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Abstract

Sujan Pal, Francina Dominguez, Pablo Bollatti, Steven P. Oncley, Yi Yang, Javier Alvarez,
Carlos M. Garcia

Since the 1970s, land cover in central Argentina has shifted away from perennial crops
and grasses toward annual crops, largely soy. In this study, we use observations and
modeling to understand how this shift in land use has affected the sub-surface, surface,
and atmospheric fluxes of moisture and energy in a flat agricultural area. We analyze the
flux tower data from a paired site at Marcos Juarez in central Argentina during the period
of the RELAMPAGO field campaign (2018–2019). When compared to perennial alfalfa, the
observations over soy show lower evapotranspiration (ET) and specific humidity, higher
sensible heat, higher outgoing shortwave radiation, and soil temperature. Water table
(WT) depth is shallower below the soy than the alfalfa sites. To better understand the
long-term temporal behavior from 1970s to present, the Budyko framework is used to
show that the trends in ET cannot be explained by climate variables alone. We then use
the Noah-MP land surface model calibrated at both soy and alfalfa sites. Long-term
simulations of the calibrated model suggests that ∼95% of precipitation is evaporated in
the alfalfa site with negligible recharge and runoff. Contrarily in the case of soy, ET is
about 68% of precipitation, leaving nearly 28% for recharge and 4% for runoff. Observed
increases in streamflow and decreases in WT depth over time are likely linked to shifts in
land cover. Furthermore, the partitioning of net radiation shifts from latent heat to
sensible heat resulting in a 250% increase in Bowen ratio (from 0.2 to 0.7).

1 Introduction
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During the 21st century, Argentina has experienced one of the fastest agricultural expansion
rates in the planet (Baldi & Paruelo, 2008; Graesser et al., 2015). In many Argentinian regions
the past 60 years have seen a shift in agricultural production from one that had primarily
perennial crops for livestock and grasses to one based on annual crops, largely dominated
by soy, with confinement of livestock into feedlots. These changes came about due
technological advances in agricultural production such as the introduction of transgenic
varieties, no-till farming, and crop rotation which dramatically increased crop productivity in
the region (Paruelo et al., 2005). Global economic shifts such as the increasing demand of
soy-based and corn-based biofuels made it economically attractive for farmers to shift to
soy and corn. As a result, in two decades (1995/96 to 2014/15), the cultivated area in regions
such as Cordoba increased by 229%. Soy now dominates the landscape in the province of
Cordoba accounting for nearly 60% of crops.

How can these dramatic changes in land use affect the hydrologic cycle? Some effects could
parallel those of other regions of the globe that have experienced similar land-use shifts,
such as the Midwestern United States. In the US central region, European settlers arrived in
the early to mid-19th century and by 1900 agriculture had become the dominant land use
type, replacing the native grasses and forests of the region (Yaeger et al., 2013). Perennial
and sod vegetation gave way to intensive corn and/or soybean crops with shorter summer
growing seasons, which led to a decrease in evapotranspiration (ET). Decreased ET implied
that more precipitation was going into groundwater recharge and routed into streams as
baseflow (Zhang & Schilling, 2006). Several studies have attributed increased baseflow in the
region to changes in land surface characteristics (Schilling et al., 2008, 2010; Xu et al., 2013;
Zhang & Schilling, 2006).

The plains of the Pampas-Chaco in Argentina are flatter than their North American
counterparts. They are sometimes referred to as hyperplanes, because their slopes are less
than 0.1%, their drainage systems are poorly developed, and ET dominates the water
balance (Jobbagy et al., 2008). Rodriguez et al. (2020) identified transpiration as the primary
component of the water budget, followed by ET and interception, for dry forests and crops
in the region of San Luis, Argentina. In general, their modeling results showed that water
fluxes here are strongly controlled by the vegetation cover. Giménez et al. (2020) illustrated
that changes in land cover from dry forests to crop reduced ET and increased intensity of
deep drainage. Measurements and remote-sensing estimates in Argentina show that
compared to annual crops, perennial crops such as alfalfa have deeper roots and year-
round transpiration of more than 1,000 mm/year compared to about 680 mm/year for
single summer crops (Nosetto et al., 2015). Soil moisture (SM) is usually higher, and the
water table (WT) depth is closer to the surface below annual single summer crops than in
areas where perennial alfalfa is grown (Nosetto et al., 2012). At inter-annual timescales, the
balance between precipitation and ET dictates WT fluctuations, whereas crop choice can be
a relevant control of WT at intra-annual or seasonal timescale (Mercau et al., 2015; Zellner
et al., 2020). In addition, lateral transport of water, driven by hydraulic gradients develops
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due to contrasting water consumption of different vegetation types (Mercau et al., 2015).
One of the important consequences of changes in WT is related to flooding, as groundwater
level is intimately related to the flooded area in the region (Aragón et al., 2010; Viglizzo
et al., 2009). During periods of excess rains, the WT can reach the surface and cause “slow”
floods that affect the region for several years (Kuppel et al., 2015). In fact, a modeling study
by Lee et al. (2018) linked the increasing discharge of Parana river to land cover change
using a terrestrial biosphere model.

Very few studies have relied on eddy covariance data in this region due to limited in-situ
measurements. A. G. García et al. (2017) provided estimates of CO  and water vapor fluxes,
using eddy covariance measurements, in a dry forest of central Argentina. They identified
that the dry forest is a net sink of carbon, and that ET is the dominant vapor flux. In another
study, Nosetto et al. (2020) compared the temporal patterns of CO  and water vapor fluxes
of native dry forests and pastures at two different locations to show comparatively higher ET
in the forests, primarily due to increased evaporating surface causing higher intercepted
water. Long-term ground WT depth records are also limited in this region. Jobbággy
et al. (2020) illustrated that unsaturated-saturated contact zone is a critical and dynamic hub
of water partition using observed WT depth analysis at different vegetation. Clearly, this
region shows strong interactions between land cover and terrestrial hydrology. However,
there have not yet been any paired hydrometeorological observations of eddy-covariance
estimates in the region, especially to understand how transient changes in land cover affect
the partitioning of moisture and energy. Furthermore, the link between these differences
and long-term trends in WT depth, hydrologic and atmospheric fluxes has not been
established.

This study focuses on the regions surrounding Marcos Juarez, a town located in the
Carcarañá river basin in the Pampas region of Argentina, in central-southeast of Cordoba
province. This region has experienced a dramatic transformation from mostly perennial
grasses and alfalfa to annual (mostly soybean) cultivation and is representative of the land-
use changes in the region as a whole. Critically, the Argentinian National Institute for
Agricultural Technology (INTA, for its acronym in Spanish) has an experimental alfalfa site
and several soy sites in this location. Alfalfa is a perennial crop with characteristics similar to
those that would have dominated the landscape in the 1970s, and soy crops are
representative of the region at present. In addition, INTA has long-term WT depth
observations (see Sections 2.1 and 3.1). We deployed two eddy covariance towers within the
INTA site as part of the RELAMPAGO (Remote Sensing of Electrification, Lightning and
Mesoscale/Microscale Processes with Adaptive Ground Observations) field campaign which
took place in west-central Argentina (Nesbitt et al., 2016; Pal et al., 2021). The RELAMPAGO
project consisted of an Extended Hydrometeorology Observing Period (EHOP) from 1 June 1,
2018 to April 30, 2019. One of the goals of the EHOP is to understand how changes in land
cover have affected the partitioning of rainfall between infiltration/runoff and impacted the
residence times of SM and groundwater in the Carcarañá Basin's terrestrial system. As part
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of the EHOP, the hydrometeorology team of RELAMPAGO installed 30 meteorological
stations, including seven eddy covariance towers. The work we present in this manuscript is
based on the two eddy covariance towers located within the INTA experimental site in
Marcos Juarez, Argentina.

In this study, we use the combined analysis of eddy covariance observations and land
surface modeling to understand the potential effects of large-scale changes in land cover on
the hydrology of the region. The specific goals of this manuscript are (a) to quantify the
differences in energy and moisture fluxes between soy and alfalfa using high-resolution
intra daily eddy covariance observations obtained from two RELAMPAGO flux towers, and (b)
to use an idealized modeling framework to understand the potential changes in surface,
subsurface, and atmospheric hydrology due to the gradual shift from perennial to annual
crops. The results from this study can be used to interpret long-term ET estimates in this
region, which are also useful for INTA. Critically, the results from this study have implications
for interpreting changes in WT depth based on land cover type and climate variability (such
as El Niño and La Niña conditions). The manuscript is organized as follows: in Section 2, the
description of observed data, model specifications, and the experimental design are
discussed. In Section 3, the results are discussed and finally, the conclusions are
summarized in Section 4. Additional information is provided in Supporting Information S1.

2 Materials and Methods
2.1 Long-Term Observations
Long-term measurements (1970–2020) of annual mean WT depth, precipitation, and
temperature were obtained from the agrometeorological station of the INTA Marcos Juárez
(62.085°W, 32.725°S, Figures 1a and 1b). The region is currently dominated by crops, mainly
soy. Annual runoff measurements from 1980 to 2020 were obtained from the streamflow
station at Andino (Figure 1c). The Carcarañá river drains an area of ∼40,000 km  at Andino
(60.87°W, 32.67°S), which has long-term daily discharge information (available from
https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-
integrada). As such, Andino is downstream of Marcos Juarez as well as most of the
Carcarañá river basin. Total streamflow at Andino was separated into baseflow and surface
flow using the Web-based Hydrograph Analysis Tool (WHAT) recursive digital filter method
(Eckhardt, 2012). Throughout the text, significance is assessed using the Mann Kendall trend
test at a 95% significance level. The Sequential Mann Kendall test (Modarres & Sarhadi, 2009;
Sneyers, 1990) was used to detect breakpoints in discharge (see Figure S1 in
Supporting Information S1). Long-term record of land-use data was obtained from INTA
Marcos Juarez, which indicates a gradual shift of land use from perennial crops to annual
crops (Figure 2).
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Figure 1

Open in figure viewer PowerPoint

(a) Location of Carcarañá river basin in Argentina. (b) Elevation (m) and drainage network
of the basin. (c) Location of Marcos Juarez (paired sites), INTA agrometeorological station
and Andino (streamflow measurement location) within the watershed.
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(1)

Figure 2

Open in figure viewer PowerPoint

Time evolution of land use in Marcos Juarez.

2.2 Budyko Analysis
The Budyko framework has been extensively used in the literature to separate possible
effects of climate and land cover change on hydro-climatological variables (Jaramillo
et al., 2013; Levi et al., 2015; Xiong et al., 2020). To understand the possible climate-driven
changes of hydroclimatic conditions at Marcos Juarez, actual ET (AET) was calculated
according to two different methods (M1 and M2) following Levi et al. (2015). In M1, annual
AET (AET ) was computed based on water balance, following Equation 1.

where P = annual precipitation, R = annual runoff, S = annual change in storage. For our
case of site-level analysis, considering unit area, change in storage was calculated from the
change in WT depth and an approximate specific yield of the unconfined aquifer in the area
(following Varni et al. [2013]). In M2, we calculated two climate based AET estimates, AET
and AET  computed with Budyko (1974) and Turc (1954), following Equations 2 and 3,
respectively. Potential evapotranspiration (PET) was obtained from Langbein (1949), where
T = mean annual temperature in °C. Two different equations were considered for M2 to
account for potential uncertainty in the empirical methods.

wb

clim1

clim2
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(2)

(3)

(4)

where

2.3 RELAMPAGO 10-Month Observations
To understand the effects of different land-use types on the fluxes of energy, moisture, and
momentum along the subsurface-surface and atmosphere continuum, the RELAMPAGO
Hydrometeorology team installed two eddy covariance towers within the INTA experimental
station in Marcos Juarez (Figure 1c). One of the towers was located within an alfalfa test plot
(62.075°W, 32.71617°S), while the other one was located in a soy site (62.085°W, 32.725°′S;
Figure 1c).

RELAMPAGO surface flux measurements were made by the Integrated Surface Flux System
(ISFS) (https://www.eol.ucar.edu/content/isfs-operations-relampago) maintained by the
National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL).
Campbell Scientific 3-D sonic anemometers (CSAT3A) and open path H O/CO  gas analyzers
(EC150) were used to measure sensible and latent heat fluxes (net ET) directly using the
eddy-covariance (EC) method. The installation height of the EC system was 6 m at the soy
site and 3 m at the alfalfa site. Maximum height of soy and alfalfa canopies were 1.18 and
1 m, respectively. We used a two-dimensional parameterization for flux footprint prediction
based on 30-min data from the entire period to calculate the representative area for flux
measurements at each site (FFPonline tool, Kljun et al., 2015). Based on this analysis, 80% of
the daytime representative area was within 350 m of the soy site and 60 m of the alfalfa site.
The flux footprint analysis is shown in Figure S2 of Supporting Information S1. The data were
corrected for spatial separation between the anemometer and gas analyzer paths, for the
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response of the anemometer acoustic temperature to both temperature and water vapor,
and for the WPL density effect using the equations used by Oncley et al. (2007). To complete
observations of the surface energy balance, the four radiation components were measured
by a Hukseflux integrated radiometer (NR01) and the soil heat flux at the surface by a REBS
heat flux plate at 5 cm depth, corrected for heat storage using a custom 4-level temperature
profile sensor and a Hukseflux heat capacity sensor (TP01). Residuals in the energy balance
averaged 17% for these two sites over the entire RELAMPAGO observation period, which is
not atypical. Decagon SM sensors (EC5) also were installed at 5 cm depth and adjusted for
biases of 12% and 13% vol, for the two sites, based on manual gravimetric observations
taken several times during the study.

For this study, we analyze SM, sensible and latent heat fluxes (SHF and LHF, measured by
the EC method), specific humidity (SH), outgoing shortwave radiation (OSR), soil temperature
(ST), 2-m temperature (T2m), momentum in zonal and meridional direction (U-momentum
and V-momentum), and incoming shortwave radiation (ISR). The flux tower measurements
were available from June 1, 2018 to April 1, 2019. However, good quality SM data was only
available from November 2018 to March 2019. Continuous groundwater measurements
were obtained in the soy and alfalfa sites from both automated sensors and manual
extraction by INTA and data were available from July 2018 to May 2019.

Our observations include the full crop planting-harvesting cycle. In Argentina, soy planting
begins in September–October and planting ends in November, during the months of austral
spring. December–February is the growing season (austral summer), and harvesting begins
in March. Harvesting is completed by April–May. During the austral winter months, cover
crops are also planted sometimes to improve soil fertility and quality. During the 2018–2019
season, a rye cover crop was planted before the soy crop in Marcos Juarez.

2.4 Land Surface Modeling With Noah-MP
Land surface models compute the exchanges of water, heat, radiation, and momentum
between the land and atmosphere (Sellers et al., 1997; Zheng et al., 2019). In this study, we
use the Noah LSM (Chen & Dudhia, 2001) with multi-parameterization options (Noah-MP;
Niu et al., 2011) run in a column (one-dimensional in the horizontal direction) configuration.
Noah-MP calculates energy, water, and carbon dioxide fluxes between the biosphere and the
atmosphere for different vegetation types, with closed energy budget and coupled water
cycle. It has been previously implemented to investigate problems related to hydrologic
cycle of South America in standalone mode (Martinez et al., 2016a) and coupled with WRF
(Martinez et al., 2016b; Sörensson & Berbery, 2015) or WRF-Hydro (Pal et al., 2021).

2.4.1 Model Configuration

We use the Noah-MP land surface model in “offline” mode with a groundwater scheme
(Figure S3a in Supporting Information S1; Niu et al., 2007) to better understand the physical
processes in the two sites with different vegetation and evaluate these processes for periods
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(5)

in the past when we do not have observations. The Ball-Berry scheme was chosen for
modeling stomatal resistance. Other parameterizations of Noah-MP were left as default;
such as Monin-Obukhov scheme for surface layer drag, Jordan scheme for partitioning
precipitation into rainfall and snowfall, and so on (Niu et al., 2011). We do not analyze
carbon fluxes in this study, so the carbon and dynamic vegetation module was not used.
Furthermore, we define leaf area index (LAI) and rooting depth (RD) climatology in the model
and calibrate other vegetation-related parameters. We did not account for long-term
changes in atmospheric CO  as it is kept constant at 375 ppm. Our tests showed the minimal
effect of changing CO  in our simulations (not shown). In the model, vegetation is
represented by generic plant functional types, so the model needs to be calibrated
regionally for best results. To better represent the soil state and ground water-SM
interaction, we modified the model soil column to have 14 layers (Table S1) extending from
the surface to 4 m below (following Miguez-Macho and Fan [2012] and Martinez
et al. [2016a]) as the default Noah-MP has only 2 m deep soil column (with 4 layers).

The model is run with prescribed atmospheric conditions from Global Land Data
Assimilation System (GLDAS; Rodell et al., 2004) extracted for Marcos Juarez (nearest grid
point from GLDAS). First, we performed two independent experiments named “Noah-MP
SOY” and “Noah-MP ALFALFA” where the model configuration remains unchanged except for
the vegetation parameters in the model. The vegetation parameters that varied depending
on the type of crop were (a) LAI, (b) RD, (c) maximum carboxylation rate (VMAX) in the
Farquhar photosynthesis model (Farquhar et al., 1980), (d) the slope parameter (MP), and (e)
the intercept parameter (BP) in the Ball-Berry stomatal conductance model (Ball et al., 1987).
VMAX, BP, and MP control the ET by controlling the stomatal resistance (r ) following
Equation 5.

where “A” is photosynthesis rates per unit LAI of leaves, which is controlled by VMAX. C  is
the CO  concentration at leaf surface, P  is the surface air pressure. E  and e  are vapor
pressure at leaf surface and saturation vapor pressure at leaf surface temperature,
respectively. Simulated ET is highly sensitive to these parameters of Noah-MP (Cuntz
et al., 2016). Other vegetation parameters (e.g., leaf reflectivity, stem reflectivity, vegetation
height, height of lower canopy bound, etc.) for the Noah-MP ALFALFA and Noah-MP SOY
simulations were kept as default Noah-MP values of “Grasslands” and “Croplands” from
modified IGBP MODIS 20-category vegetation, respectively. The soil type was taken as silty
clay loam for both sites.
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The climatology of LAI and RD for the two vegetation types were obtained from literature
(Figure 2 of P. E. García et al. [2017]). Alfalfa grows during the whole year and has a deeper
root system (3.5 m), while soy crops occupy the field only 4–5 months. In Noah-MP, we
provided the root depth monthly climatology and prescribed monthly LAI climatology
(Figures S3b and S3c in Supporting Information S1) from P. E. García et al. (2017). As such,
we did not use dynamic root or dynamic vegetation calculations. There are some remotely
sensed LAI products (e.g., MODIS) available in this region providing estimates of combined
LAI values from several different vegetation types within a grid cell, however, they do not
represent the LAI climatology of these two specific vegetation types (see Figure S4 in
Supporting Information S1). For this reason, we relied on the LAI estimates reported in the
literature for the sensitivity experiments. MODIS LAI estimates are considered for the
uncertainty experiments (Section 2.4.4).

The two short-term simulations Noah-MP ALFALFA and Noah-MP SOY were performed to
calibrate and validate the model at the two sites (see Sections 2.4.2 and 3.3). The complete
list of modeling experiments is presented in Table 1. Using the calibrated model (see
Section 2.4.2) we performed two long-term simulations for 100% alfalfa and 100% soy
conditions for the period January 1970 to December 2018 (Noah-MP ALFALFA LT and Noah-
MP SOY LT, respectively in Table 1). The calibrated parameters for the two vegetation types
are used in the long-term simulations, and the GLDAS forcing for 1970–2018 is used to
capture the interannual variability of the model outputs. These simulations provide
components of the annual water budget in the two different vegetation scenarios. It is
important to highlight that these two scenarios are the two extremes of land use, and the
actual transient land use would fall somewhere in between. However, this kind of idealized
experiment helps us to understand the largest possible extent of transformation in
hydrology due to land-use change in this region. In our modeling experiment, we do not take
into account the effect of lateral flow (which might be generated by heterogeneous land
cover) at inter-annual time scale. We spin up the model for 40 years for both scenarios and
use the final SM and WT depth as the initial condition for the analyzed simulations.

Table 1.
List of Experiments Performed in This Study

Noah-MP

ALFALFA

June 1, 2018 to April 1, 2019 100%

alfalfa

GLDAS Calibration and validation

Noah-MP SOY June 1, 2018 to April 1, 2019 100% soy GLDAS Calibration and validation

Noah-MP

ALFALFA LT

January 1, 1970 to

December 31, 2018

100%

alfalfa

GLDAS Long term estimates of water budget

and surface fluxes

Name of

simulation

Simulation period Vegetation Forcing Purpose
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2.4.2 Model Calibration

In Noah-MP, ET is most sensitive to the vegetation parameters VMAX, BP, and MP (Cuntz
et al., 2016). So, these parameters were obtained by calibration of the model based on
RELAMPAGO flux tower observations of daily LHF at both sites. All other parameters of the
model were kept constant as the default configuration (Section 2.4.1). The calibration was
performed in a shuffle complex evolution method (Duan et al., 1993) minimizing the root
mean square error (RMSE) of daily LHF data. Python SPOTPY package (Houska et al., 2015)
was used to carry out the calibration. Using this method, we can make realistic estimates of
land surface variables at these two sites using Noah-MP (which previously had default
generic crop parameters). The model was calibrated separately with respect to daily LHF
data at both sites to obtain the above-mentioned vegetation parameters. About 100
iterations for each site were carried out as RMSE improvements were insignificant in both
scenarios with more iterations. It is worth remembering here that our main goal from these
modeling exercises is to obtain realistic water and energy balances for these two types of
vegetation. LHF is a major part of both energy and water balance (as ET). Hence, we
preferred to calibrate the model based on the common link (ET) of these two budget
equations. The model was validated using other variables during the same time period (June
1, 2018 to April 1, 2019).

2.4.3 Transient Analysis

To estimate the transient moisture and energy fluxes, we used the yearly land cover for the
region as shown in Figure 2. It is important to highlight that, in reality, land cover in the
region changed from mostly grasses and perennial crops like alfalfa, to a mixture of annual
crops including soy, corn, wheat, and other crops. Our simulations greatly simplify this
complexity by assuming that the land cover is composed of a mixture of only alfalfa and soy.
Furthermore, we do not account for the use of cover crops, despite the fact that these are
sometimes used during the winter months. Hence, the experiments will provide a first-order
idea of the transient fluxes but will likely not reflect the actual historical conditions. The
annual values were calculated based on a weighted “tile” approach commonly used in land
surface models. For example, ith year values of latent heat flux (LH ) were calculated
following Equation 6.

Noah-MP SOY

LT

January 1, 1970 to

December 31, 2018

100% soy GLDAS Long term estimates of water budget

and surface fluxes

i

Name of

simulation

Simulation period Vegetation Forcing Purpose
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(6)

This method was followed for other fluxes as well.

2.4.4 Uncertainty Quantification

In this idealized modeling, uncertainty in the model results may originate from several
factors—model forcing, model parameters, vegetation parameters. Among these, LAI is
perhaps the most uncertain parameter due to the lack of direct measurements and the use
of cover crops. To understand the range of combined uncertainty originating from a subset
of these factors in the long-term simulations, we consider ensemble simulations with
different extreme conditions. Cover crop LAI during the months of April–October was varied
between 0 and 1. Soil parameter SMCMAX was varied from 0.38 to 0.47. Princeton Global
Forcing was considered in addition to GLDAS (Figure S5 in Supporting Information S1). The
extreme results from these additional simulations are shown as “uncertainty bounds” across
original GLDAS deterministic simulations. It is important to highlight that this quantification
is not comprehensive and limited to uncertainty originating from LAI, soil, and model
forcing. Nonetheless, it provides a first-order estimate and motivates us to improve the
quality and quantity of future observations to reduce uncertainties in model estimates.

3 Results
3.1 Analysis of Long-Term Data
In 1970, the WT was nearly 11 m deep, however, there has been a steady rise (statistically
significant decreasing trend) of the WT and now it is approximately 2 m below ground at
Marcos Juarez (Figure 3a). This trend does not seem to be related to climatic variables, for
example, precipitation and temperature. Annual mean precipitation shows a slight
statistically non-significant decreasing trend (Figure 3b) and annual mean temperature
shows a statistically significant increasing trend (Figure 3c). Streamflow at Andino also has a
statistically significant increasing trend, especially after 2000 (Figure 4). The increasing trend
in total flow is result of both increased baseflow (statistically significant trend) and surface
flow (statistically non-significant trend, Figure 4a). The year 2000 was found to be a year of
change-point of trend (sequential Man-Kendall test, Figure S1 in Supporting Information S1).
After 2000, baseflow has increased in the months of March and April; whereas surface flow
has increased remarkably in February, March, and October (Figure 4b). It is important to
clarify that the drainage area of Andino is the entire Carcara á basin, and hence the change
in discharge represents an accumulated effect on the entire watershed and not only Marcos
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Juarez. It is clear that the combined effect of surface runoff and baseflow has resulted in the
overall increase in streamflow at the Andino gauging station (Figures 4b–4d).

Figure 3

Open in figure viewer PowerPoint

Long-term time series of annual mean (a) water table (WT) depth, (b) precipitation, and (c)
temperature at Marcos Juarez based on the Agrometeorological Station of the INTA
Marcos Juárez and manual WT depth observations.

Figure 4

Open in figure viewer PowerPoint

(a) Annual mean streamflow at Andino 1980–2016. Linear fit lines (solid straight lines) are
also included. Monthly mean streamflow before and after 2000 separated into (b) total, (c)
baseflow, and (d) surface flow. cms = cubic meter per second.

3.2 Effect of Changing Climate

https://agupubs.onlinelibrary.wiley.com/cms/asset/c3fa475a-5df5-47dc-b049-ea5059b42b25/wrcr25618-fig-0003-m.jpg
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The comparison of slopes of AET  and AET s (calculated using Budyko framework,
Section 2.2) reveals that the changes in AET cannot be fully explained by climate change
alone (Figure S6 in Supporting Information S1). Slope of AET s is positive, indicating a
possible increase in AET due to climate (attributable to increasing temperature and
decreasing precipitation). On the other hand, slope of AET  is negative, indicating a
decrease in ET due to changed land use. The opposite trends indicate a strong dominating
effect of land-use change. The equations used here are empirical and general, however, it
gives us further motivation to isolate the impact of land-use change on the changes in ET
and runoff trends.

3.3 Analysis of the RELAMPAGO Data
The analysis of the RELAMPAGO flux tower data is limited to the period June 1, 2018 to April
1, 2019 which corresponds to the EHOP. Figure 5 presents values at (a, d) sub-daily, (b, e)
daily, and (c, f) monthly timescale. Hourly fluxes of sensible and latent heat in the soy and
the alfalfa site show different characteristics. Diurnal cycles of LHF and SHF at both sites
peak around 16 UTC (1 p.m. local time, Figures 5a and 5d). The difference between soy and
alfalfa is largest during the daytime. The largest differences in LHF are found in November
and December, while largest SHF are in October. LHF was higher for alfalfa during most of
the year, except for January, February, and March, which corresponds to the peak of the soy
growing season when the annual crops are transpiring vigorously (Figures 5b and 5e). SHF
was higher for soy in all months, except February (Figure 5e). LHF for alfalfa (soy) peaks in
December (January). SHF for alfalfa (soy) peaks in February (December). This is related to the
phenology of crops in this region (see Section 2.3 and Figures S3b and S3c in
Supporting Information S1). Crops transpire most during the end of growing season when
they are mature. At the beginning of growing season, sensible heat is maximized. Based on
our EC measurements, the accumulated 10-month ET of soy was found to be approximately
550 mm while for alfalfa it was around 880 mm.

Figure 5

Open in figure viewer PowerPoint
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Diurnal, daily, and monthly values of latent (a, b, and c) and sensible heat flux (d, e, and f),
respectively, at Marcos Juarez as observed by EOL towers during RELAMPAGO.

In addition to sensible and latent heat, we analyzed SH, OSR, ST, T2m, U-momentum and V-
momentum, and ISR measurements from the two sites. SH is higher at the Alfalfa site in all
months except February and March (Figures 6a–6c). The difference is largest in January. This
indicates that the atmosphere above alfalfa is more humid due to higher transpiration of the
plants. OSR is higher at the soy site in all months (Figures 6d–6f). This is likely related to
higher albedo of soy when compared to Alfalfa. This radiative effect alters the net incoming
solar radiation. ST is higher at the soy site in all months, except January and February
(Figures 6g–6i). No significant difference was found for T2m, U-momentum and V-
momentum, and ISR (not shown). This indicates that thermodynamic properties are altered
by the change in vegetation, but not the dynamic properties.

Figure 6

Open in figure viewer PowerPoint

Diurnal, daily, and monthly values of specific humidity (a, b, and c), outgoing shortwave
radiation (d, e, and f), and soil temperature (g, h, and i), respectively, at Marcos Juarez as
observed by EOL towers during RELAMPAGO.

WT is shallower at the soy site (Figure 7) by more than 1 m and this difference increases in
summer months when we see a sharp increase in WT following the first rains (November–
February). We also see that the automated WT depth measurements (continuous line) agree
with the manual observations (points).

https://agupubs.onlinelibrary.wiley.com/cms/asset/4020c0e1-b856-4ce8-aa97-26c8b91ba3e0/wrcr25618-fig-0006-m.jpg
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Figure 7

Open in figure viewer PowerPoint

Water table depth at Marcos Juarez as measured by INTA during RELAMPAGO period.

3.4 Model Validation
The results of calibration and validation are shown in Table 2. For the soy (alfalfa) site, the
parameters found were: VMAX = 132.425 (136.734), BP = 1,580.63 (2,041), MP = 6.89 (5.95).
These values are physically realistic for C3 type vegetations (Kattge et al., 2009; Miner
et al., 2017). The model performance was validated against SHF and SM, at daily scale, at
both sites. The performance was significantly improved from the default parameter
combinations (see Figure S7 in Supporting Information S1). Relatively better performance at
the alfalfa site is likely related to the longer period of active vegetation used to calibrate
parameters compared to fewer months of active vegetation at the soy site. These calibrated
parameters were used in the long-term simulations Noah-MP ALFALFA LT and Noah-MP SOY
LT.

Table 2.
Calibration and Validation of Noah-MP at Daily Scale (304 days) at Each Site

Calibration Latent heat flux 0.78 32.61 0.65 37.45

Alfalfa site Soy site

CC RMSE (W/m )2 CC RMSE(W/m )2

https://agupubs.onlinelibrary.wiley.com/cms/asset/8ee517f1-891d-4fc6-915e-8591d21ff8a3/wrcr25618-fig-0007-m.jpg
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Note. CC, correlation coefficient, RMSE, root mean square error.

When compared to observations, the Noah-MP calibrated model performs realistically for
both sites (Figure 8). The model was calibrated for daily LHF and validated with SHF and SM
at the same locations. LHF at the soy site was well represented by the model, except for
some high daily values in October and December (Figure 8a). LHF at the alfalfa site was
slightly underestimated during some days in the Spring and overestimated in the Summer
months (Figure 8b). SHF was slightly underestimated by Noah-MP at the soy site and
overestimated at the alfalfa site (Figures 8c and 8d). The model does a reasonable job
(Figures 8e and 8f) in simulating the top layer SM (0–5 cm), unfortunately, we do not have
SM observations until November of 2018. The discrepancies between model simulated
fluxes and observations can be attributed to the simple structure of the Noah-MP model and
calibration of limited variables within the model. Noah-MP assumes uniform soil with depth,
and uniform root distribution throughout the soil layers. However, for the purposes of this
study, we are interested in comparing the representation of the two different vegetation
types to understand the long-term effect of such changes in the fluxes of energy and
moisture. Also, realistic land surface modeling complements the observations in terms of
gap filling of missing values, which are common in these types of measurements.

Validation Sensible heat flux 0.62 24.62 0.64 20.1

Top layer soil moisture 0.57 17.56 0.49 17.74

Alfalfa site Soy site

CC RMSE (W/m )2 CC RMSE(W/m )2

https://agupubs.onlinelibrary.wiley.com/cms/asset/0bbffd20-e0e8-4298-9a5b-02d07c7f5e49/wrcr25618-fig-0008-m.jpg
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Figure 8

Open in figure viewer PowerPoint

Calibrated Noah-MP model output at soy (a, b, and c) and alfalfa site (d, e, and f) as
compared with EOL flux tower observation during RELAMPAGO period. Missing/unusual
soil moisture data is omitted from the plots.

3.5 Long-Term Water and Energy Balance of the Two Experiments
To understand how changes in agricultural practices might have changed the fluxes of water
and energy, we performed two idealized long-term Noah-MP simulations for the period
1970–2018. In one simulation we set the land cover as soy (Noah-MP SOY LT, Table 1), while
in the other simulation was alfalfa (Noah-MP ALFALFA LT, Table 1). Both simulations have the
same atmospheric forcing for the 49-year period. The annual mean values of different
components of the water budget (P = ET + R + SR, where P = precipitation,
ET = evapotranspiration, R = Recharge, SR = surface runoff, ignoring storage) of the two
simulations are shown in Figure 9.
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Figure 9
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Long-term annual estimates of precipitation, ET, runoff, and recharge in (a) 100% alfalfa
and (c) 100% soy simulations. Average partitioning of water in (b) alfalfa and (d) soy as
calculated over the period 1970–2018. Shaded regions indicate the uncertainty bound.

At the alfalfa site, long-term average water balance reveals that ET is the dominant
component (Figure 9a). Most of the incoming precipitation is evaporated (94.5 ± 1%) while a
relatively small amount goes into the aquifer as recharge (4.6 ± 0.2%), along with negligible
surface runoff (0.9 ± 0.4%). This kind of partitioning of precipitation is realistic in this region
(Giménez et al., 2020; Rodriguez et al., 2020). This is due to high evaporative potential of
alfalfa, adequate water availability, and flatness of the region which results in very little
surface runoff. At the soy site (Figure 9b), a significant amount of precipitated water goes
into the aquifer as recharge (28.4 ± 5.7%), with significantly less evaporation (68.1 ± 6.4%),
when compared to alfalfa. The surface runoff component at the soy site is slightly higher
(3.5 ± 0.2%), but still negligible compared to the evaporation and recharge.

Hence, changing alfalfa to soy results in a fourfold increase in runoff and a sixfold increase
in deep recharge. These results are consistent with previous literature and observations
(Nosetto et al., 2015; Rodriguez et al., 2020). The change in land use in this region results in
more recharge, which contributes to a shallower WT depth and higher baseflow (as seen in
Figures 3 and 4). In other words, the moisture that would have entered the atmosphere in
alfalfa vegetated region, is being accumulated below ground due to the shift in land use to
soy. This shift in regime transforms the subsurface hydrology in terms of WT depth,
baseflow, and SM. Analyzing the partitioning of available energy (defined as the summation
of LHF and SHF [Shuttleworth, 1993]), we find that the balance is significantly different when
comparing alfalfa and soy (Figure 10). LHF accounts for 74.8 ± 2.2% of available energy over
alfalfa while it accounts for 59.5 ± 2.7% over soy. On the other hand, 25.2 ± 2.2% of the
available energy over alfalfa goes into SHF, while it is 40.5 ± 2.7% over soy. The Bowen ratio (

) reiterates this fact, with mean of 0.2 over alfalfa and 0.7 over soy. This could also
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have a potential impact on the overlying atmosphere, given this region is characterized by
strong land-atmosphere coupling (Ruscica et al., 2015). It is also seen that the uncertainties
in the SOY simulations are higher than ALFALFA simulations. Extra uncertainty comes from
the unknown LAI estimates during the months of May to October where approximations due
to cover crops were considered.

Figure 10

Open in figure viewer PowerPoint

Long-term annual estimates of LHF and SHF in (a) 100% alfalfa and (c) 100% soy
simulations. Bowen ratio is shown with green line (secondary axis). Average partitioning
of available energy in (b) alfalfa and (d) soy as calculated over the period 1970–2018.
Shaded regions indicate the uncertainty bound.

3.6 Idealized Transient Land Cover Analysis
In the previous section, 100% soy and 100% alfalfa idealized simulations were used to
estimate long-term water and energy balance. To estimate the effect of a gradual shift in
land cover (as in Figure 2) we used the weighted tile approach described in Section 2.4.3.
Figures 11a–11d reveal that a gradual land-use change pattern from alfalfa to soy, results in
decreased LHF and increase SHF. Similarly, annual recharge and runoff increase over time.
Our results indicate a decreasing trend of ET, increasing trend of SHF, increasing trend of
annual recharge (not statistically significant), and increasing trend of surface runoff (not
statistically significant). Nonetheless, these long-term trends agree in sign with the
observations. Increased recharge and runoff are reflected in increased baseflow and surface
flow of Carcarañá river (Figure 4). Along with decreasing WT depth, this poses a higher
flooding risk in the region in recent years, which is reported in many studies (Aragón
et al., 2010; Nosetto et al., 2012).
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Figure 11
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Long-term estimates of annual mean (a) latent heat flux, (b) sensible heat flux (c)
recharge, and (d) runoff according to the land-use estimates of Figure 2. The dashed lines
show the linear trends. Decreasing trend of ET was found statistically significant at 95%
(p = 6.6 × 10 ), increasing trend of SHF was found statistically significant at 95%
(p = 2.07 × 10 ), increasing trend of annual recharge was not found statistically significant
at 95% (p = 0.2665), increasing trend of surface runoff was not found statistically
significant at 95% (p = 0.0016). Shaded regions indicate the uncertainty bound.

Finally, we argue that the change in WT depth over the years is partially linked to the
transient recharge estimates. It is important to highlight that we are not directly simulating
absolute values of WT depth because we lack information about the specific yield of the
unconfined aquifer and because we cannot simulate lateral groundwater flow in the one-
column Noah-MP configuration (Niu et al., 2007). Due to these uncertainties in the
groundwater scheme, we can only infer how changes in the WT depth could be related to
changes in recharge. We see a slight increase (not statistically significant) in annual recharge
throughout the period (Figures 11c), and therefore, the simulated trend in recharge would
not solely account for the 10 m decrease in WT depth found in observations (Figure 3a).
However, we find significant temporal correlation (R = 0.54) between interannual changes in
observed WT depth change and simulated transient recharge (Figure 12). This indicates that
changes in recharge driven primarily by climate variability as represented by Noah-MP,
correlate well with WT depth observations. This result agrees with Mercau et al. (2015) who
related annual changes in WT depth to annual balance between precipitation and
evaporation (P-E). However, these magnitudes of the changes are also controlled by the type
of vegetation. Figure 13 presents the change in WT depth (and recharge) as a function of
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precipitation from the simulations using soy (gray dots) and alfalfa (green dots). For a given
amount of precipitation, the change in WTD is higher for soy. This is particularly high in the
El Niño years denoted by blue circles, when precipitation is higher than normal in
southeastern South America (Cai et al., 2020). While alfalfa can still use most of the excess
water as ET, land planted with soy experiences comparatively larger changes in WT depth
due to higher recharge (Figure 13). This results in a difference of as large as 1 m between
these two vegetation types. During drier La Niña years, denoted by red circles, precipitation
is below normal in southeastern South America and vegetation has less impact on WT depth
change. Hence, we conclude that interannual variability in recharge, and groundwater table
depth are partially controlled by interannual climate variability and partially controlled by
vegetation type. As such, the probability of large changes in WT depth during ENSO events is
exacerbated when the land cover is switched from alfalfa to soy.

Figure 12
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Timeseries of transient Noah-MP recharge and observed inter-annual variation in water
table depth.
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Figure 13
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Effect of vegetation on the changes in WTD in different climatic years as simulated by
Noah-MP. El Niño and La Niña years were identified based on Oceanic Niño Index
(https://ggweather.com/enso/oni.htm). The solid lines show the linear trends in the data.

It is important to highlight that our experimental setup is highly simplified, with predefined
LAI and root depth values and only one crop type in each simulation. More realistic
estimates would require flux tower observations over other types of crops such as winter
wheat and corn. These additional land cover types likely have the characteristics of moisture
and energy fluxes in-between the soy and alfalfa. Furthermore, we do not explicitly simulate
WT depth due to the fact that the one-dimensional model does not account for lateral
groundwater flow and unknown aquifer-related data. However, these results show that,
given identical climate conditions, the different land covers result in a very different
partitioning of precipitation. Higher recharge in the soy scenario contributes to higher WT
depth and more runoff.

4 Conclusions
In the past decades, there has been a dramatic shift of land cover in central Argentina from
perennial to annual crops. In this study, we use detailed observations and modeling to
understand how the shift in land cover has also affected the sub-surface, surface, and
atmospheric fluxes of moisture and energy. Long-term observations have shown that,
despite slightly decreasing precipitation, streamflow in the region has increased primarily
due to baseflow. In addition, WT depth has decreased significantly since the 1970s. We
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obtained data from a paired eddy-covariance tower site over alfalfa and soy crops in Marcos
Juarez, Argentina as part of the RELAMPAGO field campaign. The alfalfa experimental site
reflects conditions similar to those that prevailed in the 1970s, while the soy site is
characteristic of the land cover of today.

Our observations reveal that ET and SH are higher at the alfalfa site, particularly for the
period of July–December. The alfalfa site also has deeper WT depth. On the other hand,
sensible heat, OSR, and ST are higher at the soy site. The higher sensible heat in the soy crop
between June and December is particularly striking. No significant differences were found in
the other variables such as T2m, U-momentum and V-momentum, and ISR. These
observations were also used to calibrate Noah-MP land surface model parameters for this
region.

Long-term Noah-MP simulations reveal that different land-surface properties affect the
partitioning of rainfall between ET, recharge, and runoff. ET is significantly higher for alfalfa.
Long-term simulations reveal that ∼95% of precipitation is evaporated in the alfalfa site with
negligible recharge and runoff. On the other hand, ET in the soy site accounts for ∼68% of
precipitation. The recharge significantly increases in case of soy (∼28% from ∼5% in alfalfa).
Runoff also increases from 0.9% in alfalfa to 3.5% in soy. Significantly higher recharge in soy
would result in higher baseflow and shallower WT, as we have seen in the observations. The
effect on WT depth is even more pronounced in El Niño years when higher than normal
precipitation is available, and the soy scenario shows more significant changes in WT depth
than the alfalfa scenario. However, the simulated increase in recharge in the transient
simulation is not totally able to account for the dramatic observed long-term change in WT
depth.

Our results suggest that the large-scale changes in land cover in Argentina have likely
affected sub-surface, surface, and atmospheric fluxes of moisture and energy. When
compared to perennial land cover, annual crops such as soy result in a shallower and more
variable WT, increased runoff driven by baseflow increases, decreased ET, and increased
sensible heat. In other words, much of the water that was going into the atmosphere in the
1970s is now going into the surface and subsurface. Furthermore, the energy that was being
used to evaporate the water is now going into sensible heat, and this results in a dramatic
250% increase in the Bowen ratio. The implications of this shift in fluxes of moisture and
energy to the weather and climate will be the focus of future work, using a regional Noah-
MP “coupled” to the atmosphere. The regional coupled framework will allow us to better
represent the lateral fluxes and evaluate the feedbacks between the atmosphere and land
fluxes which were not included in the present study.
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