our description the growth of the
MBHB mass. However, in order to evolve significantly its semima-
jor axis, the MBHB needs to interact with at least a few hundred gas
clouds (see thin lines in the upper left panel of Fig. 9), which, in the
long run, will imply an accreted mass comparable to the binary ini-
tial mass. We therefore need to include mass accretion in our model.
The net effect will be a slowdown of the shrinking process: as we
add mass to the binary, the mass ratio of the interacting clouds to
the MBHB decreases, meaning that each accretion episode becomes
progressively less effective in affecting the binary orbital elements.
We therefore include the accreted mass on to the binary after each
encounter as follows. Using the same method we used to evolve
the semimajor axis, we compute the total mass change according to
each cloud’s pericentre distance and relative orientation, as given
by the values measured from the simulations (see fig. 5 of Paper I)
and their extrapolation. Therefore, each accretion episode causes
a change in both the MBHB semimajor axis and its total mass. In
Fig. 9, we show the evolution of the MBHB both when the mass
growth is ignored (thin lines) and when it is properly taken into
account (thick lines). As expected, the evolution of the binary orbit
slows down in the latter case.

It is important to mention that even though perpendicular en-
counters change the MBHB inclination angle (see Fig. 5), we do
not consider this effect into the evolution of the binary angular mo-
mentum. Due to the symmetry in the azimuthal angle of all the
distributions used, the net evolution of the binary orientation will
be roughly zero after a significant number of interactions.
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5.2 Analytical model

The results of our Monte Carlo runs can be used to calibrate a simple
analytical model for the evolution of the MBHB. In general, this
can be written as

da
— =TAa, (22)
dr
where I is the rate at which clouds are supplied to the binary and
Aa is the average relative change in semimajor axis caused by
each cloud. Assuming a uniform density distribution of clouds n,
travelling at an average speed v, one can write

2 GM a
I'=nXv=nnbv=2mn—--_ _~xa)=Ty—,

v ap

(23)

where we defined 'y = 27tn(x ap)GM/v. Here, we used the fact that
the geometric cross-section is ¥ = 7tb”. Since M, < M, encounters
are gravitational focusing dominated, and the impact parameter b is
related to the maximum approach r, through b* = 2GMr, /v*. We
consider encounters with a maximum approach r, v = xa (x =3
in our experiment). On the other hand, we showed in Section 3.1
that Aa o« AM, where AM is the mass accreted by the MBHB. We
can therefore write

Aa = 5MC (24
a=-—n ﬁa’ )

where 8 represents the average mass fraction of the cloud captured
(and eventually accreted) by the binary, and 7 is an average effi-
ciency coefficient. In each individual encounter, both parameters
depend on the cloud inclination and impact parameter, but we are
concerned here with finding their average values only. As shown
in Paper I, for r, < 3a we have § ~ 0.3 (averaged over impact pa-
rameters), with little dependence on the cloud-MBHB orientation.
Conversely, the angular momentum transfer efficiency strongly de-
pends on the MBHB—cloud orientation, as shown by equations (17)
and (19). Therefore, the exact value of 1 will depend on the level of
anisotropy of the cloud distribution.

In the interaction process, the binary also gains mass at the same
rate defined by equation (23), so that the evolution of the system is
given by the coupled linear differential equations:

da _ _ T a®
{ e UBMCHUM

M- _ To
dr T 8MC a()a

(25)

which combined trivially give the evolution of semimajor axis with
mass

da a
—=—n—, 26
I 3 (26)

which is immediately solved to get

1 (l/
My = My exp —Eln a—o . 27

The analytical evolution described by the system of
equations (25) depends on the values of n and §, that can be cali-
brated to match the results of the Monte Carlo runs shown in Fig. 9.
By doing so, we obtain (3, ) = (0.29, 3.45), (0.31, 5.6), (0.36, 7.4)
for F = 0.0,0.5, 1.0, respectively. With these values the analytical
model reproduces satisfactorily the evolution of the system observed
in the Monte Carlo runs, obtaining residuals of <0.2 per cent for the
mass evolution and <3 per cent for the semimajor axis evolution.

We also note that by setting dM/dr = O (i.e. the gas is never
accreted by the MBHB), the system evolution is analogue to that of
an MBHB scattering intervening stars from a uniform distribution.
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Figure 9. Evolution of the binary as a function of the number of cloud encounters (left-hand column) and as a function of time (right-hand column). From
top to bottom: semimajor axis, inverse of the semimajor axis and binary mass. The different lines represent models with different distributions of clouds. The
thick lines show models that consider the evolution of the binary mass, while the thin lines correspond to models that do not consider this evolution. Each line

is the result of averaging 1000 different Monte Carlo runs.

This is because the underlying physical description is the same:
individual objects, drawn from some uniform distribution, transfer
an amount of energy and angular momentum which is dictated by the
binding energy of the binary. A major difference, however, resides
in the fact that in the cloud case, the MBHB shrinking is mainly
due to absorption of angular momentum from the accreted portion
of the cloud, which is a strong function of the incoming cloud
direction. Therefore, prograde and retrograde encounters result in
different MBHB shrinking rates, and the evolution of the binary
semimajor axis depends on the level of anisotropy of the cloud
distribution. This is not true in the stellar scattering case, where
the MBHB shrinking is mostly due to binding energy taken away
by each scattered star which, contrary to the angular momentum
exchange, is insensitive to its incoming direction. The net result
is that in the stellar case, for different levels of anisotropy of the
interacting stellar distribution, the binary semimajor axis evolution
is the same but the eccentricity evolution is extremely different, as
demonstrated in Sesana, Gualandris & Dotti (2011).

5.3 Scaling to astrophysical systems

To study the final fate of the binary, we generalize the analytical
model introduced in the previous subsection (equation 25) includ-
ing the gravitational wave (GW) emission term (Peters & Math-
ews 1963), to get

da Iy a® 64 G3 M3
=M. — TS
{ dr ag M 5 ¢ 4da (28)

M _ Lo ’
o _SMCﬂoa

where we assumed circular binaries and M| = M, = M/2 throughout
the process (i.e. we assume each individual MBH gets the same
share of accretion). The interaction rate is connected to the physical
properties of the system via I'g = 27tn(xag)GM/v. One can either
specify the cloud number density # and infall velocity v, or assume a
certain gas mass inflow rate Mg. As an example, we take two Milky
Way like MBHs, M; = M, = M/2 =5 x 10° Mg, at an initial
semimajor axis of 0.5 pc [roughly corresponding to the hardening
radius a;, ~ GM/(40%) for a Milky Way galaxy], with a mass inflow

MNRAS 472, 514-531 (2017)

220z Jaquisoa( gz uo 1sanb Aq | 1.2290%/¥7 LG/ L /2. p/21o1de/seluw/wod dno-olwapeoe//:sdiy Wwolj papeojumoc]



526 F. G. Goicovic et al.

1 ET T T |-M|g=| 1| IM? ?’l‘l‘_l1 TT | ET T lMlszl llo |M$) ¥rl_ ll T 13
L 1L ]
0.1 = =
i) = E
2 ] ]
© 0.01 ¢ ~-. 3 F ‘ E
i L ]
1 I

10_3 E_lllllllllllllllﬁ_z E_l 1 1 1 l 11l 11 1 I 1 IIE
4 e T
é C ~ 1L ]
= R 1 ]
L, 1L i
K i i
/ = .
1 ||||I|I||||||||_ 1 1 1 1 I 1 1 1 1 | 1 1 I_

0 0.5 1 150 0.1 0.2

t [Gyr] t [Gyr]

Figure 10. Evolution of a binary with M; = M, = 5 x 10° M@ as a
function of time for two different gas inflow rates as indicated at the top
of the figure. The top panels show the semimajor axis evolution, while the
bottom panels show the MBHB mass evolution. Long-dashed, solid and
short-dashed curves are for F = 1.0,0.5,0.0, respectively. The late, fast
evolution of the semimajor axes is driven by the emission of gravitational
waves.

rate M, of either 1 or 10 M yr™', corresponding to 'y = 10~ yr~!
or 'y = 10~*yr~! (our cloud mass is M, = 0.01M = 10° M, for
M = 10" M). Such inflow rates might be typical in the central
regions of relatively gas-rich post-merger galaxies.

Results are shown in Fig. 10, both the binary shrinking and the
mass growth. The MBHB coalesce within ~1 Gyr and ~0.2 Gyr
for the two gas inflow rates assumed. The degree of anisotropy
of the gas inflow has only a mild impact on the evolution of the
system, affecting the coalescence time-scale by a factor of ~2. More
relevant is the impact on the mass growth. While in the F = 1.0
case the MBHB barely doubles its mass, the mass growth is almost
an e-fold larger in the F = 0.0 case. This is because prograde
cloud distribution is less efficient (n & 3.5) than a retrograde one
(n = 7) in shrinking the MBHB, and consequently the process
requires more accreted mass.

5.4 Robustness of the model

The models described above are subject to limitations arising from
some of our simplifying assumptions. In this subsection, we explore
the extent that some of these assumptions have on the results we
present.

5.4.1 Discrete orientations

We are collapsing the parameter space of the cloud angular momen-
tum direction into four selected configurations (A, CA, PF, PE), with
rather arbitrary boundaries. Most of the events given by any of the
F values we are using will be neither exactly parallel (aligned or
counter-aligned) nor perpendicular (edge or face on) to the MBHB,
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S0 our approximation is bound to introduce some error in the esti-
mate of the binary evolution. In particular, it would be important to
simulate the infall of clouds with L. partially aligned to L, since
here lies the separation between events leading to shrinking (perpen-
dicular) and expanding (aligned) MBHBs. In order to observe the
transition between these two regimes, we would need to cover that
parameter range with a series of simulations, which is unfortunately
not feasible with our current computational capabilities.
Nevertheless, we can roughly estimate the uncertainty of our
long-term model by using different functions to interpolate between
the values obtained with the simulations. As we discuss in Section 4,
for the parallel orbits (A and CA models) a fraction of the cloud’s
initial angular momentum is directly added to the binary. Hence, for
an arbitrarily inclined orbit, we expect that the main contribution
comes from the projection of the gas velocity on to the binary plane.
We propose the following function that captures this behaviour:

j— =|(— ) cosB+ | — sin 3, (29)
a /ot a I a L

where we define the subscripts as

A if 0° <6 <90°
I = . ) (30)
CA if —-90° <6 <0
PE if 0°<¢ <90°or —180° < ¢ < —90° 31)
" |PF if 90° <¢ < 180°0or —90° < ¢ < 0°

and the angle B as

0 if 0° <6 <90°
p= . : (32)
6 +90° if —-90° <6 <0°

While conceptually simple, the main disadvantage of
equation (29) is that it does not reproduce a scenario where both
parallel and perpendicular changes are equal. In consequence, we
propose an alternative form that takes into account this fact,

(ﬂ) _ <ﬂ> cos25+(ﬂ) sin’ B, (33)
a tot a Il a 1

where we use the same definitions described above.

We refer to these two equations (equations 29 and 33) as ‘Con-
tinuous model 1’ and ‘Continuous model 2’, respectively. Despite
the rather arbitrary nature of these interpolations, we expect they,
together with the discrete model presented in Section 5.1, illustrate
a reasonable range of possible evolutions for the binary population.
We show the results obtained with the two continuous models in
Fig. 11. We find that the time-scale to reach the GW regime some-
what increases compared with the discrete scenario (Fig. 9). This
occurs because the aligned configuration has a maximum impact
parameter larger than the others (see Fig. 6), which means that
an important fraction of the events would only expand the binary.
In fact, the evolution time-scale increases by ~3 in the F = 0.0
scenario, but only by a factor <2 in all other cases. Although high-
lighting the uncertainties related to our model, these tests essentially
confirm our basic MBHB evolution scenario.

5.4.2 Effects of the non-accreted material

In our Monte Carlo models (Section 5.1) we consider a sequence
of cloud infall events, treating them independently from each other.
In reality, a large fraction of each cloud is not accreted by the bi-
nary, and part of it will end up forming circumbinary structures. As
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Figure 11. Evolution of the binary semimajor axis as a function of time,
computed with Monte Carlo runs. The different lines represent models with
different distributions of clouds as indicated in the legend. The upper panel
shows the result using equation (29), while the lower panel corresponds to
equation (33). Both new models are depicted with thick lines, while the thin
lines represent the original runs using the discrete orientations (Fig. 9).

more clouds interact with the binary, those left-over structures can
interact with each other, cancelling out their angular momenta, or
accumulating to give rise to a massive circumbinary disc, that can
speed up the binary shrinking, or even reverse its transient expan-
sion (Goicovic et al. in preparation). We describe here a modified
Monte Carlo model that accounts for the left-over gas. In absence of
simulations to calibrate the effect of the cumulative gas distribution,
we make a number of assumptions, as detailed below.

As shown by Nixon, King & Pringle (2011b), randomly oriented
events around a circular binary can produce external discs that ef-
ficiently either align or counter-align with the binary due to differ-
ential precession and dissipation within the disc. Consequently, we
expect that some of the non-accreted material will result in coplanar
circumbinary discs, either prograde or retrograde with respect to the
binary. The condition for counter-alignment is

6 <0 and Ld < 2Lb, (34)

where Ly and L, are the angular momentum of the disc and the
binary, respectively (Nixon et al. 2011a,b; Nixon 2012). Assum-
ing that all of the non-accreted material will form a disc with the
original orientation of the cloud, we use equation (5) to estimate
its angular momentum. We derive a counter-alignment condition
of @ < 70 for events coming from the south hemisphere (6 < 0).
Given that we are modelling clouds with almost radial orbits and
little initial angular momentum (average o < 2), we assume that
every cloud from the south hemisphere will tend to counter-align,
while events from the north hemisphere will always tend to align
with the binary. This will be particularly relevant for the F = 0.0
and F = 1.0 distributions, where the events are somewhat coher-
ent, thus increasing the probability of having a well-defined disc.
The effect is most striking for the F = 0.0 distribution, where the
torques caused by the accretion of (partially) aligned clouds tend
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to slightly expand the binary (cf. Fig. 6). This is true as long as the
mass of the left-over circumbinary disc is negligible. However, fol-
lowing many such events, a massive circumbinary disc eventually
forms, which effectively transports angular momentum outwards,
eventually shrinking the binary (e.g. Cuadra et al. 2009).

For the Monte Carlo calculations of the coherent distributions
(F=0.0and F = 1.0), we assume that all the non-accreted material
(&~0.7M. per event) becomes part of the disc after the transient
phase. Having established a recipe for circumbinary disc growth,
we now turn to estimate its effect on the binary orbital evolution.
The latter has been studied analytically by Syer & Clarke (1995)
and Ivanov et al. (1999), among others, as a function of the disc
properties. Here we use the results of Cuadra et al. (2009), who
applied the formalism of Ivanov et al. (1999) to the case of a disc
in which the transport of angular momentum is due to its own self-
gravity (e.g. Rice, Lodato & Armitage 2005), as appropriate for the
large disc mass that quickly builds up. Cuadra et al. (2009, their
equation 5) find an analytical description of the semimajor axis
evolution of the form

. —5 M - Mdisc o a -
Acircumb ™ —-10 aOQO V 02M ; s (35)
0 . 0 0

where €2 represents the binary initial orbital frequency and M ;s the
disc mass. This result is confirmed by their numerical simulations.

For the modelling of the isotropic distribution (F = 0.5), we
take a different approach. In this case, clouds are highly misaligned
with respect to the binary and between one another, hence most of
the material will not experience enough precession to significantly
change its inclination before the infall of a new cloud. For instance,
in Paper I we derive an alignment time-scale of the order of 1000
orbits for a completely perpendicular disc. We therefore expect
this gas to behave as a collection of independent precessing rings,
similar to what occurs when a misaligned circumbinary disc breaks
under the gravitational pull of the binary (Nixon et al. 2013; Aly
et al. 2015). In this scenario, the interaction between rings causes
partial cancellation of angular momentum, which results in a direct
plunge of a fraction of the gas into the binary, thus increasing the
accretion rate. Assuming this gas delivers negligible net angular
momentum to the binary, we expect a semimajor axis evolution
similar to equation (18), namely,

. . a
Acancelled = _3Mcancelled My (36)

where Mcance“ed is the accretion rate of the plunging material on
to the binary. The interaction of these misaligned discs is a highly
non-linear process, so numerical modelling is needed to estimate
how much material reaches the MBHs. Since to our knowledge
no published simulations of this multicloud process exists yet, we
use as a proxy the fiducial value of M ~ 1077 My from the disc
tearing models of Nixon et al. (2013, their fig. 5), rescaling it to be
proportional to the available gas surrounding the binary (May, gas) as
follows:

Mcancelled ~ 1077M(JQO (110”#2;}50) . (37)
Since on average there is 70 per cent of the cloud’s mass left after
each event, My, 4, increases with time.

Putting all the pieces together, the Monte Carlo evolution of the
binary described in Section 5.1 is modified by including an addi-
tional term Aa = aAT, where AT is given by equation (21) and a
(always negative) by equation (35) or (36) depending on the cloud
distribution. Notice the same expression is used for the F = 0.0
and F' = 1.0 distributions, since Roedig & Sesana (2014) showed
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Figure 12. Evolution of the binary semimajor axis as a function of time,
computed with Monte Carlo runs. The thick lines represent the model in-
cluding the effects of the non-accreted material, while the thin lines show
the original runs where the clouds were treated on isolation (Fig. 9). For
the F = 0.0 and F = 1.0 distributions, we model the presence of a coplanar
massive circumbinary disc as an extra source of angular momentum trans-
port, while for F = 0.5 we are enhancing the accretion on to the binary due
to cancellation of angular momentum in the gas.

that, despite substantial differences in the underlying physical pro-
cesses, the semimajor evolution is very similar when the binary is
surrounded by a prograde or by a retrograde disc.

The evolution of the binary obtained with this model is shown
in Fig. 12. As expected, the MBHB shrinks faster compared to the
original Monte Carlo runs due to the action of the surrounding ma-
terial. The largest difference is obtained for the F = 0.0 distribution,
with an evolution almost twice as fast as in the standard model.

Itis worth stressing the two main assumptions made in these mod-
ified models. First, all of the non-accreted material (*~70 per cent of
each cloud) is assumed to form a circumbinary structure, while this
generally will not be the case. Indeed, in Paper I (see Table 1 there)
we computed the expected mass of the forming circumbinary disc
and found it to be only a small fraction of the non-accreted gas, up
to ~220 per cent for the largest impact parameters. We notice, how-
ever, that the interaction between gas from successive infall events
could modify this fraction. The evolution of the binary semimajor
axis is proportional to either Mgi/si or Mgis. in our models (cf. equa-
tions 35, 36 and 37). Therefore, by including all the non-accreted
material in the calculation, the models provide a robust upper limit
of the impact of the left-over gas in the evolution of the MBHB.
Secondly, for the F = 0.0 and F = 1.0 distributions, we assume a
stable disc that effectively transport angular momentum as it grows.
Given that the MBHs more than double their own mass during the
evolution (see Fig. 9), and that by construction more mass goes
into forming the circumbinary disc than into accretion, the disc will
eventually become more massive than the binary. Before reach-
ing that point, it is expected that the disc will fragment (e.g. Rice
et al. 2005), strongly diminishing its impact on the orbital evolution
with respect to what we find in our simple model (Amaro-Seoane
et al. 2013).

In conclusion, the effect of any circumbinary structure forming
as a consequence of the continuous infall of clouds can speed-up
the evolution of the binary towards coalescence by at most a factor
of two. This demonstrates that the prompt gas capture phase is at
least as effective in extracting energy and angular momentum from
the system than the slowly forming circumbinary structure. For the
cloud infall rates explored in this study, the prompt interactions
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alone are enough to bring the binary orbit down from parsec sep-
arations to the gravitational wave regime on a time-scale <1 Gyr.
This is independent of other angular momentum transfer mech-
anisms that may be simultaneously at work, namely, three-body
scattering or persistent torques from a larger scale circumbinary
structure.

6 SUMMARY

We studied the orbital evolution of an equal mass, circular MBHB
interacting with an impacting gas cloud. Exploiting a suite of 13
high-resolution hydrodynamical simulations, described in Paper I,
we investigated the response of the MBHB orbit as a function of the
cloud impact parameter and relative inclination with respect to its
orbital plane. In our simulations, the cloud mass is only 1 per cent of
the MBHB mass, so the binary orbit is expected to suffer only small
changes. In order to establish if we have the accuracy to reliably
measure the effect, we compared the evolution of the MBHB angular
momentum to the level of angular momentum conservation during
the simulations. We found that the former is appreciably larger than
the numerical noise during the first few binary orbital periods, which
allowed us to robustly measure the transient evolution of the orbital
parameters in this phase. We therefore presented only results for the
strong initial binary—cloud interaction, discarding the subsequent
(much slower) secular evolution of the binary. Our main findings
can be summarized as follows:

(i) We focused our analysis in the semimajor axis evolution. We
found that its total change during the strong transient interaction
depends on the orbital configuration of the system, and it is closely
related to the fraction of mass that gets accreted. In particular,
the binary shrinks the most when interacting with counterrotating
clouds which carry negative angular momentum (with respect to the
MBHB orbital angular momentum) that cancels out upon accretion.
Conversely, prompt accretion of corotating gas, causes the MBHB
to expand, in contrast to the long-term evolution seen in persistent
massive circumbinary discs.

(ii) Using a simple analytical model, we were able to show that,
for all configurations, the evolution of the binary orbital elements
is dominated by the transfer of angular momentum from the cloud
to the binary through the accretion of gas during the first stages
of the interaction. Considering only the angular momentum budget
of the accreted material is sufficient to satisfactory reproduce all
the trends for the total evolution of the MBHB angular momentum
vector (either magnitude or inclination) and semimajor axis.

(iii) By further including the effects of gravitational slingshot
from the MBHB on to the non-accreted material, and by using
a more accurate estimate of the accreted angular momentum, we
could reproduce the evolution of the MBHB semimajor axis and
angular momentum within a few per cent. This confirms that the
simulations are accurate enough to capture the correct evolution of
the MBHB, and that the underlying physics is understood.

(iv) Since the MBHBs were initially circular, any asymmetric
torque (such as that exerted by an infalling cloud) should excite
some eccentricity. This is in fact observed in all our simulations;
however, the eccentricity growth is too small to draw any further
conclusions. We will explore this effect in forthcoming work where
we plan to extend our simulation set to include initially eccentric
binaries.

The resulting semimajor axis evolution as a function of the orbital
configuration of the system was then used as the basis to construct
a simple Monte Carlo model for evolving an MBHB interacting
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with a sequence of impacting clouds. We take cloud distributions
from reasonable populations with different levels of anisotropy in
their angular momenta, based on the studies of Dotti et al. (2013)
and Sesana et al. (2014). These distributions can be linked to the
morphological and kinematical properties of the host galaxies; disc
galaxies, where the gas dynamics is dominated by rotational ve-
locity, will produce mainly coherent accretion events, while bulge
galaxies, dominated by velocity dispersion, will tend to produce
more uniformly distributed events. We found that the evolution
of the orbit is fastest when the distribution of clouds corresponds
to mostly retrograde events (F = 1.0), while as we transition to
isotropic (F = 0.5) and then to mainly prograde (F = 0.0) events,
the evolution progressively slows down. This is because retrograde
interactions are more efficient subtracting angular momentum from
the MBHB, while prograde encounters tend to slightly expand its
orbit.

Finally, we used the results from the Monte Carlo realizations to
calibrate a simple analytical system of coupled differential equa-
tions that captures the long-term evolution of the MBHB as a
function of two efficiency parameters. By scaling this analytical
description to astrophysical systems, we found that typical MB-
HBs efficiently evolve down to the GW emission regime within a
few hundred million years. This demonstrates that the interaction
with individual clouds in near-radial infall is capable of efficiently
shrinking the binary orbit, providing a viable solution to the final
parsec problem in clumpy gas-rich environments.

We recall that our treatment is subject to a number of caveats and
limitations. In particular (i) we are discretizing the angular momen-
tum space into just four configurations, which does not take into
account intermediate inclinations and (ii) we treated each MBHB—
cloud interaction in isolation, neglecting the non-accreted material
that will eventually accumulate, forming circumbinary structures
and/or increasing accretion on to the binary. We test the robustness
of our model by including these two effects into the calculations.
We find that the time-scale to reach the GW regime changes by no
more than a factor of 3, which does not change significantly our
conclusions. For instance, we show that even when all the remain-
ing material is assumed to form a massive circumbinary disc and
fragmentation is neglected, its impact on the binary evolution is at
most comparable to the cumulative effect of the transient accre-
tion episodes of the individual infalling clouds. Additionally, the
accretion rates that we measure during the transient evolution are
typically super-Eddington (up to ~50Mqq, Paper I), thus suggest-
ing that radiation-pressure-driven outflows can alter the amount of
material that actually reaches the MBHs. We stress however that
even if all the material that crosses the accretion radius is eventu-
ally ejected from the system, the semimajor axis evolution will be
mildly affected. This is because the exchange of angular momentum
occurs during the capture of the material rather than the accretion
itself.

Besides these conceptual points, our model is also limited to
circular, equal-mass binaries. While we can infer plausible trends
of the results with the binary mass ratio, it would be interesting
to see how eccentric binaries respond to clouds with different ori-
entations and impact parameters. However, these simulations are
computationally expensive, so we leave the exploration of the rel-
evant parameter space for future work. On the other hand, we are
planning a series of simulations of MBHBs interacting with multi-
ple clouds. This will allow us to combine the ‘discrete’ evolution
due to the prompt interaction of each individual cloud, with the
secular torques eventually exerted by the circumbinary structures
that we expect to form in the long term.
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APPENDIX: CONVERGENCE TESTS
WITH THE ACCRETION RADIUS

As we discuss in Section 4, the transient evolution of the binary or-
bital elements is dominated by the exchange of angular momentum
with the accreted material. Hence, resolving the accretion process
properly is a key aspect of this study. Due to numerical consid-
erations explained in Paper I, we model each MBH with a very
large sink radius compared to the Schwarzschild radius, producing
unrealistically large accretion rates.

In order to establish the role of our chosen sink radius, we rerun
some of the models changing only this parameter. We test two
smaller values of the sink radius (0.05 and 0.025) and a larger one
(0.2) to study the convergence of the binary orbital evolution. We
choose the AQ.7 and CA0.7 models because they represent two
extremes in regards to accretion: in the first case we observe the
formation of very prominent mini-discs around each MBH, while
in the latter the material plunges almost directly due to cancelation
of angular momentum in the gas (Paper I). Additionally, we have
chosen the smallest pericentre distance since the accretion is larger
and thus any difference could be enhanced.

The binary evolution during the first orbits is shown in Figs Al
and A2. Since the simulations with smaller accretion radius are
more computationally expensive, we run these models only until
the prompt accretion stops. Nevertheless, this is the point where the
transient binary evolution also stops, as we show in Section 3.1.

MNRAS 472, 514-531 (2017)

1.007
1.006
1.005f
1.004
1.003f
1.002f
1.001F
1.000
0.999 L L + L 4 L L
0.014
0.012f
0.010f
0.008f
0.006
0.004
0.002f
0.000F
—0.002

0.8 T T
0.7f A0.7 model |
0.6f| 777" Te=02 | P T
0.5k Tgine =0.1
0.4
0.3
0.2
0.1F
0.0f

semimajor axis [q,]

eccentricity

P =0.025

AM,;, 1072 M)

_0%.5 4‘.0 4‘.5 5‘.0 5‘.5 6‘.0 6‘.5 7‘.0 7.5
time [Py}

Figure Al. Evolution of the binary semimajor axis (upper panel), eccen-
tricity (middle panel) and accreted mass (lower panels) for the CA0.7 model
with different sink radii, as indicated in the legend. Recall that the solid red
line represents the ‘original’ system.

CA0.7 model

""" Tk =0-
Tk =0.1
—— rgu=0.05

,=0.025 |1

Tsin

eccentricity

3 4 é 6 7 8 9
time [P,]

Figure A2. Same as Fig. A1, but for the CA0.7 model.
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For the A0.7 models (Fig. Al), we observe that the semima-
jor axis evolution is roughly equal for radii smaller than 0.2, even
though the accreted mass changes with each value of rp, as ex-
pected. This is because the bulk of angular momentum exchange
occurs when the material is ‘captured’ by the MBHs, rather than the
accretion itself. For this system orientation, decreasing the accretion
radius translates in the inner edge of the mini-discs being closer to
the MBHs, delaying the accretion somewhat, but not changing the
dynamics any further.

For the CA0.7 models (Fig. A2), the difference in Aa between
the 0.2 and 0.025 simulations is ~4 x 1073, which is ~6 per cent
of the total change. Interestingly, the accretion seems to converge
at the end, but for the smaller 7y there is a ‘transient suppression’
around ¢ = 6P(, which makes the semimajor axis decrease even
more respect to the other cases. This is because we are allowing
some of the gas to wonder around the binary a while longer before
being captured, interacting gravitationally with the MBHs.
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In conclusion, the semimajor axis evolution of the binary its only
mildly dependent on our choice of the sink radius. This indicates
that the exchange of angular momentum between the gas and the
MBHs occurs through the captured material rather than the accreted
material, since the gas that crosses the sink radius has already lost
most of its initial angular momentum during the interaction with
the binary.

On the other hand, the eccentricity does not appear to converge
in any of the models. This is consistent with it having always very
small values, which are dominated by numerical noise instead of
physical processes. Since we are not considering the eccentricity
evolution in this work, this does not affect the conclusions of our
study.

This paper has been typeset from a TX/IATgX file prepared by the author.
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