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Abstract

Keywords

When a flat plate is vertically pulled out of a liquid bath 
with a constant speed, a uniform liquid film is deposited 
on the solid.  The first theoretical analysis of this pro-
cess –known as dip coating– was carried out by Landau 
and Levich (1942), and Derjaguin (1943) who reported 
an approximate expression for the film thickness valid 
at low coating speeds.  Thenceforth, a large number of 
works have been published to incorporate the effects of 
gravity, inertia and Marangoni stresses. 

Experiments as well as numerical and approximate 
analysis of the process usually report that the film thick-
ens in the presence of a surfactant.  The particular situa-
tion in which the surface active agent can be regarded as 
insoluble was considered by Park (1991) and more re-
cently by Campana et al. (2011). 

Park studied the problem in the limit of very small 
capillary number (i.e. very low coating velocities) using 
the method of matched asymptotic expansions.  He con-
sidered two cases, one in which the interfacial distribu-
tion of surfactant has small gradients and the other one 
in which the concentration itself is small.  The former 
may be associated with the deposition of Langmuir 
Blodgett films (Petty, 1996) and the latter with surface 
contamination.  Results of this asymptotic analysis show 
that the film thickness is affected by the surfactant with-
in a range of capillary number that depends on the mag-
nitude of the elasticity parameter (see the definition be-
low Eq. 6).  Within that range, the thickening factor (i.e. 
the ratio between the thickness of the contaminated sys-
tem and the Landau-Levich one for a uniformly distrib-
uted surfactant) is a non monotonic function of that pa-
rameter: at the lower and upper ends it is equal to one 
and in between it is equal to 42/3.

Campana et al. (2011) numerically solved the full 
hydrodynamic problem.  This study not only corrobo-
rates the predictions of Park’s asymptotic analysis but 
also extends those results by incorporating the influence 
of inertia and gravity forces.  An interesting finding is 
the non monotonic behavior exhibited by the film thick-
ness as the substrate speed increases, a behavior that is 
not detected when inertia is not considered.  The authors 
also describe the evolution of the flow patterns when the 
coating speed is increased and the Landau-Levich result 
is recovered. 

One of the hypotheses proposed in the above works 
assumes a linear equation of state to model the depend-
ence of surface tension on the concentration of adsorbed 
surfactant, an assumption that is reasonable only if the 
interfacial concentration of surfactant and/or its varia-
tion along the free surface are small. 

In this paper we numerically study the influence of 
the equation of state used to model surface tension on 
the dip coating process.  To this end we compute solu-
tions when the adsorption of the surfactant corresponds 
to a Langmuir isotherm and compare them with the pre-
dictions of the corresponding linear model to determine 
the conditions under which the film thickness predic-
tions of the linear model are reasonable.  In order to ex-
plore the influence on the results of the concentration of 
surfactant about which the linearization process is car-
ried out, we selected two values: one corresponds to the 
concentration of solute far away from the substrate and 
the other one is the concentration of solute carried out 
by the film. 

A flat plate is vertically pulled out of a pool of liquid 
with constant speed U.  The bath has infinite depth and 
semi-infinite horizontal dimensions; we assume that the 
liquid is Newtonian and incompressible with viscosity 
(  and density ( .  The air in contact with the liquid is 
regarded as inviscid and its pressure is arbitrarily set 
equal to zero.  An insoluble surfactant is adsorbed at the 
gas/liquid interface whose concentration is kept constant 
and equal to )0(ˆ s ; since the solute distribution de-
pends on surface convection and surface diffusion the 
concentration of surfactant may present spatial varia-
tions which in turn give rise to gradients of the surface 
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tension ( ˆ ).  Finally, we assume that inertia forces are 
negligible.  Within this context, the flow is governed by 
Stokes and continuity equations which in the coordinate 
system adopted (see Fig. 1) and in dimensionless form 
read

Ca
uup

Ca yyxxx
110 , (1) 

yyxxy vvp
Ca
10 , (2) 

0yx vu . (3) 
Selected scales for velocities, lengths, and pressure are 
U, 21

0ˆ glC , and Cl0ˆ , respectively.  In the 
above expressions, 0ˆUCa  is the Capillary num-
ber, 0ˆ  being the surface tension of the corresponding 
clean system. 

The boundary conditions imposed to solve Eqs. (1) – 
(3) are 
i) On the solid plate u=1 and v=0.
ii) At the film exit boundary, located far away from 

x=0, the flow is unidirectional and the film thickness 
is uniform and equal to h0.  Thus, at x=xF, 0 y h0
ux=vx=0, and uy=1/Ca (y-h0).

iii) Along the bottom surface of the computational do-
main (x=-H/lC) the flow does not change in the x di-
rection; therefore, ux and vx are both set equal to ze-
ro.  Also, a uniform pressure is weakly imposed 
along this boundary; this pressure is equal to the 
pressure at the lowest right corner of the domain and 
is obtained by introducing an additional equation in 
the computational code that sets the slope of the free 
surface equal to zero at (0, yF). 

iv) At y=yF, 0 x  -H/lC the flow does not depend on y;
thus, we set uy=vy=0 there.  Also, at that distance 
from the moving plate, the free surface is flat. 

v) On the liquid air interface, stresses must be continu-
ous. Considering that the gas phase is inviscid and 
assuming that the free surface viscosity is negligible, 
the expression for the traction vector is as follows: 

ds
d

Ca
p

Ca
T 11 , (4) 

where s is the arc length along the interface meas-
ured from (0, yF) to (xF, h0),  and  are the normal 
and tangent unit vectors to the free surface, and  is 
the local value of the surface tension measured in 
units of 0ˆ .
In addition, since the gas/liquid interface is a mate-
rial surface, the usual form of the kinematic condi-
tion is imposed, that is 

0 . (5) 

In order to account for variations of surface tension with 
the concentration of surfactant, we adopt Langmuir 
equation, that is 

1ln1 . (6) 

. Sketch of the flow domain and coordinate system 
adopted. 

In the above expression,  is the dimensionless sur-
factant concentration measured in units of 0ˆ s ,

ˆ0ˆ s is the ratio between the reference and 
the saturation concentration of the surfactant, 

0ˆˆRT  is the elasticity parameter of the surfac-
tant, R being the ideal gas constant and T the tempera-
ture.

As we have already mentioned, the local concentra-
tion of surfactant results from the competition between 
surface convection and surface diffusion; consequently, 
the surface mass balance of solute is as follows (Stone, 
1990) 

nS
S

S
S j

Pe
21 , (7) 

where S is the surface gradient operator,  is the sur-
face velocity, SCS DUlPe  is the surface Péclét 
number, DS being the surface diffusion coefficient of the 
surfactant, and jn is the mass flux of solute between the 
bulk and the interface; since we are considering an in-
soluble surfactant, jn=0.

Finally, the following boundary conditions are im-
posed at the ends of the free surface: 

0,1
ds

dxFS

, at s=0, (8-a) 

0,0
ds

dy
ds
d FS

, at s=sf. (8-b) 

In Eq. (8), xFS and yFS stand for the x- and y- coordinates 
of the free surface, respectively. 



M. BERLI, D. M. CAMPANA, M. D. GIAVEDONI, F. A. SAITA 

39 

The governing equations (1) – (3) and their boundary 
conditions are discretized by a standard Galerkin/finite-
element formulation, and the location of the free surface 
is traced by means of spines. 

The flow domain is tessellated into a structured 
mesh of quadrilateral elements and each element is 
isoparametrically mapped onto a unit square.  Mixed in-
terpolation is used: quadratic functions are used to in-
terpolate the velocity components u and v, and linear 
basis functions are used to approximate the pressure.  
The interfacial concentration of surfactant and the coef-
ficients that locate the free surface are interpolated with 
the one-dimensional specialization of the biquadratic 
basis functions used to approximate the velocities. 

The nonlinear set of ordinary differential equations 
obtained is simultaneously solved using a Newton loop; 
the convergence criterion adopted is that the norm of the 
difference between two consecutive approximations is 
equal to or smaller than 10-5.

The finite element mesh was selected so that the 
film thickness is independent of further refinements 
with a tolerance not larger than 1%.  A complete discus-
sion of the numerical tests performed to check the accu-
racy of the solution is reported elsewhere (Campana et
al., 2010, 2011).  

The adsorption of a large number of surfactants corre-
sponds to a Langmuir type isotherm (Rosen, 1988); this 
type of adsorption is valid under the following condi-
tions: 
i) The adsorption is homogeneous; 
ii) both solute and solvent have equal molar surface ar-

ea;
iii) there are not solute-solute or solute-solvent interac-

tions; 
iv) the adsorbed film is monomolecular. 
However, most analytical and numerical investigations 
of the effects of an insoluble surfactant on the dip coat-
ing process (Park, 1991; Daripa and Pa a, 2009; 
Campana et al., 2011), assume only small deviations 
from the reference concentration adopted, and thus a 
linear relation between interfacial tension and interfacial 
composition is used.  Linearization of Eq. (6) about 

0s  yields, 

1
1

1ln1 , (9) 

Solutions presented in those works show that the inter-
facial distribution of solute monotonically diminishes 
along the free surface from =1 at s=0 towards f at 
s=sf, as expected; also, those studies establish that for a 
given value of the elasticity parameter, there is a capil-
lary number at which f becomes negligible.  Under the-
se conditions, one should expect larger concentration 
gradients when the reference concentration is augment-
ed; i.e. for larger  when  is fixed, and thus, the film 
thickness predictions might be sensitive to the equation 
of state used. 
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.  Derivative of Eq. (6) with respect to vs  for select-
ed values of  and =0.10.  The arrow points in the direction 
of increasing .  Curves are drawn for  varying between 0 
and 1 in steps of 0.1. 

Both the full and the linear dimensionless approxi-
mation of Langmuir expression are written as function 
of ˆ)0(ˆ s .  In order to establish the depend-
ence of Eq. (6) on this parameter we calculated / ,
and evaluated the resulting expression within the inter-
val 0< <0.8, for =0.1, and selected values of ; results 
are illustrated in Fig. 2. 

It is easy to see that when  is small, the derivative 
of the interfacial tension varies slightly and almost line-
arly with the interfacial concentration of surfactant.  A 
simple calculation shows that 1lim

0
 for 

both expressions and thus one would not expect signifi-
cant deviations between the predictions of a model 
based on either Eq. (6) or Eq. (9).  However, if  is 
larger than approximately 0.5 and =0.10, 
strongly depends on the surface concentration; conse-
quently, one could anticipate larger deviations between 
the predictions of both models provided that the interfa-
cial concentration gradients are important. 

To emphasize the above results we evaluated 
/ as a function of  for the linear and non linear 

equations when  is set equal to 0.1, 0.5, and 0.8.  Re-
sults are depicted in Fig. 3. 

As expected, the two curves corresponding to the 
smallest  are nearly superimposed while those for 

=0.8 differ significantly.  Therefore, when the distribu-
tion of surfactant along the interface is not uniform and 

 is not small, the Marangoni tractions 
[ dsdCaTns 1 ] will depend significantly on the 
equation of state employed to model surface tension. 

Based on the previous analysis, we can presume that 
the film thickness predictions of the dip coating process 
when a linear approximation is used to model the de-
pendence of surface tension on surfactant concentration 
will be valid provided 0ˆ s << ˆ (i.e. <<1), or the 
resulting interfacial distribution of solute is nearly uni-
form (i.e. very low coating speeds). 
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.Dimensionless film thickness as a function of Ca for the 
linear and nonlinear models, and two values of .  The lower 
and upper bounds are also depicted.

To verify the validity of our assumption, we carried 
out computations of the model described in Section I 
within an appropriate range of the capillary numbers 
when =0.1, and is equal either to 0.1 or .  We also 
computed solutions when Eq. (6) is replaced by Eq. (9).  
Film thickness predictions as a function of Ca are re-
ported in Fig. 4.  Since the main objective of this work 
is to assess the effect of the equation of state, the com-
putations were carried until the film thickness of the 
contaminated system was nearly equal to the film thick-
ness of the corresponding clean system.  Computed pre-
dictions beyond this point were presented by Campana 
et al. (2011). 

The four curves depicted show the same trend.  At 
low values of the capillary number, the film thickness is 
approximately equal to 42/3 times that of the clean sur-
face (dotted line in Fig. 4).  As Ca is augmented, i.e. as 
the ratio between viscous and surface forces increases, 
h0 approaches the value observed in the corresponding 
clean system (dash-dot line in Fig. 4).  When =0.1, 
numerical predictions of h0 are nearly independent of 
the equation of state used to compute surface tension 

(the largest difference is ~2.4% when Ca 0.0005); 
however, when that parameter is equal 0.8, films pre-
dicted by the linear approximation are in good agree-
ment with those computed with Langmuir equation only 
if the capillary number is smaller than ~0.002. Thence 
Eq. (9) produces thicker films than Eq. (6); thus the dif-
ference between the thicknesses of the coating layers is 
approximately equal to 56% for Ca 0.016 (i. e. when 
the solutions of the non linear model approach the clean 
system solutions). 

The thickening of the film detected when a surfac-
tant is adsorbed at the interface is due to the non-zero 
value of the tangential component of the surface traction 
and to a reduction of the adverse pressure gradient that 
exists in the dynamic flow region.  In fact, results previ-
ously reported (Campana et al., 2011) show that when 
an insoluble surfactant is present in the system, the 
stagnation point that exists at the free surface of the cor-
responding clean system, moves toward the bulk phase; 
therefore, the interfacial concentration of solute mono-
tonically diminishes from s=0 to s=sf, and this gradient 
gives rise to Marangoni tractions which pull more liquid 
toward the film region.  Also, the adsorption of the sur-
face active agent induces changes in the interfacial 
shape: the dynamic region stretches and the free surface 
curvature diminishes; accordingly, the adverse pressure 
gradient is reduced and more liquid can be pulled to-
ward the film. 

Then, it might be interesting to analyze if the differ-
ence between the solutions of both Langmuir and linear 
models can be ascribed to differences in the strength of 
the mechanisms described.  To that end, we evaluated 
the Marangoni tractions and the pressure gradient along 
the free surface for  equal to 0.1 and 0.8, and selected 
values of Ca, when either Eq. (6) or Eq. (9) is used to 
compute surface tension.  Results reported in Fig. 5, 
show that differences in the pressure gradient along the 
dynamic meniscus between the linear and non linear 
models for Ca=0.005, =0.1, and Ca=0.016, =0.8 (i.e. 
at the point where differences in the film thickness pre-
dictions are the largest) are negligible.  Therefore, dif-
ferences in film thicknesses cannot be ascribed to dif-
ferences in the adverse pressure gradient. 

The curves depicted in Fig. 6, point out that differ-
ences in the maximum of the tangential component of 
the surface traction depend on the expression employed 
to evaluate surface tension.  In fact, they are about 5.6% 
and 119% when =0.1 (Ca=0.0005) and =0.8
(Ca 0.016), respectively. 

Therefore, we can conclude that differences between 
the computed film thicknesses are mainly due to the dif-
ferences detected in Tns; these differences could be an-
ticipated from the derivatives of Eqs. (6), and (9) with 
respect to ; i.e. 

1(6)Eq.

, (10-a) 

1(9)Eq.

; (10-b) 
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 Since 0 1, the magnitude of (10-a) is smaller than 
or equal to (10-b) for all , .  If  is a small quantity, 

 for both equations, and in consequence 
the elastic effects will be similar when either Langmuir 
expression or its linear approximation is used (see Fig. 
3).  On the other hand, as  increases, the linear model 
predicts larger surface forces (see Fig. 6) than the non 
linear one; thus, larger viscous forces (i.e. a faster mov-
ing substrate) will be required to overcome the 
Marangoni stress when Eq. (6) is replaced by Eq. (9) in 
the numerical code.  Actually, results reported in Fig. 4 
show that in this case the contaminated system ap-
proaches the clean system solution at a larger Ca.

All the studies of the dip coating process establish 
that the behavior of the system is mainly determined by 
the dynamic meniscus; for instance, the film thickness 
as well as the amount of surfactant that leaves the sys-
tem depend on the characteristic presented by the flow 
in that region.  Eq. (9) results from the linearization of 
Langmuir equation about the value of the surface ten-
sion at s=0, i.e. a place far away from the dynamic me-
niscus.  Then, one could argue that the predictions of the 

full and approximate models could be closer if Eq. (6) 
were made linear about )( fss .  To verify if it is in-
deed the case, we carried out numerical computations 
for =0.8 and the following linearized expression for 
surface tension, 

film
film

film 1
1ln1 , (11) 

where film= (s=sf).  The resulting film thicknesses as 
well as those obtained with Langmuir equation for the 
same value of  as a function of Ca are illustrated in 
Fig. 7. 

We observe that the film thickness is now underes-
timated by the linear model.  It is easy to see that the 

magnitude of 
filmEq 1)11(

 is even smaller 

than the values given by Eq. (10-a); therefore, for the 
same distribution of surfactant, Marangoni tractions 
computed with Eq (11) will be smaller than those com-
puted with Eq (6).  The difference between both deriva-
tives becomes larger as the concentration at s=sf dimin-
ishes, i.e. as the coating speed increases; therefore, vis-
cous forces will counterbalance surface forces at a 
smaller value of Ca and the clean system solutions will 
be approached faster.  The largest difference between 
the thicknesses computed when Eq. (6) is replaced by 
Eq. (11) in the numerical code is equal to 46%. 

From the above discussion, it is apparent that a reli-
able prediction of the film thickness when the interfacial 
distribution of the surfactant is not uniform must con-
sider a realistic equation of state for the surface tension.  

In this work we analyze the condition at which the 
commonly employed linear relationship between sur-
face tension and interfacial concentration of surfactant 
is valid.  To that end, a numerical code previously de-
veloped (Campana et al., 2010, 2011) to study the dip 
coating process, has been adapted to include Langmuir 
equation of state as well as the two linear expressions 
that result when the linearization process is carried out 
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h0 vs. Ca for =0.8. 
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about two selected concentrations of surfactant. 
The numerical experiments carried out show that the 

linear approximations are suitable to predict the film 
thickness when the interfacial distribution of surfactant 
is nearly uniform and/or the maximum concentration 
adsorbed is far from the saturation value.  In fact, results 
presented in this work show that the film thickness can 
largely be either underestimated or overestimated when 
a linear equation of state is adopted.  
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